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Causal relations can themselves take part in causal relations. The fact that smoking
causes cancer (��), for instance, causes government to restrict tobacco advertising
(�), which helps prevent smoking (�), which in turn helps prevent cancer (�).
This causal chain is depicted in Figure 1, and further examples will be given in
Section 1.
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Figure 1. ��: smoking causes cancer; �: tobacco advertising; �: smoking; �:
cancer

So causal models need to be able to treat causal relationships as causes and
effects. This observation motivates an extension the Bayesian network causal cal-
culus (Section 2) to allow nodes that themselves take Bayesian networks as values.
Such networks will be called recursive Bayesian networks(Section 3).

Because recursive Bayesian networks make causal and probabilistic claims at
different levels of their recursive structure, there is a danger that the network might
contradict itself. Hence we need to ensure that the network is consistent, as ex-
plained in Section 4. Having done this, in Section 5 we propose a new Markov
condition: under this condition a recursive Bayesian network determines a joint
probability distribution over its domain.

In Section 6 we compare our approach to other generalisations of Bayesian
networks, and in Section 7 we show by analogy with recursive Bayesian networks
how recursive causality can be modelled in structural equation models. A similar
analogy motivates the application of recursive Bayesian networks to a non-causal
domain, namely the modelling of arguments (Section 8).

A recursive Bayesian network is an instance of a very general structure called
a self-fibring information network, whose properties are explored in Section 9 and
Section 10.
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1 Causal Relations as Causes
It is almost universally accepted that causality is an asymmetric binary relation. 1

But the question of what the causal relation relates is much more controversial:
the relata of causality have variously taken to be single-case events, properties,
propositions, facts, sentences and more. In this paper we shall only add to the con-
troversy, by dealing with cases in which causal relations themselves are included
as relata of causality. Our aim is to shed light more on the processes of causal
reasoning, especially formalisations of causal reasoning, than on the metaphysics
of causality.

More generally we shall consider sets of causal relations, represented by di-
rected causal graphs such as that of Figure 1, as relata of causality. (A single
causal relationship is then represented by a causal graph consisting of two nodes
referring to the relata and an arrow from cause to effect.) If, as in Figure 1, a
causal graph � contains a causal relation or causal graph as a value of a node, we
shall call� a recursive causal graphand say that it represents recursive causality.

Perhaps the best way to get a feel for the importance and pervasiveness of re-
cursive causality is through a series of examples.

Policy decisions are often influenced by causal relations. As we have already
seen, smoking causing cancer itself causes restrictions on advertising. Similarly,
monetary policy makers reduce interest rates (�) because interest rate reductions
boost the economy (�) by causing borrowing increases (�) which in turn allow
investment (�). Here we have a causal chain as in Figure 2 forming the value of
node �� in Figure 3.
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Figure 2. �: interest rate reduction; �: borrowing; � : investment; �: economic
boost
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Figure 3. ��: interest rate reduction causing economic boost; �: interest rate
reduction

Policy need not be made for us: we often decide how we behave on the basis
of perceived causal relationships. It is plausible that drinking red wine causes an

1Not quite universally: [Mellor, 1995] disagrees for example.
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increase in anti-oxidants which in turn reduces cholesterol deposits, and this appar-
ent causal relationship causes some people to increase their red wine consumption.
This example highlights two important points. Firstly, it is a belief in the causal
relationship which directly causes the policy change, not the causal relationship it-
self. The belief in the causal relationship may itself be caused by the relationship,
but it may not be—it may be a false belief or it may be true by accident. Likewise,
if a causal relationship exists but no one believes that it exists, there will be no
policy change. Secondly, the policy decision need not be rational on the basis of
the actual causal relationship that causes the decision: drinking red wine may do
more harm than good.

A contract can be thought of as a causal relationship, and the existence of a
contract can be an important factor in making a decision. A contract in which
production of commodity � is purchased at price � may be thought of as a causal
relationship � �� � , and the existence of this causal relationship can in turn
cause the producer to invest in further means of production, or even other com-
modities. For example, a Fair Trade chocolate company has a long-term contract
with a co-operative of Ghanaian cocoa producers to purchase (� ) cocoa (�) at a
price advantageous to the producer as in Figure 4. The existence of this contract
(�� ) allows the co-operative to invest in community projects such as schools (�),
as in Figure 5.
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Figure 4. �: cocoa production; � : purchase
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Figure 5. �� : cocoa production causing payment; � school investment

An insurance contract is an important instance of this example of recursive
causality. Insuring a building against fire may be thought of as a causal relation-
ship of the form ‘insurance contract causes [fire 	 causes remuneration �]’ or
�� �� � � �� �	 �� �� for short, where as before � is the commodity (i.e. the
contract) and � is payment of the premium. The existence of such an insurance
policy can cause the policy holder to commit arson (�) and set fire to her building
and thereby get remunerated: ��� �� � � �� �	 �� ��� �� � �� 	 �� �.
Causality in this relationship is nested at three levels. Insurance companies will
clearly want to limit the probability of remuneration given that arson has occurred.
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Thus we see that recursive causality is particularly pervasive in decision-making
scenarios. However, recursive causality may occur in other situations too—situations
in which it is the causal relationship itself, rather than someone’s belief in the
relationship, that does the causing. Pre-emption is an important case of recur-
sive causality, where the pre-empting causal relationship prevents the pre-empted
relationship: [poisoning causing death] prevents [heart failure causing death]. 2

Context-specific causality may also be thought of recursively: a causal relationship
that only occurs in a particular context (such as susceptibility to disease amongst
immune-deficient people) can often be thought of in terms of the context causing
the causal relationship.

Arguably prevention is often best interpreted in terms of recursive causality:
when taking mineral supplements prevents goitre, what is really happening is that
taking mineral supplements prevents [poor diet causing goitre]—this is because
there are other causes of goitre such as various defects of the thyroid gland, taking
mineral supplements does not inhibit these causal chains and thus does not prevent
goitre simpliciter. (In many such cases, however, the recursive nature can be elimi-
nated by identifying a particular component of the causal chain which is prevented.
Poor diet (
) causes goitre (�) via iodine deficiency (�) and mineral supplements
(�) prevent iodine deficiency and so this example might be adequately represented
by Figure 6, which is not recursive. Of course the recursive aspect can not be
eliminated if no suitable intermediate variable � is known to the modeller.)
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Figure 6. 
: poor diet; �: mineral supplements; � : iodine deficiency;�: goitre

Recursive causality is clearly a widespread phenomenon. The question now
arises as to how recursive causality ought to influence our reasoning mechanisms.
After a brief introduction to Bayesian networks in Section 2 we shall extend the
Bayesian network formalism to cope with recursive causality (Section 3) and then
discuss some related extensions of Bayesian networks (Section 6). Later we shall
see that this approach to causal reasoning generalises in an interesting way.

2We suggest that this is a simpler and more natural way of representing pre-emption than the pro-
posal of Section Section 10.1.3, 10.3.3, 10.3.5 of [Pearl, 2000].
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2 Bayesian Networks
A Bayesian network is defined over a finite domain � � ���� 
 
 
 � ��� of vari-
ables. In principle there are no size restrictions on the set of possible values that
each variable may take, but often in practice each variable will have only a fi-
nite number of possible values. For simplicity we shall restrict our attention to
two-valued variables, and denote the assignment of � � to its values by �� and ���
respectively, for � � �� 
 
 
 � �. An assignment � to a subset � � � of vari-
ables is a conjunction of assignments to each of the variables in � . For example
�� � ��� � ��� is an assignment to ���� ��� ���.

A (causally interpreted) Bayesian network� on � consists of two components:

� A directed acyclic graph � with nodes from � , representing the causal re-
lations amongst the variables.

� A probability specification �. For each �� � � , � specifies the prob-
ability distribution of �� conditional on its parents (direct causes in �),
i.e. � consists of statements of the form ‘����	��� �� � ������

�
’ for each

� � �� 
 
 
 � � and assignment ��� � of values to the parents of ��, and where
each ������

�
� ��� ��. If the value of a variable �� is known then �� is said

to be instantiatedto that value and the corresponding probability specifiers
����	��� �� are � or � according to whether �� or ��� is the instantiated value.

The graph and probability specification of a Bayesian network are linked by a
fundamental assumption known as the causal Markov condition. This says that
conditional on its parents, any node is probabilistically independent of all other
nodes apart from its descendants, written �� 

 �� � 	 ��� � where �� � and ��� �
are respectively the sets of non-descendants and parents of � �.

A Bayesian network suffices to determine a joint probability distribution over
its nodes, since for each assignment � on � ,

(1) ���� �

��
���

����	��� ��

where �� is the assignment � gives to ��, and ��� � is the assignment � gives to the
parents ��� � of ��.

Bayesian networks are used because they offer the opportunity of an efficient
representation of a joint probability distribution over � . While �� different prob-
abilities ���� specify the joint distribution, these values may (depending on the
structure of the causal graph�) be determined via eqn 1 from relatively few values
in the probability specification �. Furthermore, a number of algorithms have been
developed for determining marginal probabilities from a Bayesian network, often
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very quickly (but this again depends on the structure of�). 3 Causal graphs are of-
ten sparse, and thus lead to efficient Bayesian network representations. Moreover
the causal interpretation of the graph ensures that the causal Markov condition is
a good default assumption, even if the conditional independence relationships it
posits do not always hold in practice.4

3 Extension to Recursive Causality
As noted in Section 1, causal relationships often act as causes or effects them-
selves. In a Bayesian network, however, the nodes tend to be thought of as sim-
ple variables, not complex causal relationships. Thus we need to generalise the
concept of Bayesian network so that nodes in its causal graph� can signify com-
plex causal relationships. On the other hand, we would like to retain the essential
features of ordinary networks, namely the ability to represent joint distributions
efficiently, and the ability to perform probabilistic inference efficiently.

The essential step is this. We shall allow variables to take Bayesian networks
as values. If a variable takes Bayesian networks as values we will call it a net-
work variableto distinguish it from a simple variablewhose values do not contain
such structure. Thus �, which signifies ‘payment of subsidy to farmer’ and takes
value true (�) or false ���� is a simple variable. But an example of a network
variable is �, which stands for ‘agricultural policy’ and takes value � signify-
ing the Bayesian network containing the graph of Figure 7 and the specification
������ � �
�� ����	�� � �
�� ����	��� � �
��, where 	 is a simple variable sig-
nifying ‘farming’, or value �� signifying Bayesian net with graph of Figure 8 and
specification ������� � �
�� ������ � �
��. Here � is a policy in which farming
causes subsidy and �� is a policy in which there is no such causal relationship.
For simplicity we shall consider network variables with at most two values, but
the theory that follows applies to network variables which take any finite number
of values.
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Figure 7. Graph of �: farming causes subsidy

3See [Neqpolitan, 1990] for a detailed discussion of the properties of Bayesian networks and key
inference algorithms.

4See [Williamson, 2001] on this point. While Bayesian networks were originally developed with a
causal interpretation in mind [Pearl, 1988], a joint probability distribution can also be represented by
a Bayesian network whose graph does not admit a viable causal interpretation. If a Bayesian network
is not causally interpreted then causal justifications of the Markov condition do not apply, and an
independent justification is required. Thus in Section 5 we define a network called a flatteningwhich
contains arrows that do not correspond to causal relations, and we also provide a justification for the
Markov condition.
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Figure 8. Graph of ��: no causal relationship between farming and subsidy

A recursive Bayesian networkis then a Bayesian network containing at least one
network variable. For example the network with graph Figure 9 and specification
����� � �
	� ���	�� � �
�
� ���	��� � �
��, representing the causal relationship
between lobbying and agricultural policy, is a recursive Bayesian network, where
the simple variable � stands for ‘lobbying’ and takes value true or false, and � is
the network variable signifying ‘agricultural policy’ discussed above.
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Figure 9. Lobbying causes agricultural policy

We shall allow network variables to take recursive Bayesian networks (as well
as the standard Bayesian networks of Section 2) as values. In this way a recursive
Bayesian network represents a hierarchical structure.

If a variable � is a network variable then the variables that occur as nodes in
the Bayesian networks that are the values of � are called the direct inferiorsof
�, and each such variable has � as a direct superior. Inferior and superiorare
the transitive closures of these relations: thus � is inferior to � iff it is directly
inferior to � or directly inferior to a variable
 that is inferior to �. The variables
that occur in the same local network as � are called its peers.

A recursive Bayesian network � � ����� conveys information on a number of
levels. The variables that are nodes in � are level 1; any variables directly inferior
to level � variables are level 2, and so on. The network � itself can be associated
with a network variable � that is instantiated to value �, and we can speak of �
as the level 0 variable. (We have not specified the other possible values of �:
for concreteness we can suppose that � is a single-valued network variable which
only takes value �.) The depthof the network is the maximum level attained by a
variable. A Bayesian network is non-recursiveif its depth is �; it is well-foundedif
its depth is finite. We shall restrict our discussion to finitenetworks: well-founded
networks whose levels are each of finite size.

For � � � let �� be the set of level � variables, and let 
� and �� be the set
of graphs and specifications respectively that occur in networks that are values of
level � variables. Thus �� � ����
� � ��� and �� � ���. The domain of � is
the set � �

�
� �� of variables at all levels.

Note that � contains the level � variable� itself and thus contains all the struc-
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ture of �. In our example � � ������� 	� �� where the level � network variable
� takes value � whose graph is Figure 9 and whose probability specification is
����� � �
	� ���	�� � �
�
� ���	��� � �
�� and the only other network variable is
� whose value � has graph of Figure 7 and specification ������ � �
�� ����	�� �
�
�� ����	��� � �
�� and whose value �� has graph of Figure 8 and specifica-
tion ������� � �
�� ������ � �
��; then � itself determines all the structure of
the recursive Bayesian network in question. Consequently we can talk of ‘recur-
sive Bayesian network � on domain � ’ and ‘recursive Bayesian network of � ’
interchangeably.

A network variable �� can be thought of as a simple variable � �
� if one drops

the Bayesian network interpretation of each of its values: � �
� is the simplification

of ��. A recursive network � can then be interpreted as a non-recursive network � �

on domain � �� � �� �
� � �� � ���: then �� is called the simplificationof �.

A variable may well occur more than once in a recursive Bayesian network, in
which case it might have more than one level.5 Note that in a well-founded network
no variable can be its own superior or inferior. A recursive Bayesian network
makes causal and probabilistic claims at all its various levels, and if variables occur
more than once in the network, these claims might contradict each other. We shall
examine this possibility now.

4 Consistency
Network variables that occur in the domain of a recursive Bayesian network � �
����� can be interpreted as making causal and probabilistic claims about the
world. Any network variable that is instantiated to a particular value asserts the
validity of the network to which it is instantiated. In particular the level � network
variable � asserts its instantiated value �, i.e. it asserts the causal relations in �,
the probabilistic independence relationships one can derive from � via the causal
Markov condition, and the probabilistic claims made by the probability specifica-
tion �. A network variable that is not instantiated asserts the weaker claim that
precisely one of its possible values is correct. A recursive Bayesian network is
consistent if these claims do not contradict each other.

In order to give a more precise formulation of the consistency requirement we
need first to define consistency of non-recursive Bayesian networks. There are
three desiderata: consistency with respect to causal claims (causal consistency),
consistency with respect to implied probabilistic independencies (Markov consis-

5While one might think that there will be no repetition of variables if all variables correspond to
single-case events, this is not so. Event � causing event � causes an agent to change her belief about
the relationship between � and �, this belief being represented by network variable � whose value
�� has � causing � and whose value � has � causing �. Here � and � occur more than once in the
network but need not be repeatably instantiatable variables—they may be single-case events.
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tency) and consistency with respect to probabilistic specifiers (probabilistic con-
sistency).

First causal consistency. A chain�� � from node � to node � in a directed
acyclic graph is a sequence of nodes in the graph, beginning with � and ending
with �, such that there is an arrow from each node to its successor. A subchain
of a chain � from � to � is a chain from � to � involving nodes in � in the same
order, though not necessarily all the nodes in �. Thus Figure 10 contains both the
chain ������� and its subchain �����. The interior of a chain�� � is defined
as the subchain involving all nodes between� and� in the chain, not including�
and � themselves. A pathbetween � and � is a sequence of nodes in the graph,
beginning with � and ending with �, such that there is an arrow between each
node and its successor (the direction of the arrow is unimportant).
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Figure 10.

The restriction ��� of causal graph � defined on variables � to the set of
variables� � � is defined as follows: for variables ��� � � , there is an arrow
� �� � in ��� if and only if � �� � is in � or, � � � is in � and the
variables in the interior of this chain are in � �� . Thus � and � �� agree as
to the causal relationships amongst variables in � . It is not hard to see that for
� �� � ����� �� � ��� .

Two causal graphs � on � and � on � are causally consistentif there is a
third (directed and acyclic) causal graph 	 on � � � �� such that 	 �� � �
and 	�� � � . Thus � and � are causally consistent if there is a model 	 of the
causal relationships in both� and � . Such an 	 is called a causal supergraphof
� and � .

Figure 11 and Figure 12 are causally consistent for instance, because the latter
graph is the restriction of the former to �������. However, Figure 10 is not
causally consistent with Figure 11: they do not agree as to the causal chains
between�,� and�. Similarly Figure 10 and Figure 12 are causally inconsistent.
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Figure 11.
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Figure 12.

Note that if � and � are causally consistent and nodes � and � occur in both
� and � then there is a chain � � � in � iff there is a chain � � � in � . We
will define two non-recursive Bayesian networks to be causally consistentif their
causal graphs are causally consistent.

Another important consistency requirement is Markov consistency. Two causal
graphs � and � are Markov consistentif they posit (via the causal Markov con-
dition) the same set of conditional independence relationships on the nodes they
share. Figure 11 and Figure 12 are Markov consistent because on their shared
nodes ����� they each imply just that � and � are probabilistically indepen-
dent conditional on �. Figure 10 is not Markov consistent with either of these
graphs because it does not imply this independency. Two non-recursive Bayesian
networks are Markov consistentif their causal graphs are Markov consistent.

Note that Markov consistency does not imply causal consistency: for instance
two different complete graphs on the same set of nodes (graphs, such as Figure 10,
in which each pair of nodes is connected by some arrow) are Markov consistent,
since neither graph implies any independence relationships, but causally incon-
sistent because where they differ, they differ as to the causal claims they make.
Neither does causal consistency of a pair of causal graphs imply Markov consis-
tency: Figure 13 and Figure 14 are causally consistent but Figure 14 implies that
� and � are probabilistically independent, while Figure 13 does not.
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Figure 13.

In fact we have the following. Let ������� be the set of closest common
causes of � according to �, that is, the set of causes � of � that are causes of at
least two nodes � and � in � for which some pair of chains from � to � and �
to � only have node � in common. Then,
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Figure 14.

PROPOSITION 1. Suppose� and� are causal graphs on� and� respectively.
� and� are Markov consistent if they are causally consistent and their shared
nodes are closed under closest common causes (‘cccc’ for short),��� ��� �
� � � ������ �� � � � �� .

Proof. Suppose� 

� � 	  for some����  � � �� . Then for each � � �
and � � � ,  
-separates� from � in �: every path between � and � is
blockedby  , i.e. every path contains (i) a structure �� � �� with � in  , or
(ii) a structure �� � �� with � in  , or (iii) a structure �� � �� where  
contains neither � nor any of its descendants.6 � and � are causally consistent
so there is a causal supergraph 	 on � � � (� � 	�� and � � 	�� ). Now
consider a path between � and � in 	 . Such a path either ��� is a chain �� � �
or � � ��, (�) contains some � where � � � and � � �, or (�) contains a
�� � �� structure. In case ��� there must be in� a subchain of this chain which
is blocked by  so the original chain in 	 must also be blocked by  . Similarly
in case (�), since � and � are cccc there must be a blocked subpath in � which
has � � � and � � �. In case (�), either there is a corresponding subpath in �
which is blocked, or � and its descendants are not in  so the path in 	 is blocked
in any case. Thus � 

	 � 	  . Next take the restriction 	�� � � . Paths
between � and � in � must be blocked by  since they are subpaths of paths in
	 that are blocked by  and all variables in  occur in� . Thus� 

� � 	  , as
required. �

Note that while (under the assumption of causal consistency) closure under clos-
est common causes is a sufficient condition for Markov consistency, it is not a nec-
essary condition: Figure 13 and Figure 15 are Markov consistent because neither
imply any independencies just amongst their shared nodes � and �, but the set of
shared nodes is not closed under closest common causes.

6D-separation is a necessary and sufficient condition for deciding the conditional independencies
implied by a causal graph under the causal Markov condition. See[Pearl, 1988, Section 3.3.1].
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Figure 15.

Markov consistency is quite a strong condition. It is not sufficient merely to
require that the pair of causal graphs imply sets of conditional independence re-
lations that are consistent with each other—in fact any two graphs satisfy this
property. The motivation behind indexconsistency!MarkovMarkov consistency is
based on the fact that a cause and its effect are usually probabilistically depen-
dent conditional on the effect’s other causes (this property is known as the causal
dependence condition), in which case probabilistic independencies that are not im-
plied by the causal Markov condition are unlikely to occur. For example, while the
fact that � causes� and� (Figure 13) is consistent with� and� being uncondi-
tionally independent (Figure 14), it makes their independence extremely unlikely:
if � and � have a common cause then the occurrence of assignment � of A may
be attributable to the common cause which then renders � more likely (less likely,
if the common cause is a preventative), in which case � and � are uncondition-
ally dependent. Thus Figure 13 and Figure 14 are not compatible, and we need
the stronger condition that independence constraints implied by each graph should
agree on the set of nodes that occur in both graphs.

Finally we turn to probabilistic consistency. Two causally consistent non-
recursive Bayesian networks ����� and ���! �, defined over � and � respec-
tively, are probabilistically consistentif there is some non-recursive Bayesian net-
work �	���, defined over � �� and where 	 is a causal supergraph of � and
� , whose induced probability function satisfies all the equalities in � � ! . Such a
network is called a causal supernetof ����� and ���! �.

PROPOSITION 2. Suppose two non-recursive Bayesian networks����� and���! �
are causally consistent, probabilistically consistent and closed under closest com-
mon causes (cccc). Then there is a causal supernet�	��� of ����� and���! �
that is cccc with����� and���! �.

Proof. Because ����� and ���! � are causally and probabilistically consistent,
there is a supernet ���"�, of ����� and ���! �. If � is cccc with � and � then
we set �	��� � ���"� and we are done. Otherwise, if � is not cccc with � say,
then there is some � -structure of the form of Figure 16 in �, where Figure 17 is
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the corresponding structure in�. (In these diagrams take the arrows to signify the
existence of causal chains rather than direct causal relations.) Note that � must be
in� or� , since the domain of a causal supergraph of� and� is the union of the
domains of � and� ; � cannot be in � since otherwise by causal consistency the
chain from� to� in�would go via�; hence� is in� . Note also that not both of
� and
 can be in� , for otherwise� and� are not cccc. Suppose then that
 is
not in � . Then the chain from� to 
 is not in � or� . Construct 	 by taking �,
removing the chain from � to 
 and including a chain from � to 
, as in Figure
18. (Do this for all such � -structures not replicated in �.) 	 remains a causal
supergraph of � and� , since the chain from� to� was redundant. Moreover 	
is now cccc with �. Next construct the associated probability specification � by
determining specifiers from ���"�. Thus if the causal chain from� to
 is direct
we can set ��#	�� �

�

 �������#	����������	�� in �. It is not hard to see that

��	�
� agres with ������ on the specifiers in � and ! so the new network is also
a causal supernet of �����. If � is not cccc with � then repeat this algorithm, to
yield a causal supernet of ����� and ���! � that is cccc with ����� and ���! �.
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Figure 16. � is the closest common cause of � and
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Figure 17. � is the closest common cause of � and 
.

Note that the requirement that� and� are cccc in the above result is essential.
If � is Figure 16 and� is Figure 17 then there is no causal supergraph of � and



184 Dov Gabbay and Jon Williamson

��
��
�

��
��
� �������������

��
��
�
��
����

��
��



Figure 18. � is the closest common cause of � and 
.

� that is cccc with � and� .

PROPOSITION 3. Suppose two non-recursive Bayesian networks are causally
consistent, probabilistically consistent and cccc. Then they determine the same
probability function over the variables they share.

Proof. Suppose ����� and ���! � are causally and probabilistically consistent
and cccc. Then by Proposition 2 there is a causal supernet �	��� that is cccc with
both nets. By Proposition 1 	 is Markov consistent with � and� .

Next note that ����� and �	��� determine the same probability function over
variables � of �����:

��������� �
�
����

���������	���
�
� �

where ����� is the state of the parents of �� according to � that is consistent with
assignment � to � ,

�
�
����

��	�
����	���
�
� �

since �	��� is a causal supernet of �����,

�
�
����

��	�
����	��� 
 
 
 � ����� � ��	�
����

where it is supposed that the variables ��� 
 
 
 � �� in � are ordered �-ancestrally,
i.e. no descendants of �� in � occur before �� in the order. This last step follows
because �� 

� ��� 
 
 
 � ���� 	 ���

�
� implies �� 

	 ��� 
 
 
 � ���� 	 ���

�
� by

Markov consistency.
Similarly ���! � and �	��� determine the same probability function over the

variables of ���! �. Hence ����� and ���! � determine the same probability
function over variables they share. �
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Because Proposition 3 is a desirable property in itself we shall adopt closure
under closest common causes as a consistency condition. We shall say that two
non-recursive networks are consistentif they are causally and probabilistically
consistent, and cccc. By Proposition 1 consistency implies Markov consistency.

Having elucidated concepts of consistency for non-recursive networks, we can
now say what it means for a recursive network to be consistent.

An assignment � of values to variables in � , the domain of a recursive Bayesian
network �, assigns values to all the simple variables and network variables that
occur in �. Take for instance the recursive Bayesian network � of Figure 9: here
� � ������� 	� �� and � � � � �� � � � �� is an example of an assignment to
� . (Note that the level � variable � only takes one value � and so must always
be assigned this value.) Consider the assignment of values � gives to network
variables in � . In our example, the network variables are � and � and these
are assigned values � and �� respectively. Each such value is itself a recursive
Bayesian network, and when simplified induces a non-recursive Bayesian network.
Let �� denote the set of recursive Bayesian networks induced by � (i.e. the set of
values � assigns to network variables of �) and let ��� denote the set of non-recursive
Bayesian networks formed by simplifying the networks in �� .

Assignment � is consistentif each pair of networks in ��� is consistent (i.e. if
each pair of values of network variables is consistent, when these values are inter-
preted non-recursively). A recursive Bayesian network is consistentif it has some
consistent assignment � of values to � . A consistent assignment of values to the
variables in a network can be thought of as a model or possible world, in which
case consistency corresponds to satisfiability by a model.

In sum, if a recursive Bayesian network is not to be self-contradictory there
must be some assignment under which all pairs of network variables satisfy three
regularity conditions: causal consistency, probabilistic consistency and closure un-
der closest common causes.
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Figure 19. Graph ��

Note that it is easy to turn a recursive network into one that is causally con-
sistent, by ensuring that causal chains correspond for some assignment, and then
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cccc (and so Markov consistent), by ensuring that shared nodes of pairs of graphs
also share closest common causes, for some assignment. In order to make � � in
Figure 20 causally consistent with graph �� of Figure 19, for example, we need
to introduce a chain that corresponds to the chain �
�	��� in � �, by adding an
arrow from 
 to � in ��. In order to make �� and �� cccc (and so Markov
consistent) we need to add � to �� as a closest common cause of � and 
. The
modified graphs are depicted in Figure 21 and Figure 22.
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Figure 20. Graph ��
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Figure 21. Graph��
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Figure 22. Graph��

Similarly in practice one would not expect each probability specification to be
provided independently and then to have the problem of checking consistency—
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ne would expect to use conditional distributions in one specification to determine
distributions in others. For example, a probability specification on � � in Figure
22 would completely determine a probability specification on � � in Figure 21.

5 Joint Distributions
Any non-recursive Bayesian network is subject to the causal Markov condition
(Section 2) which determines a joint probability distribution over the variables of
the network from its graph and probability specification. We shall suppose that
recursive Bayesian networks also satisfy the causal Markov condition. A recursive
Bayesian network contains network variables whose values are interpreted as (re-
cursive or non-recursive) Bayesian networks. Thus a recursive Bayesian network
suffices to determine a hierarchy of joint probability distributions � � on the (level
�) variables of �, for each � that occurs as the value of a network variable. (I.e. a
recursive Bayesian network � determines a joint distribution on each network in � ��
for each consistent assignment � to the domain of �.) Standard Bayesian network
algorithms can be used to perform inference in a recursive Bayesian network, and
the range of causal-probabilistic questions that can be addressed is substantially
increased. For example one can answer questions like ‘what is the probability of
a subsidy given farming?’ (see Figure 7) and ‘what is the probability of lobbying
given agricultural policy ��?’ (see Figure 9).

Certain questions remain unanswered however. We can not as yet determine the
probability of one node conditional on another if the nodes only occur at different
levels of the network. For example we can not answer the question ‘what is the
probability of subsidy given lobbying?’ While we have a hierarchy of joint distri-
butions, we have not yet specified a single joint distribution over the set of nodes
in the union of the graph, i.e. over the recursive network as a whole.

In fact as we shall see, a recursive network does determine such an over-arching
joint distribution if we make an extra independence assumption, called the re-
cursive Markov condition: each variable is probabilistically independent of those
other variables that are neither its inferiors nor its peers, conditional on its direct
superiors.

A precise explication of the causal Markov condition and recursive Markov
condition will be given shortly.

Given a recursive Bayesian network domain � and a consistent assignment �
of values to � , we construct a non-recursive Bayesian network, the flattening, � �,
of � as follows. The domain of �� is � itself. The graph�� of �� has variables in
� as nodes, each variable occurring only once in the graph. Add an arrow from � �

to �� in �� if

� �� is a parent of �� in � (i.e. there is an arrow from �� to �� in the graph of
some value of �) or
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� �� is a direct superior of �� in � (i.e. �� occurs in the graph of the value that
� assigns to ��).

We will describe the probability specification � � of �� in due course. First to some
properties of the graph��.
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Figure 23. Example flattening

Note that �� may or may not be acyclic. If we take our farming example � �
������� 	� �� of Section 3, then the graph of the flattening ��������� ���� is
depicted in Figure 23 and is acyclic. But the graph of the flattening of assignment
� � � � # � $ to �����
���, where � is the level � network variable whose
value � has graph � �� 
, � and � are simple variables and 
 is a network
variable whose assigned value # has the graph � �� �, is cyclic. The graph
in a non-recursive Bayesian network must be acyclic in order to apply standard
Bayesian network algorithms, and this requirement extends to recursive Bayesian
networks: we will focus on consistent acyclicassignments to a recursive Bayesian
network domain, those consistent assignments � that lead to an acyclic graph in
the flattening ��.7

By focussing on consistent acyclic assignments �, the following explications
of the two independence conditions become plausible. Given a consistent acyclic
assignment �, let ����

� be the set of variables that are peers but not descendants of
�� in �,�	��

� be the non-inferiors or peers of � �, and�
���� be the direct superiors
of ��. As before, ��� �� are the parents of �� and ���

� are the non-descendants of
��. None of these sets are taken to include �� itself.

Causal Markov Condition (CMC) For each � � �� 
 
 
 � � and �
���� � � �
�	��

� , �� 

 ����
� 	 ���

�
� � � .

Recursive Markov Condition (RMC) For each � � �� 
 
 
 � � and ��� �� � � �
����

� , �� 

 �	��
� 	 �
��

�
� � � .

Then the graph of the flattening has the following property:

PROPOSITION 4. Suppose� is a consistent acyclic assignment to a recursive
Bayesian network domain� . Then the probabilistic independencies implied by�

7Cyclic Bayesian networks have been studied to some extent, but are less tractable than the acyclic
case: see [Spirtes, 1995] and [, Neal 2000].
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via the causal Markov condition and the recursive Markov condition are just those
implied by the graph�� of the flattening�� via the causal Markov condition.

Proof. Order the variables in � ancestrally with respect to��, i.e. no descendants
of �� in�� occur before �� in the ordering—this is always possible because�� is
acyclic.

First we shall show that CMC and RMC for � imply CMC for��. By Corollary


 of [Pearl, 1988] it suffices to show that �� 

 ��� 
 
 
 � ���� 	 ���
��

� for any
�� � � . By CMC, �� 

 ����

� 	 ���
�
� ��
��

�
� , and by RMC, �� 

 �	��

� 	
�
���� ����

�
� . Applying contraction,8

�� 

 ����
� �%��

�
� 	 ���

�
� ��
��

�
� 


Now ���� 
 
 
 � ����� � ����
� �%��

�
� since the variables are ordered ancestrally

and � is acyclic, and the parents of �� in�� are just the parents and direct superiors

of �� in �, ����
�

� � ����� � �
���� , so �� 

 ��� 
 
 
 � ���� 	 ���
��

� as required.
Next we shall see that CMC for �� implies CMC and RMC for �. In fact this

follows straightforwardly by 
-separation. ��� �� �� 
-separates �� and ����
�

in �� for any �
���� � � � �	��
� , since ��� �� � � includes the parents of ��

in �� and (by acyclicity of �) ��� �
� are non-descendants of �� in ��, so CMC

holds. �
���� �� 
-separates �� and �	��
� in�� for any ��� �� � � � ����

� ,
since �
���� �� includes the parents of �� in �� and (by acyclicity of �) �	� �

�

are non-descendants of �� in ��, so RMC holds. �

Having defined the graph �� in the flattening �� of �, and examined its prop-
erties, we shall move on to define the probability specification � � of ��. In the
specification �� we need to provide a value for ����	����

�

� � for each value �� of

�� and assignment ����
�

� of the parents ����
�

� of �� in��. If �� only occurs once
in the recursive Bayesian network determined by � then we can define

����	���
��

� � � ����	�
��
�
� � ����� � � ������

�
���	���

�
� ��

which is provided in the specification of the value of � �’s direct superior in �. If
�� occurs more than once in the recursive Bayesian network determined by � then
the specifications of � contain ������

�

���	����� � for each graph � in � in which

�� occurs. Then �
���� �
�
��
���� and ��� �� �

�
� ���

�
� , with the unions

taken over all such �. Now the specifiers ������
�

���	����� � constrain the value of
������

�
���	��� �� � but may not determine it completely. These are linear constraints,

though, and thus there is a unique value for ������
�
���	��� �� � which maximises

8Contraction is the following property of probabilistic independence: � �� ��� and � ��
� ��� � � � �� �� � �� . See e.g. [Pearl, 1988].
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entropy subject to the constraints holding—this can be taken as its optimal value, 9

and ����	����
�

� � can be set to this value.10

Having fully defined the flattening �� � ���� ��� and shown that the causal
Markov condition holds, we have a (non-recursive) Bayesian network, 11 which
can be used to determine a probability function over assignments to �:

PROPOSITION 5. A recursive Bayesian network determines a unique joint dis-
tribution over consistent acyclic assignments� of values to its domain, defined
by

���� �

��
���

����	���
��

� �

where�� is the graph in the flattening�� of � and����	����
�

� � is the value in the
specification�� of ��. (As usual�� is the value� assigns to�� and����

�

� is the
assignment� gives to the parents of�� according to��.)12

While a flattening is a useful concept to explain how a joint distribution is de-
fined, there is no need to actually construct flattenings when performing calcula-
tions with recursive networks—indeed that would be most undesirable, given that
there are exponentially many assignments and thus exponentially many flattenings
which would need to be constructed and stored. By Proposition 5, only the prob-
abilities ����	��� �� � �
���� � need to be determined, and in many cases (i.e. when
�� occurs only once in �) these are already stored in the recursive network.

The concept of flattening, in which a mapping is created between a recursive
network and a corresponding non-recursive network, also helps us understand how
standard inference algorithms for non-recursive Bayesian networks can be directly
applied to recursive networks. For example, message-passing propagation algo-
rithms13 can be directly applied to recursive networks, as long as messages are
passed between direct superior and direct inferior as well as between parent and
child. Moreover, recursive Bayesian networks can be used to reason about inter-
ventions just as can non-recursive networks: when one intervenes to fix the value
of a variable one must treat that variable as a root node in the network, ignoring any
connections between the node and its parents or direct superiors. 14 In effect, tools

9[Jaynes, 1957].
10See [Williamson, 2002] for more on maximising entropy.
11Note that this Bayesian network is not causally interpreted, since arrows from superiors to direct

inferiors are not causal arrows.
12Here the domain of 	 is the set of assignments to 
 , and 	 is unique over consistent acyclic assign-

ments. If one wants to take just the set of consistent acyclic assignments as domain of 	 (equivalently,
to award probability � to inconsistent or cyclic assignments) then one must renormalise, i.e. divide
	��� by

�
	��� where the sum is taken over all consistent acyclic assignments.

13See [Pearl, 1988] [Neqpolitan, 1990].
14[Pearl, 2000] Section 1.3.1.
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for handling non-recursive Bayesian networks can be easily mapped to recursive
networks.

A word on the plausibility of the recursive Markov condition. It was shown
in [Williamson, 2001] that the causal Markov condition can be justified as fol-
lows: suppose an agent’s background knowledge consists of the components of
a causally interpreted Bayesian network—knowledge of causal relationships em-
bodied by the causal graph and knowledge of probabilities encapsulated in the cor-
responding probability specification—then the agent’s degrees of belief ought to
satisfy the causal Markov condition.15 This justification rests on the acceptance of
the maximum entropy principle (which says that an agent’s belief function should
be the probability function, out of all those that satisfy the constraints imposed
by background knowledge, that has maximum entropy) and the causal irrelevance
principle (which says that if an agent learns of the existence of new variables which
are not causes of any of the old variables, then her degrees of belief concerning the
old variables should not change). An analogous justification can be provided for
the recursive Markov condition. Plausibly, learning of new variables that are not
superiors (or causes) of old variables should not lead to any change in degrees
of belief over the old domain. Now if an agent’s background knowledge takes
the form of the components of a recursive Bayesian network then the maximum
entropy function, and thus the agent’s degrees of belief, will satisfy the recursive
Markov condition as well as the causal Markov condition. Thus a justification can
be given for both the causal Markov condition and the recursive Markov condition.

6 Related Work
Bayesian networks have been extended in a variety of ways, and some of these are
loosely connected with the recursive Bayesian networks introduced above.

Recursive Bayesian multinetsgeneralise Bayesian networks along the following
lines.16 First, Bayesian networks are generalised to Bayesian multinetswhich rep-
resent context-specific independence relationships by a set of Bayesian networks,
each of which represents the conditional independencies which operate in a fixed
context. By creating a variable � whose assignments yield different contexts, a
Bayesian multinet may be represented by decision tree whose root is � and whose
leaves are the Bayesian networks. The idea behind recursive Bayesian multinets
is to extend the depth of such decision trees. Leaf nodes are still Bayesian net-
works, but there may be several decision nodes. For example, Figure 24 depicts
a recursive Bayesian multinet in which there are three decision nodes, � �� �� and
��, and four Bayesian networks ��� ��� ��� ��. Node �� has two possible con-
texts as values; under the first node �� comes into operation; this has two possible
contexts as values; under the first Bayesian network �� describes the domain; un-

15See also [Williamson, 2002].
16[Peña et al., 2002].
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Figure 24. A recursive Bayesian multinet

der the second �� applies, and so on. Figure 24 is recursive in the sense that
depending on the value of ��, a different multinet is brought into play—the multi-
net on ��� ��� �� or that on ��� ��� ��. Thus recursive Bayesian multinets are
rather different to our recursive Bayesian networks: they are applicable to context-
specific causality where the contexts need to be described by multiple variables, 17

not to general instances of recursive causality, and consequently they are struc-
turally different, being decision trees whose leaves are Bayesian networks rather
than Bayesian networks whose nodes take Bayesian networks as values.

Recursive relational Bayesian networksgeneralise the expressive power of the
domain over which Bayesian networks are defined. 18 Bayesian networks are es-
sentially propositional in the sense that they are defined on variables, and the as-
signment of a value to a variable can be thought of as a proposition which is true
if the assignment holds and false otherwise. We have made this explicit by rep-
resenting the two possible assignments to variable � by � and �� respectively.
Relational Bayesian networksgeneralise Bayesian networks by enabling them to
represent probability distributions over more fine-grained linguistic structures, in
particular certain sub-languages of first-order logical languages. Recursive rela-
tional Bayesian networks generalise further by allowing more complex probabilis-
tic constraints to operate, and by allowing the probability of an atom that instan-
tiates a node to depend recursively on other instantiations as well as the node’s
parents.19 Thus in the transition from relational Bayesian networks to recursive
relational Bayesian networks the Markovian property of a node being dependent

17The particular application that motivated their introduction was data clustering—see[Peña et al.,
2002].

18[Jaeger, 2002].
19See [Jaeger, 2002] for the details.
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just on its parents (not further non-descendants) is lost. Therefore recursive rela-
tional Bayesian networks and recursive Bayesian networks differ fundamentally
with respect to both motivating applications and formal properties.

Object-oriented Bayesian networkswere developed as a formalism for repre-
senting large-scale Bayesian networks efficiently.20 Object-oriented Bayesian net-
works are defined over objects, of which a variable is but one example. Such
networks are in principle very general, and recursive Bayesian networks are in-
stances of object-oriented Bayesian networks in as much as recursive Bayesian
networks can be formulated as objects in the object-oriented programming sense.
Moreover in practice object-oriented Bayesian networks often look much like re-
cursive Bayesian networks, in that such a network may contain several Bayesian
networks as nodes, each of which contains further Bayesian networks as nodes
and so on.21 However, there is an important difference between the semantics of
such object-oriented Bayesian networks and that of recursive Bayesian networks,
and this difference is dictated by their motivating applications. Object-oriented
Bayesian networks tend to be used to organise information contained in several
Bayesian networks: each such Bayesian network is viewed as a single object node
in order to hide much of its information that is not relevant to computations being
carried out in the containing network. Hence when there is an arrow from one
Bayesian network �� to another �� in the containing network, this arrow hides
a number of arrows from output variables (which are often leaf variables) of � �

to input variables (often root variables) of ��. So by expanding each Bayesian
network node, an object-oriented Bayesian network can be expanded into one sin-
gle non-recursive, non-object-oriented Bayesian network. In contrast, in a recur-
sive Bayesian network, recursive indexBayesian network!recursiveBayesian net-
works occur as valuesof nodes not as nodes themselves, and when one recursive
Bayesian network �� causes another �� in a containing recursive Bayesian net-
work �, it is not output variables of �� that cause input variables of ��, it is �� as
a wholethat causes �� as a whole. Correspondingly, there is no straightforward
mapping of a recursive Bayesian network on � to a Bayesian network on � : map-
pings (flattenings) are relative to assignment � to � . Thus while object-oriented
Bayesian networks are in principle very general, in practice they are often used to
represent very large Bayesian networks more compactly by reducing sub-networks
into single nodes. In such cases the arrows between nodes in an object-oriented
Bayesian network are interpreted very differently to arrows between nodes in a
recursive Bayesian network, and issues such as causal, Markov and probabilistic
consistency do not arise in the former formalism.

20[Koller & Pfeffer, 1997].
21See [Neil et al., 2000] for example.
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Hierarchical Bayesian networks(HBNs) were developed as a way to allow
nodes in a Bayesian network to contain arbitrary lower-level structure. 22 Thus
recursive Bayesian networks can be viewed as one kind of HBN, in which lower-
level structures are of the same type as higher-level structures, namely Bayesian
network structures. In fact, HBNs were developed along quite similar lines to
recursive Bayesian networks, and even have a concept of flattening. However,
there are a number of important differences. As mentioned, HBNs are rather more
general in that they allow arbitrary structure. It is questionable whether this ex-
tra generality can be motivated by causal considerations: certainly HBNs seem to
have been developed in order to achieve extra generality, while recursive Bayesian
networks were created in order to model an important class of causal claims.
HBNs have been developed in most detail in the case considered in this paper,
namely where lower-level structure corresponds to causal connections. However,
the lower-level structures are not exactly Bayesian networks in HBNs: one must
specify the probability of each variable conditional on its parents in its local graph
and all variables higher up the hierarchy. Thus HBNs have much larger size
complexity than recursive Bayesian networks. HBNs do not adopt our recursive
Markov condition—they only assume that a variable is probabilistically indepen-
dent of all nodes that are not its descendants conditional on its parents and all
higher-level variables. This has its advantages and its disadvantages: on the one
hand it is a weaker assumption and thus less open to question, on the other it leads
to the larger size of HBNs. Finally, variables can only appear once in a HBN, but
they can appear more than once in a recursive Bayesian network—we would argue
that repeated variables are well-motivated in terms of recursive causality (Section
1). Thus HBNs are more restrictive than recursive Bayesian networks in one re-
spect, and more general in another, and have quite different probabilistic structure.
However, they share common ground too, and where one formalism is inappropri-
ate, the other might well be applicable.

7 Structural Equation Models
Of course, a Bayesian network is not the only type of causal model, and the ex-
tension of Bayesian networks to recursive Bayesian networks can be paralleled in
other types of causal model.

After Bayesian networks, perhaps the most widely applied type of causal model
is the structural equation model. This consists of a ‘pseudo-deterministic’ equa-
tion determining the value of each effect as a function of the values of its direct
causes and an error variable:

�� � ����� �� &���

22[Gyftodimos & Flach, 2002].
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for � � �� 
 
 
 � � and where ��� � is the set of direct causes of �� and each error
variable &� is independently distributed. Typically the function � will be linear.
The effect is always written on the left-hand side of the equation; by adopting this
convention one can determine the causal structure (in the shape of a causal graph)
from the set of equations. Structural equations are quite restrictive—they only
allow variables to vary with their direct causes (and independent error variables)—
and one can prove that the causal Markov condition holds given this restriction. If
we specify the probability distribution of each root variable (the variables which
have no causes) then we have a Bayesian network, since a structural equation
determines the probability distribution of each non-root variable conditional on
its parents in the causal graph. A Bayesian network does not determine pseudo-
deterministic functional relationships however, and so a structural equation model
is a stronger kind of causal model than a Bayesian network.

Structural equation models can be extended to model recursive causality as fol-
lows. A recursive structural equation modeltakes not only simple variables as
members of its domain, but also SEM-variableswhich take structural equation
models as values (including a level � variable which takes as its only value the
top-level model).23 As with recursive Bayesian networks we can impose natural
consistency conditions on a recursive structural equation model: causal consis-
tency and consistency of functional equations. Given an assignment to the domain,
we can create a corresponding, non-recursive structural equation model, its flatten-
ing, and define a pseudo-deterministic functional model over the whole domain by
constructing an equation for each variable as a function of its direct superiors as
well as its direct causes (and an error variable).

We see, then, that the move from an ordinary Bayesian network to a recursive
Bayesian network can be mirrored in other types of causal model. In the following
sections we will study this move from a more general point of view. We will see
that the strategy of rendering a general network structure recursive can be applied
in various interesting ways—not just to recursive causality.

8 Argumentation Networks
Recursive networks are not just useful for reasoning with causal relationships—
they can also be used to reason with other relationships that behave analogously to
causality. In this section we shall briefly consider the relation of support between
arguments.

In an argumentation framework, one considers arguments as relata and attack-
ing as a relation between arguments.24 Consider the following example.25 Hal is a

23Warning: in the past, acyclic structural equation models have occasionally been called ‘recursive
structural equation models’—clearly ‘recursive’ is being used in a different sense here.

24[Dung, 1995].
25Due to [Coleman, 1992] and discussed in [Bench-Capon, 2003] Section 7.
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diabetic who loses his insulin; he proceeds to the house of another diabetic, Carla,
enters the house and uses some of her insulin. Was Hal justified? The argument
(��) ‘Hal was justified since his life being in danger allowed warranted his drastic
measures’ is attacked by (��) ‘it is wrong to break in to another’s property’ which
is in turn attacked by (��) ‘Hal’s subsequently compensating Carla warrants the
intrusion’. This argument framework is typically represented by the picture of
Figure 25.26

��
��
��

���
��
��

���
��
��

Figure 25. Hal-Carla argumentation framework

One can represent the interplay of arguments at a more fine-grained level by
(i) considering propositions as the primary objects of interest, and (ii) taking into
account the notion of support as well as that of attack. By taking propositions
as nodes and including an arrow from one proposition to another if the former
supports or attacks the latter, we can represent an argument graphically. In our
example, let � represent Hal compensates Carla’, � ‘Hal breaks in to Carla’s
House’, � ‘Breaking in to a house is wrong’ and 
 ‘Hal’s life is in danger’.
Then we can represent the argument by �� ��	 �� ��� �� ��� �� ���

�
 ��	 �� (here a plus indicates support and a minus indicates attack). In
general the fine structure of an argument is most naturally represented recursively
as a network of arguments and propositions. We call this kind of representation a
recursive argumentation network.

If a quantitative representation is required, recursive Bayesian networks can
be directly applied here. The nodes or variables in the network are either simple
arguments, i.e. propositions, taking values true or false, or network arguments,
which take recursive Bayesian networks as values. In our example � is a sim-
ple argument with values � or �� while �� is a network argument with values
�� referring to � �� � (with associated probability specifiers ��'�� ���	�'�)
or ��� representing ��� (with ��'�� ����). Instead of interpreting the arrows
as causal relationships, indicating causation or prevention, we interpret them as
support relationships, indicating support or attack. The probability ��� �	��� �� of
an assignment �� to a variable conditional on an assignment ��� � to its parents is
interpreted as the probability that �� is acceptablegiven that ��� � is acceptable.
Thus instead of representing support or attack by pluses and minuses, degree of
support is represented by conditional probability distributions. If consistency and
acyclicity conditions are satisfied, non-local degrees of support can be gleaned
from the joint probability distribution defined over all variables.

26[Bench-Capon, 2003].
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Note that Bench-Capon argues that the evaluation of an argument may depend
on accepted values.27 In our example, the evaluation of the argument depends on
whether health is valued more than property, in which case property argument � �

may not defeat health argument ��, or vice versa. These value propositions can
be modelled explicitly in the network, so that, for example, � � depends on value
proposition ‘health is valued over property’ as well as argument� �.

In sum, relations of support behave analogously to causal relations and argu-
ments are recursive structures; these two observations motivate the use of recur-
sive Bayesian networks to model arguments. This leads us in turn to the question
of how to characterise the concept of an abstract recursive network. In the next
two sections we explore this question in the context of input-outputor information
networks.

9 Self-Fibring Networks: Overview
This section shows how our recursive network approach fits within a more general
concept of substituting one network inside another (referred to as self-fibring of
networks).

We will focus attention on information networks, which are directed acyclic
graphs whose roots are inputs, whose leaves are outputsand whose arrows indicate
the flow of information from input to output. Thus if we have

(�
������

(

(��
��
���

...

then we propagate the input from ( � into (. If V��� is the value at node �, then
we need a propagation function � yielding V�(� � ��V�(��� 
 
 
 �V�(���. Note
that there may be a constraint )�(�� 
 
 
 � (�� on the inputs: only if a set of value of
inputs satisfies ) will those values be admissible.

In Bayesian networks, the arrows correspond to causal direction rather than to
the flow of information. But an applicationof a Bayesian network can be con-
strued as an information network as follows. When a Bayesian network is applied,
the values of a set of variables are observed. These variables are the inputs. They
are instantiated to their observed values in the Bayesian network, and this change
is propagated around the network, typically using message-passing algorithms, 28

27[Bench-Capon, 2003, Section 5].
28[Pearl, 1988].
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until the probabilities of further variables of interest (the outputs) can be ascer-
tained. Thus in message-passing algorithms information flows from the inputs to
the outputs via the arrows of the Bayesian network, though not normally in accor-
dance with the direction of the arrows in the original Bayesian network. Suppose
for instance that Figure 26 is the graph of a Bayesian network, that the value of
� is observed and that the probability of � is required. Then in determining the
probability of �, information flows from � to � along the pathways between �
and � of the original Bayesian network graph, as depicted in Figure 27.
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�
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��
��
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Figure 26. The graph of a Bayesian network.
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Figure 27. The graph of a corresponding information network.

Note that in general the information network is only a schematic representation
of the flow of information: in fact in Bayesian network message-passing propaga-
tion algorithms, messages are passed in both directions along arrows, two passes
are made of the network, and in multiply connected graphs such as Figure 26
propagation takes place in an associated undirected tree-shaped Markov network
formed from the Bayesian network.29 In singly-connected Bayesian networks
though there is a fairly close correspondence between information network and
flow of messages.

The question now arises as to how information networks can be self-fibred,
i.e. substituted one inside the other.

29See [Lauritzen & Spiegelhalter, 1988].
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There are several options for self fibring. We explain them briefly here and the
full definitions come in the next section.

Let B��� be a network with node � in it. Let A be another network. We want
to define C � B��*A�, a new network which is the result of substituting A for� .

Already at this stage there are several views to take.

View 1: Syntactical Substitution
Regard the operation at the syntactical level. Define C syntactically and give it
meaning / semantics / probabilities derived from the meanings of B and A.

View 2: Semantic Insertion
Look at the meaning of B and then define what B��*A� is supposed to be. Here
the substitution is not purely syntactic. For example, if B is a Bayesian network
where the node � can take two values 0, 1 then if � is 0 we substitute (in a
certain way) A� for� and if � is 1 we substitute A� (this is the approach taken in
Section 3). The “substitution” need not be actual substitution but some operation
Ins���B�A� inserting A� at the point � inside B.

So for example in logic we can have

Ins���� � ����

��
� �� � ��� �


Thus in this case
Ins���B���� �� � B��*� � ��


More complex insertions are possible for Bayesian nets. We could convert in
the above case the semantic inversion into a syntactic one by splitting each variable
� in the net into two variables �� (for � � �) and �� (for � � �). We discuss
such manipulations in the next section.

To study our options and to illustrate the ideas of self fibring we begin with a
simple two point network

��
��
� ���

��
�

�

The input gives value to � and this is propagated to �, using the function � .
We now give several interpretations for this as implication.

Interpretation 1
The above represents a substructural implication � � �. The semantical in-
terpretation for the substructural � is via evaluation into an algebraic semigroup
��� Æ� $�, where Æ is a binary associative operation and $ is the identity.

If the wff �� � gets value ( and the input � get a value � then � gets value
� � ( Æ �.
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Here the network function � can be taken as the function

+������ � +��( Æ ��


Interpretation 2
This interpretation is the modus ponens in a Labelled Deductive System. The rule
has the form

, � �� - � �� �� .�-� ,�

f�-� ,� � �



Its meaning is that if we prove� with label , and �� � with label - and �-� ,�
satisfy the enabling condition ., then we can deduce � with label f�-� ,�.

The Dempster-Shafer rule is a special case of this. The Dempster-Shafer set
up allows for certainty values for ����� � �, to be closed intervals of real
numbers. Thus if � has value in the real closed interval ��� �� and the implication
�� � has value in the interval ��� #�, then � has value in the interval

��� �� Æ ��� #� �

�
�#� ��� ��

�� /
�
�#

�� /

�

with / � ���� #� � ���� ��.
The side condition . is .���� ��� ��� #�� is that / �� �. Thus to interpret the

labelled implication in our network we need to add . to the link.

��
��
� ���

��
�

f� � .

and we have:
+�f���� � +�f �-� ��


Interpretation 3
Intuitionistic formulas as types. ������ � are understood as + calculus types
having + terms inhabiting them. We read

��
��
� ���

��
�

�

as a network, which for any term ( of type �, given as input, the network outputs
the ��(� term of type �.

Thus � is of type �� �.
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Interpretation 4
We can regard

��
��
� ���

��
�

�

as a causal Bayesian network. The variable � can take states ��� 
 
 
 � �� and the
variable � can take states ��� 
 
 
 � �� then the table � must give the conditional
probability � ��	��, giving the probability � �� of � being in the state �� , given �
is in the state ��. We must have �

�
��� � �.

The matrix is

� �

�
��
��� ���

...
...

��� ���

�
	


If 0� is the probability of � being in the state ��, ��0� � �� then the probability
of � being in the state �� is 1� � �

�
���0�.

The logical interpretations (1)–(3) allow us to give meaning to self fibred net-
works where we substitute a network within a network. We have the options here
of syntactical substitution (view 1) or semantical insertion (view 2). Our paper
chooses semantical insertion, where we have one insertion for � � � and another
for � � �. In the flattening, the insertion makes � a parent to all nodes in the
substituted network.

The diagram below shows how this works for B��� � � � � and A� � ��
�.

For the case � � � we get the network

��
��
� ���

��
�

���
���

���
��


	
	
		

��
��
� ����������

��
�

and for the case � � �, we get

��
��
� ���

��
�

��
��
����
����
��

A
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where � � A means that � connects directly to all elements in A.
We can adopt a view closer to that of logic and have no insertion if � � �

and yes insertion in case � � � of a single network. The simplest cases are the
following:

��
��
� ���

��
� ��

��
��

� 2

� �



and

��
��
� ���

��
� ��

��
��

2 �

� �



In the first case we took the network

��
��
� ���

��
�

2

and substituted for � the network

��
��
� ���

��
�

�

The second case is similar.
The question is what meaning do we give to these fibred networks?
Let us consider the first case


� ���
��
� �

��
��
� ��

��
��

� 2

� ��

The machinery of

��
��
� �

��
��
�

2

is to accept inputs � of a certain kind at the node � and output 2��� at node �.
By letting � � �� � we must ask: What is the input we are getting for�? We
can say the obvious answer is that the input is � . We now have to check whether
� is of the kind that can be accepted in our network.

Let us check.
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Interpretation 1
Here � can be identified with an element ( of the semigroup. So it is OK.

Interpretation 2
Here � can be identified with a label. So again it is OK.

Interpretation 3
Here � is a +-term of type�� �. To be OK we say� (accepts elements) of type
�� � and 2 is of type ��� ��� �. So again we are OK.

Interpretation 4
Here � is a probability distribution for the states of � and � is a matrix of condi-
tional probabilities. We have to deal with that! First let us simplify and say both
��� are two state variables � � �� � � �� � � �� � � �. Even with this simpli-
fication, still � is a �� � matrix � . It allows for many states not just two. This is
not exactly right.

What are our options?

Option 1
Allow for new kinds of inputs for our variables. This option is complicated because
of repeated iteration of fibring. We will not pursue it.

Option 2
Extract from the new input (the matrix) a recognisable input for � in � � �,
(i.e. a two state input). This method is what we usually do in the area of fibring
logics. We need a fibring function F that will extract two states, yes or no, out of
the matrix � . The function is as follows;

� yes if � depends on � in any way

� no if not.

In other words, we read � as a variable getting 1 if the network substituted for it
is “on” or “active” and 0 if it is not on.

So for example if the matrix is �
� �� �
� �� �

�

we get

�0� �� 0�

�
�� �� �

� �� �

�

 � ��� �� ��

and thus the probability of � is independent of that of �.
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We can talk about the probability of � being independent of �, etc.
Say we have for � � & � �� �

(2)

�0� �� 0�

�
� � �� �

�� & �� �� &

�

 �

��0 � ��� 0��� ��� 0�&� ��� ��0 � ��� 0���� ��� ��� 0�&� �

��� ��� 0�&� ��� ��� ��� 0�&�


The variation is �&��� 0� � �&. So we can give a probability for & � � or & �� �.
We leave this aspect for a moment and discuss the other possibility of fibring,

namely

��
��
� ���

��
� ��

��
��

2 �

� �



Here we substitute a network

��
��
� �

��
��
�

�

for the variable � in

��
��
� ���

��
�

2

The first three interpretations will cope with this very well, because the output of
2 can modify the � , as they are of the same kind. Can we do something similar in
the probabilities case? We again have several options:

1. We can read � as a variable getting �� � values indicating whether the net-
work

��
��
� �

��
��
�

�

is onor not. The value of � is obtained in the network
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��
��
� �

��
��
�

2

2. The second option is to use the network up to � to modify the network
which we substitute for � .30

We note that 2 is a matrix and so is � . Should we modify � by multiplying it by
2 and set something like

��
��
�

��
��
�

��
��
�

��
�

�2

How would this relate to the network:

��
��
� ���

��
� ��

��
��

2 �

Let us check

��
��
� ���

��
�

�

has the matrix �
���� �� ��

��� �� ��

�



and

30In case of neural networks this is the more reasonable option.
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��
��
� �

��
��
�

2

has the matrix �
�3�� �� 3�

3�� �� 3�

�



2� is

(3)

�
�3� �� 3�

3� �� 3�

�

 �

�
��� �� ��

�� �� ��

�

 �

�
� 3��� � ��� 3����� 3���� ��� � ��� 3����� ���

3���� � ��� 3����� 3���� ��� � ��� 3����� ���

�



This would interpret

��
��
� �

��
��
� ��

��
��

2 �

� �



as

��
��
� ���

��
� ��

��
��

2 �

We prefer the first option.

Let us now see what to do with networks of the form

��
��
� ���������

��
�

��
��
� �

���
��
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Can we read the � as implication? The answer is yes for the first three “logical”
interpretations. We read it as

����� � �

or
��� � �

where � is a commutative binary operation. It is the multiplicative conjunction in
linear logic and is the ordinary conjunction in intuitionistic logic. We have in case
of logic that:31

���� � �� � ��� �� � ��� � �� � ��� ���

This does not hold in the Bayesian network case. As defined in Section 2 we need
a function giving a probability value for �, for each pair of possible values ��� 4�
for ����.

We still need to give meaning to


��
��
� ���������

��
�

��
��
� �

���
��


�
��
��

�

and

��
��

 �


��
��
� ���������

��
�

��
��
� �

���
��


�

The first is obtained by substituting the network

��
��
� ���������

��
�

��
��
� �

���
��


31For the Dempster–Shafer rule we calculate ��� 
�� ��� �� as ��� 
� Æ ��� ��.
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for � in

��
��
� ���

��



and the other in

��
��

 ���

��
�

The principles we discovered still hold. In the first case the fibring function
gives � values �� � depending whether we believe in the connection between
�����. i.e. the network is “on” or not.

The second case would require modifying the network of ����� by using the
network

��
��

 ���

��
�

The simplest is to take option 1. The value � � � means the network with�����
is “on” and otherwise it is not.

In any case, the kind of choices we have to make are clear! There is a lot of
scope for fine tuning. For example we can look at


��
��
�� �������

��
��
�� �

��
��
��
��
��
�����
��
�

�
��
��
��

as a family of networks of the form

��
��
�� ���

��
� ��

��
��

� �



using the probabilities in the substituted network (fix � � , 5 �� � as 0,1) to decide
on priorities.
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10 Self-Fibring Networks: Theory

The aim of this section is to present a general theory of networks and fibring of
networks, in order to put our work into perspective. We begin with an example.
Figure 28 shows a typical network.

#

� 1

(

$

��

��

��

��

��

�


��

Figure 28.

The nodes of the network is the set � � �#� �� (� 1� $�. We consider # as
the input point and $ as the output point. The arrows represent connections be-
tween nodes. This is a binary relation � � � �. In Figure 28 we have � �
��#� 1�� ��� 1�� �(� 1�� �(� $�� �1� $�� �1� 1�� �#� ���. The labels � decorate the connec-
tions. So let 6 be a function from � into a set of labels �. In Figure 28 we have
� � ���� 
 
 
 � ��� and 6��#� 1�� � ��� 
 
 
 � 6��(� $�� � ��. In addition the nodes are
coloured by a colouring function (values which we call colours) giving values in
some space �. Thus � �(�� � �#�� 
 
 
 are the colours of the nodes. In Bayesian nets
for example, � �(� is a probability.

We also require a family of propagation functions � , giving values in the space
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� of the form below and such that the following recursive equation holds:

� �(� � ��(� �6�� � ������ �6�� � ������ 
 
 
 � �6�� � ������

where ��� 
 
 
 � �� are all the parents of ( (i.e. all �� such that ���� (� � �), 6� is the
label of ���� (� and � ���� are the colours of the nodes ��, respectively. Note that �
can operate on any number of variables, i.e. � can be arbitrary.

We perceive the colouring to propagate along the network using the arrows,
the labels and the function � . In case the network has cycles, we expect � to be
implicitly defined by � .

The network in Figure 28 can be interpreted in several ways:

1. It can be interpreted as a map, where the nodes are towns, the labels are
distances and the colours are some heuristic numbers to aid some search
function(e.g. the labels can give the aerial distance from a central point).
We may require the graph to be acyclic. The function � can give the average
distance of the parent nodes from the current node.

2. The network can be Bayesian, in which case we require it to be acyclic. We
also require any point ( �� # to either have a parent �� # (i.e. for some �,
��� (� � �� � �� #) or to have # alone as a parent. We forbid # itself to have
parents.

Thus # is a dummy point �# � �� showing the nodes without parents in the
rest of the network. The function � would be the conditional probabilities
of a node on its parents.

3. The network can be a neural net with 6� � different weights on the nodes
and connections, and � some meaningful averaging function.

4. The network can be describing a flow problem with 6 giving capacities, �
giving retention and � is the obvious function summing up the flow.

We now give a formal definition of a network.

DEFINITION 6. A network has the form

� � ����� #� $� 6� �� �� � ���

where � is the set of nodes. #� $ � � are the input and output nodes. (We may
have several i.e. #�� $� .) 6 is a labelling function 6 � � �� �. � is a set of labels, �
is a colouring function on � (range of � is in �) and � is a function giving some
value in the space � to any finite list of the form �(� ���� ���� 
 
 
 � ���� ���� and the
following is required to hold for any ( � � and � � such that ���� (� � �.

� � �(� � ��(� �� ����� 6����� (��� 
 
 
 � �� ����� 6���� (���� where �� are all
the parents of (.
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DEFINITION 7 (Fibring function). Let � be a propagation family for states � and
labels � with values in the space �. Then a function F giving a new propagation
function for any triple ��� ��� ��� � � �� 
 
 
 � � is called a fibring function. We write
� as

� � ��� ��� �� �� ����� 


so F is defined for any set of labels.
Note that � is variable.

We now need to make some distinctions about fibring of network within net-
works. We give some additional examples.

EXAMPLE 8 (Refinement). Consider a network which is a map

# $

�

Figure 29.

So �# may be Durham and �$ is Edinburgh. Say the label � is the number of
heavy trucks per day one can push through from�# to �$. We can try and define this
map by putting in for �$ another network, say � which is the map on Edinburgh.
This is substituting the actual sorting networks in the UK.

A third simpler example is when �# and �$ are days and we can refine them into
hours, see Figure 30

1, 
 
 
 , 24 1, 
 
 
 , 24

Figure 30.

EXAMPLE 9 (Cut rule in logic). We get fibring/substitution of networks when
we consider versions of the cut rule in Labelled Deductive Systems. We give a
simple case. Assume our data is a list of formulas, and our language contains �
only. Thus for example, we may have the list of Figure 31. We can perform modus
ponens between any � � � and � , provided � is immediately to its right and
the result � replaces�� � ���� in the list. This way of doing modus ponens
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�� �� � ��� �� �

� � �

�

Figure 31.

characterises the one arrow Lambek Calculus. How would cut work? Suppose we
have a proof of � in Figure 32

� � �� �

�

Figure 32.

We can simply substitute the sequence or net for � to get Figure 33

�� �� � ��� � � �� �� �

�

� � �

�

Figure 33.

Suppose now that � � � means a version of strict implication.

� If � holds next day then � holds next day.

The sequence

�� �� � ��� ���

can still be reduced to � but we must keep count of the days.
Consider

� � ���� �� � ��� ���

We can get Figure 34 in the Lambek Calculus.
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� � � �� �� � ��� �� �

� � �

�

�

Figure 34.

This will not work in the modal strict implication meaning of � because we
must follow Figure 35:

� � � �

� � �� �� �� � ��� �� �

...
...

� � �
...

... � � �

...
...

...

� � � �
�

Figure 35.

� � � is 3 days away from �. We need something like � � �� � �� �
���.

Thus the network substitution of �� � ���� into �� � �� � ��� ����
should be different in the strict implication case.

It should give the result in Figure 36

� � �

�� �� � �� � �

� � �

Figure 36.

To summarise: �� � ���� is replaced by �� � in the Lambek Calculus and is
replaced by ��� � � in the strict implication logic.
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Thus the network substitutions corresponding to these logics are as follows:

Let
%� � ���� 
 
 
 � ��� 4� 7�� 
 
 
 � 7��
%� � ���� 
 
 
 � ���

then the Lambek substitutionis:

%��4*%�� � ���� 
 
 
 � ��� ��� 
 
 
 � ��� 7�� 
 
 
 � 7��


and the Strict substitutionis
(when / � �� �)

%��4*%�� � ��� � ��� 
 
 
 � �� � ��� ��	�� 7�� 
 
 
 � 7��

If / �� �, add �s to the beginning of the shorter one to make them equal and then
substitute.

The moral of this example is that if the networks represent some logic, then
options for fibring networks represent options for the cut rule in the logic.

REMARK 10. We need to prepare the ground for the general definition of fibring
which will follow.

Assume �� and �� are as in Figures 37 and 38

#� �

(�

$�

���

���

���

Figure 37.

We have several options in substituting�� for (�, using a fibring function F. The
most straightforward one is to replace (� by�� and redirect all arrows coming into
(� and connect them to all input points #�� of ��. Similarly all arrows coming out
of (� will now come out of every output point $�� of ��.

Figure 39 shows the result.
The function � ��� is the same as �� on nodes from�� and is the fibred function

�
�
� �
����

������
�
�

obtained by applying � to � �.

Variations can be obtained by changing � and/or by changing the input output
points or �� before fibring. So this is quite a general definition. The basic idea is
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#��

�

#�� $�

���

���

���

Figure 38.

#�

�

#�� �

#��

$�

$�

���

���

��� ���

���

��� ���

Figure 39.

that the ‘environment’ of (� (namely � �*(�) and all labels of connections leading
into and out of (�) change the fibring function � � of the substituted network ��

into �����.
Problems may arise if either �� and �� have nodes in common or if (� is

connected to itself. This can cause more than one arrow to occur between two
points. For this reason these situations are excluded. To see why this can happen,
imagine we substitute

(
��
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into

(
��

where ( is both the input and output points. We get by definition the network

(
����

NOTATION 11. If ����� is described using � and (� is in ��, we can indicate
fibring by substituting �� for (� and using� to connect into and out of ��.

The fibring function F is suppressed.

Here is an example for our notation:

EXAMPLE 12. Example of network using �:

A =

��
��
��

���
��
��

��
��
��

��
��
����������

���
���


We use� as a special connection between a node� and a network A.
If A is the network above and� means that we � connect with every node in

the network than � � A means in this case

��
��
�

��
��
�� ���

��
��

��
��
����

��
��
��������

�

������

������������

���
���

���
��


��
���

Arrows coming out of A into � are not drawn.

We now conclude with a general definition:

DEFINITION 13. Let �� � ���� ��� #�� � $
�
�� 6

�� � �� ��� � ����� for � � �� �, be
several networks based on the same set � of nodes (i.e. � � � �) and sets � and
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� (i.e. �� � ���� � �). Assume �� � �� � �. Let F be a fibring function
and let (� � �� be a node such that �(�� (�� �� �� and let ��� be all the labels of
nodes in�� leading into or coming out of (�. We define the one step fibred system
���� � ���(

�*��� as follows:

1. ���� � ��� � ���� �(��.

2. ���� � ��� � �� � ���� #�� �	��� (
�� � ��� � ��$�� � 4�	�(

�� 4� � ���� �

���� 4� � ��	� � (� or 4 � (��.

3. �#���� � � �#�� 	(
� �� #�� � � �#

�
�	(

� is an input point�.

4. �$���� � � �$�� 	(
� �� $��� � �$

�
�	(

� is an output point�.

5. 6������� 4�� � � 6����� 4�� if �� 4 � �� and ��� 4� � ����

� 6����� 4�� if ��� 4� � ���� and �� 4 � ��

� 6����� (��� if � � ��� 4 � ��� ��� 4� � ����

� 6���(�� 4�� if � � ��� 4 � �� and ��� 4� � ����

6. ���� � �� � ��

7. ���� � �� � ��

8. ���� is defined as ��� ��(��� ��� � �
�� where �� are all the labels from other

nodes in �� leading to (� and labels of nodes in �� into which (� leads. We
assume F is such that ���� � �

� on points in ��. This is possible since we
assumed �� � �� � �.

11 Conclusion
The moral of this paper is this: recursive structures are rife and benefit from ex-
plicit modelling. If causality is to be modelled then it is not always enough to
rely on Bayesian networks, for these fail to model recursive structure. Recursive
Bayesian networks can be used, however, and these admit joint distributions just as
do non-recursive Bayesian networks. Analogously structural equation models can
be extended to recursive structural equation models. Recursive Bayesian networks
can also be applied to non-causal domains, such as argumentation. A very general
type of recursive input-output network, called a self-fibred information network,
extends these models and admits interesting applications in logic, where arrows
are interpreted as implication.32�33

32Further results on argumentation networks and on fibring neural networks can be found in[Gabbay
& Woods, 2003], [Barringer et al., 2003] and [Garcez et al., 2003].

33We thank David Glass for many helpful comments.
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