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CAUSAL PLURALISM VERSUS EPISTEMIC CAUSALITY1
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ABSTRACT

It is tempting to analyse causality in terms of just one of the indicators of causal

relationships, e.g., mechanisms, probab ilistic dependencies or independen cies,

counterfactual conditionals or agency considerations. While such an analysis will surely

shed light on some aspect of our concept of cause, it will fail to capture the whole, rather

multifarious, notion. So one might instead plump for pluralism: a different analysis for a

different occasion. But we do not seem to have lots of different concepts of cause – just one

eclectic notion. The resolution of this conundrum, I think, requires us to accept that our

causal beliefs are generated by a wide variety of indicators, but to deny that this variety of

indicators yields a variety of concepts of cause. This focus on the relation between evidence

and causal beliefs leads to what I call epistemic  causality. Under this view, certain causal

beliefs  are appropriate or rational on the basis of observed evidence; our notion of cause

can be understood purely in terms of these rational beliefs. Causality, then, is a feature of

our epistemic representation of the world, rather than of the world itself. This yields one,

multifaceted notion  of cause.

1. The indicators of causality

The indicators of causality are several and disparate. We base our causal
claims on observed associations, observed independencies, temporal
cues, known mechanisms, theoretical connections, experiments,
controlled trials, other causal knowledge, intuitions about subjunctive
conditionals, and more. In trying to understand the nature of causality it
is reasonable to attempt to analyse causal connections in terms of one or
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other of these indicators. Thus we have a range of contemporary theories
including mechanistic, probabilistic, counterfactual, and agency-based
(the last three of which are often classed as difference-making accounts
of causality, since they are based on the intuition that a cause should
make a difference to its effects).

Unfortunately, these monistic theories of causality have great
difficulty in accounting for the epistemology of causality. While such a
theory does well at explaining how the particular indicator used in the
analysis can be taken as evidence for causal claims, it has trouble
explaining how other indicators can also count as evidence. Thus
mechanistic theories (Salmon, 1998; Dowe, 2000) have little problem
explaining how knowledge of mechanisms and physical theory can
ground causal claims, but they have their work cut out explaining how,
even when we know about the salient mechanisms, we seek further
evidence, e.g., evidence of probabilistic dependencies or independencies.
It is not enough to know of some chain of connections linking exchange
rate and inflation, we want to know that exchange rate makes a
difference to inflation before we claim that it is a cause. In contrast,
probabilistic theories (see, e.g. Suppes, 1970) do well at accounting for
probabilistic indicators, but poorly when it comes to mechanistic
indicators. It was not enough to know that in samples the prevalence of
smokers made a difference to the prevalence of lung cancer, we needed
to know that the two are linked by a physical mechanism before the claim
that smoking causes cancer could be accepted. Similarly, counterfactual
(Lewis, 1973) and agency (Price, 1992) approaches struggle with respect
to mechanisms. This epistemological problem is presented in more detail
in Russo and Williamson (2007a). 

Perhaps the main reason why we seek varied evidence for a causal
claim is this. Causal claims have two uses: they are used for inference on
the one hand and explanation on the other. The inferential use – making
predictions, diagnoses and strategic decisions on the basis of causal
claims – requires that a cause should typically make a difference to its
effects, for otherwise information about the presence of a cause would
tell us nothing about the presence of its effects and vice versa, and
instigating a cause would not be a good strategy for achieving its effects.
The explanatory use requires something more, namely some physical
account of why the event in question happened. When asked for an
explanation of an event, it is not enough to say that some other event
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occurred and that there exists a difference-making relationship between
the two, for that is no explanation at all – it leaves the question, why did
the explaining event make a difference to the explained event? Inasmuch
as we can answer ‘why’ questions at all, we do so at root by invoking
physical theory, physical events and physical processes. If a causal story
is to offer an explanation, it had better fit with physical theory and tell us
a bit about the ultimate physical explanation. Hence causal claims need
to say something about physical mechanisms as well as about difference-
making. 

The above epistemological problem for monistic accounts
motivates the move to a less simplistic account of causality – an account
that takes the full variety of causal indicators seriously. Pluralism is a
step in this direction. However, I shall argue that it is the wrong step
(section 2). Instead, I shall argue in section 3 that an epistemic theory of
causality offers the right way to handle the full range of indicators of
causality. In section 4 I shall suggest that, in general, an epistemic theory
of a complex concept can have more to offer than a simple-minded
analysis of the concept in terms of a single indicator, or even a more
sophisticated pluralist analysis. The appendix, section A, outlines a
formal causal epistemology that forms a component of the epistemic
theory of causality. 

2. A plurality of causality?

The move to causal pluralism is often motivated by the inadequacies of
contemporary monistic accounts of causality and incompatibilities
between mechanistic and difference-making accounts. In section 1 I
suggested that contemporary accounts lack a viable epistemology:
mechanistic accounts make it a mystery as to why we back up our causal
claims with evidence of difference-making over and above evidence of
mechanisms, while difference-making accounts cannot explain why we
seek evidence of mechanisms as well as evidence of difference-making.
But there are other paths to pluralism that pick up on other inadequacies
of monistic accounts. Hall (2004) argues that his favoured difference-
making approach, the counterfactual theory, cannot account for basic
features of causality (namely its transitivity, the spatio-temporal
continuity of causal processes, and the causal character of a process
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2 Note that under this conception, pluralism does not encompass the view that

there are different forms of causal relationship – e.g., ‘type cause’ versus ‘token

cause’, or ‘component effect’ versus ‘net effect’ (Hitchcock, 2001) – except

where it is maintained that these different forms appeal to entirely different

concepts of cause (Sober, 1985; Hitchcock, 2003); for a single concept of cause

might be used in different ways to shed light on the various forms of relationship.

Nor does this conception of pluralism encompass the view that there are different

forms of causal explanation (Weber et al., 2005) – except where it is maintained

that different forms of explanation require different notions of cause.

being determined by its intrinsic non-causal features), and that while a
mechanistic approach can account for the latter properties it cannot
account for counterfactual dependence being sufficient for causation, nor
can it account for absences being causes and effects. Consequently – Hall
(2004, section 6) claims – there are two concepts of cause, one which
corresponds to counterfactual dependence and the other which
corresponds to mechanistic production. Cartwright (2004, section 2)
argues that contemporary accounts are incompatible with one another
and that no individual account has universal applicability. She concludes
that each account specifies a different kind of causal law. 

Not only are there several paths to pluralism but there are also
several varieties of pluralism. Pluralists agree that there is no single thing
that is picked out by causality,2 but that leaves plenty of scope for
disagreement. Some (e.g. Psillos, 2006; Godfrey-Smith, 2008, section 6)
do not think much more can be said about what causality is, while others
(e.g. Hall, 2004) argue that there are distinct and coherent senses of
cause and would like to understand each of these senses. 

I take it that the former, nebulous variety of pluralism is a last
resort. If one can’t say much about the number and kinds of notions of
cause then one can’t say much about causality at all; this stance should
only be adopted if there is no viable alternative. I do not think the latter,
determinate variety of pluralism includes any viable alternative, for the
reasons set out below. But I do think that there is a viable monistic
account, as developed in section 3, so there is no need to resort to
nebulous pluralism. 

Of course those in the latter, determinate-pluralism camp differ
substantially as to the number and nature of the senses of cause. They
also differ as to the task at hand. One might think that it is enough to
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3 Arguably ‘prevent’ is also fully general. However there is general consensus

that ‘cause’ and ‘prevent’ are not different concepts. Either they are two sides of

the same coin, causation being a positive relationship and prevention negative, or

causation is taken to subsume prevention.

shed light on the alleged different notions of cause, e.g., by saying that
there are two notions of cause, one mechanistic and the other difference-
making. But one might want to go further by rendering the various
notions precise, in order to explicate the notion of cause in the sense of
Carnap (1950, section 2), or to provide a reductive analysis of cause.
Further, one might want to delimit the proper zone of application of each
concept of cause, e.g., by saying that mechanistic causality is appropriate
in the natural sciences while difference-making causality is appropriate
in the social sciences (a move analogous to the pluralism about
probability of Gillies (2000, chapter 9)). 

There are a number of problems with determinate pluralism. First,
pluralism is not parsimonious – if, as I suggest in section 3, there is an
adequate monistic account of cause, then arguably that account should be
preferred purely on the grounds of parsimony. Second, while we have
many words that are suggestive of causation, e.g., ‘push’ and ‘pull’
(Anscombe, 1971; Cartwright, 2004, section 3), we have only one word-
stem ‘cause’ for the fully general notion.3 If causality were a plural
concept then one would think that we would have several word-stems,
including one for each general notion. Perhaps, the pluralist might reply,
this is just a case where our language has not adequately evolved to
match our world. But if so, one would still expect some qualifiers (e.g.,
‘mechanistic’, ‘difference-making’) to the word ‘cause’ to be routinely
used to distinguish the types of cause under consideration. At the very
least, one would expect clarificatory questions to be used to
disambiguate uses of the word ‘cause’ (Godfrey-Smith, 2008, section 3).
But all this is absent. 

Third, it is clear that determinate pluralism will not do justice to
the worry with which we began, namely the problem of accounting for
causal epistemology. How can one explain the fact that there was
excellent evidence that smoking and lung cancer sat in the right sort of
difference-making relation, yet some suitable physical mechanism
linking smoking and lung cancer was required before the causal claim
could be established? How can one explain the fact that there is excellent
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evidence of a mechanism linking smoking and breast cancer (involving
the presence of breast cancer carcinogens in tobacco smoke), yet that
causal claim has hitherto not been established because the evidence
concerning difference-making is equivocal? The pluralist is stuck. If she
says that some particular claim invokes a difference-making account of
causality then she cannot explain the requirement of a mechanism. If she
says that the claim involves a mechanistic account of causality then she
can not explain the requirement of difference-making. If she says that the
claim simultaneously involves two notions of cause – mechanistic and
difference-making – then she is in danger of not being a pluralist at all,
but of espousing a single concept of cause that has two necessary
conditions, one mechanistic and one difference-making. The different
aspects of causality – mechanistic and difference-making – are clearly
connected, since a causal claim requires both as evidence. But pluralism
sheds no light on this connection; if anything, it pushes these two aspects
apart, viewing each as evidence for a different claim. 

If determinate pluralism doesn’t cut muster and contemporary
monistic accounts also fail, then we need to go back to the drawing
board. Our options are a more elaborate form of monism, or, as a last
resort, nebulous pluralism. As a first attempt, as suggested above one
might try to develop a monistic conception which takes a causal
connection to require both an underlying mechanism and that the cause
make a difference to the effect. Unfortunately, this will not do either, for
the simple reason that not all of our causal claims have an underlying
mechanism and not all of our claims reflect difference making – see, e.g.
Hall (2004), who dismisses monism on these grounds. While we seek
evidence of a mechanism as well as evidence of difference-making, such
evidence is sometimes unattainable – this fact puts paid to a monistic
analysis of causality in terms of one or other or both of these notions. 

Perhaps, then, we must look to some less determinate account
which appeals to a vague cluster of different notions that underlie a
single concept of cause. This nebulous monism may be marginally more
appealing than nebulous pluralism, but again not one to which we need
resort, since, as we shall see, the epistemic theory offers a more
determinate kind of monism. 
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4 Some have argued  that causality is slightly more complicated than that –  e.g.,

Schaffer (2005) argues that it is not binary, Mellor (1995) that it is not a relation,

Spirtes (1995) that it is not acyclic – but these alternative conceptions are  still

simple enough to make the subsequent point, and the analysis of this section can

be modified to take these complications into account if need be. Pluralists argue

that causality is not a single  relation, but I have argued  in section 2 that pluralism

is unacceptable.

3. The epistemic view of causality 

In a sense causality is a very simple concept – it is just an asymmetric
binary relation.4 Therefore, it can only carry so much information. But
we demand a lot of this relation. Causality is used throughout the
sciences and in daily life for inference and for explanation: we represent
the world causally so that we can make predictions, diagnose faults,
make strategic decisions, explain events and apportion blame and praise.
Thus we overload a simple relation with connotations both of difference-
making and of mechanisms. As pluralists have observed, there are some
tensions between the inferential and the explanatory uses of the causal
relation. This explains the multi-faceted epistemology of causality and
the apparent complexity of the notion of cause. 

The epistemic theory of causality (Williamson, 2005a;
Williamson, 2006a; Williamson, 2007a) takes causal epistemology as
primary and builds up causal metaphysics from this epistemology.
Arguably only by this process of reverse engineering can one address the
epistemological problem of Section 1.

The epistemic theory takes an epistemology of rational belief as its
starting point. The idea is that an agent’s evidence constrains the range of
causal beliefs that it would be rational for her to adopt. Some possible
causal beliefs are incompatible with the evidence, others are suggested
by the evidence; the agent should choose from the latter. These beliefs
are just that – they are highly defeasible in the light of new evidence and
nothing like as stable as causal knowledge. Nevertheless, this relation
between evidence and rational causal belief is enough both to develop a
full causal epistemology and to isolate the concept of cause itself.

Just what is this relation between evidence and rational causal
belief? What causal beliefs should an agent adopt on the basis of her
evidence? The answer to a question about what an agent should do
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hinges, of course, on what the action is intended to achieve – in this case,
on the uses to which she will put her causal beliefs. The explanatory use
of causality requires that the causal relation should typically fit with
known physical theory and evidence of mechanisms: typically, some
cause of an event will be invoked by its physical explanation. The
inferential use of causality requires that the causal relation should
typically fit with evidence of difference-making: typically, cause and
effect should be probabilistically dependent, when intervening to fix the
cause and controlling for the effect’s other causes. There is also the
rather general use of beliefs to systematise one’s evidence: an agent’s
beliefs should typically be able to offer some kind of explanation of her
experience and evidence. For example, if the agent discovers that two
events are probabilistically dependent, and she knows of no non-causal
explanation of this dependence (the events are not known to be
overlapping, for instance) then she should (tentatively) believe that some
causal connection between the events gives rise to the dependence,
because dependencies between physical events are typically explained
causally. This sketch involves a lot of ‘typically’s’, because none of these
features of causality hold invariably; if they did, a more straightforward
analysis of causality in terms of one or more of these features might be
possible; yet ‘typically’ is quite enough for causal beliefs to be useful
from an inferential and explanatory point of view. 

One way of making this sketch more precise proceeds as follows –
a more detailed exposition is given in the Appendix and the motivation
behind some of the assumptions can be found in Williamson (2005a). An
agent’s causal beliefs can be represented by a directed acyclic graph
whose nodes are the variables of interest in her domain and whose
arrows correspond to direct causal connections. As explained in Section
4, her evidence or epistemic background, $, which contains everything
that the agent takes for granted in the context at hand, can be used to
determine a probability function, p$, over the variables in her domain –
namely the probability function that satisfies constraints imposed by
background knowledge but that is otherwise as non-committal as
possible, i.e., that has maximum entropy. p$ represents the degrees of
belief that the agent should adopt on the basis of $. The causal belief
graph, C$, that the agent should adopt on the basis of $ is determined as

follows. First, C$ should be compatible with the constraints 6 that are

imposed by the agent’s mechanistic and theoretical knowledge: e.g.,
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causes should not occur after their effects; if physical theory treats two
variables symmetrically then neither can be a cause of the other (for
otherwise each would be a cause of the other, breaking the asymmetry of
causality); if mechanisms indicate a common cause of two variables
rather than a direct causal relation from one to the other then this should
be reflected in the causal belief graph. Second, as long as it is not
prohibited by the mechanistic-theoretical constraints 6, there should be
an arrow A v B in the causal graph to account for each strategic
dependence from A to B, i.e., whenever p$ renders A and B
probabilistically dependent when intervening to fix A and controlling for
B’s other direct causes (i.e., whenever A and B are probabilistically
dependent conditional on B’s other direct causes and A’s direct causes).
Third, the agent’s causal beliefs should otherwise be as non-committal as
possible: there should be no arrows in C$ that are not warranted by

evidence $. 
Interestingly, standard methods can be used to determine C$:

THEOREM  3.1. C$ is a minimal graph that satisfies 6 and the Causal

Markov Condition (cf. Definition A.7), if there is such a graph at all.
PROOF: See Appendix.

There are a whole host of algorithms for finding minimal causal graphs
that satisfy the Causal Markov Condition and some set of causal
constraints (Korb and Nicholson, 2003, Appendix B). The system Hugin,
for instance, offers a commercial implementation of a range of
techniques (see Andersen et al, 1989; www.hugin.com). Thus these
methods fit well with the above epistemology. 

Once we have an epistemology that elucidates the relationship
between evidence and rational causal belief, one can use this
epistemology to determine the concept of cause itself via the following
identity: the causal relation is just the causal belief graph of an
omniscient rational agent (an agent whose evidence is exhaustive). 

This identity can be understood in two ways. It could be thought of
as a fact about a concept of cause on which we have an independent
handle. For example, the proponent of a mechanistic analysis of cause
might want to claim that, if we had full empirical evidence, our rational
causal beliefs would coincide with this mechanistic relation. But this
claim would be very hard to maintain, thanks to the epistemological
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5 As alluded to at the end  of section 2, in other cases one kind of evidence is

sufficient for the causal claim.

6 A referee astutely pointed out that it is unclear how an omniscient agent could

have any inferential needs for causal beliefs to satisfy. It is important to note that

the uses of causal beliefs outlined here – explanation and inference – are not the

uses to which every hypothetical agent puts such beliefs. Indeed they are not the

problem of section 1: it is implausible that, if we had full evidence of
mechanisms, further probabilistic evidence should not alter our causal
beliefs. Alternatively, one might think of this identity as constitutive of
causality – there is no independent handle, causality just is a set of
rational beliefs. It is this second understanding that forms the crux of the
epistemic theory of causality. According to this epistemic view, the
epistemology of causality is determined by the uses we put this relation
to – inference and explanation – and causality itself is determined by this
epistemology, and so is ultimately reducible only to its uses. 

According to the epistemic theory, then, the causal relation is
characterised by the causal beliefs that an omniscient rational agent
should adopt. It should be clear in principle how this characterisation can
overcome the epistemological problem that besets other accounts. The
epistemological problem is that of developing an account of causality
that fits with the following epistemological fact: in certain cases, one
should not infer a causal connection solely on the basis of evidence of
difference-making, or solely on the basis of evidence of mechanisms.5

I.e., in such a case one would not be rational to hold the corresponding
causal belief. If so, and if in such a case there were difference-making
but no mechanism, or vice versa, then an omniscient rational agent would
not hold the causal belief. Hence according to the epistemic theory there
would be no such causal connection. On the other hand, if in such a case
there were both difference-making and a mechanism then there would be
a causal connection. So in such a case there is a causal connection if and
only if there is both a mechanism and difference-making. Thus there is a
tight fit between the epistemic theory of causality and the
epistemological fact. The epistemological fact is accounted for by the
uses of causal beliefs: the explanatory and inferential uses of causal
claims require that, where possible, causal claims should coincide both
with mechanisms and with difference-making.6 
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uses to which every real agent puts such beliefs, since there are agents that make

no inferences or proffer no explanations, and many agents have ulterior (non-

explanatory, non-inferential) motives for adopting certain causal beliefs. The uses

emphasized here are the general epistemological uses to which the bulk of us

(non-omniscient) humans put our causal beliefs.

The epistemic view leaves us with an elaborate epistemology but a
simple metaphysics: many indicators of causality but one concept of
cause. That causal epistemology is pluralistic and somewhat elaborate is
no news to anyone. That causality itself is monistic and rather
straightforward, yet fits with this epistemology, is perhaps more
surprising. Moreover, this is not nebulous monism. One of the
advantages of this view is that it is somewhat easier to agree on an
appropriate causal epistemology, elaborate though it is, than to agree on
an appropriate understanding of cause, simple though it may turn out to
be. Since the latter task can be reduced to the former, metaphysical
progress becomes possible and a determinate monism is within reach.
Indeed, as I hope the Appendix shows, a causal epistemology may be
made very precise, in which case the monistic concept of cause is
precisely defined too.

There is an interesting question concerning the objectivity of the
causal relation under the epistemic view. How much choice does an
agent have when deciding which causal beliefs to adopt? Clearly an
agent can not choose just any directed acyclic graph as her causal belief
graph C$. In fact, if there is a graph that satisfies 6 and the Causal

Markov Condition, and if p$ is faithful, then C$ must be chosen from a

Markov equivalence class – a set of directed acyclic graphs that have the
same independencies via the Causal Markov Condition (see
Proposition A.17). Gillispie and Perlman (2002) carried out studies that
suggest that on average a Markov equivalence class has four members,
i.e., the agent will be able to choose the directions of two arrows in the
graph, on average, and all other arrows will be determined by
background knowledge. Thus causality is very highly determined on the
epistemic account. This seems to be just what we want – by and large the
causal relation is objectively determined, but there are cases (see e.g.
Hitchock, 2003) that suggest that causality is not fully objective. 
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4. Epistemic metaphysics 

We have seen, then, that traditional monistic accounts of causality, which
seek to analyse causality in terms of just one of its indicators, face a
crucial epistemological problem, namely that of accounting for the
variety of evidence required for causal claims. Determinate pluralism
fares no better: it also succumbs to this epistemological problem. The
epistemic account, on the other hand, provides a monistic theory that has
causal epistemology at its base, and is not beset by this problem. If one
can provide a determinate epistemology, such as that outlined in the
Appendix, then this leads to a determinate monism about causality; there
is no need to resort to indeterminate monism or indeterminate pluralism. 

The epistemic theory of causality is an example of a general
strategy for developing a determinate, monistic metaphysics that is true
to the epistemology of a concept. Sometimes, attempts to explain a
concept by positing a single mind-independent entity that corresponds to
the concept meet fundamental difficulties, including counterexamples
and epistemological problems. For example, probability faces an
analogous epistemological problem: our probability judgements are
based on knowledge of frequencies, knowledge of symmetries,
indifference in the face of lack of knowledge and so on; if we try to
analyse probability in terms of one of these indicators it is hard to
explain the relevance of the others. More generally, mathematics faces an
epistemological problem: our mathematical claims are based on a vast
panoply of evidence, including proofs, patterns and pictures; monistic
views such as platonism face well known difficulties in accounting for
this epistemology (Benacerraf, 1973). In these cases, simple-minded
realism offers a poor account of the concept in question and some other
kind of account is needed. 

An epistemic theory of concept X is a good strategy in such cases,
one that can be used to provide an account of X that is truer to its
epistemology and less prone to counterexamples. According to such a
theory, X is to be interpreted in terms of a rational agent’s epistemic
state: rational X-beliefs are determined by an agent’s epistemic
background (and the uses to which X-beliefs are put); X-facts are
characterised by those X-beliefs that an omniscient agent ought to adopt.

Objective Bayesianism provides an example of an epistemic theory
of probability (see e.g. Williamson, 2005a, chapter 5). Here X-beliefs are
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7 Under the epistemic view, X-beliefs are a type of belief (a directed relational

belief in the causal case, a degree of belief in the probabilistic case) and are to be

distinguished from beliefs about X, which are beliefs about which X  -beliefs one

should adopt if one had  total evidence. An epistemic account understands X in

terms of X -beliefs, not in terms of beliefs about X (the latter approach would lead

to problems of circularity – see Williamson (2007a), section 7).

an agent’s degrees of belief, which, as Bayesian argue, satisfy the axioms
of probability. These X-beliefs are determined by an agent’s background
knowledge $ as follows. Degrees of belief are used for inference, e.g.,
prediction and decision. Given the predictive use, one’s degrees of belief
should be calibrated with one’s evidence. Thus knowledge of frequencies
directly constrains degrees of belief (if you know just that 80% of days
like today are followed by rain you should believe today will be followed
by rain to degree 0.8). So does knowledge of symmetries (if you know
that accepted physical theory treats the different possible values of a
particle’s spin symmetrically, you should believe a particle has spin up to
the same degree that you believe it has spin down). Given the decision-
making use of degrees of belief, they should not be susceptible to a
Dutch book and should not be bolder than is warranted by evidence (for
otherwise one opens oneself up to unnecessary risk – see Williamson
(2007b)). Thus on a finite domain, an agent’s degrees of belief are
represented by the probability function p$, from all those that satisfy
constraints imposed by $, that is most non-committal (i.e., has maximum
entropy). Probability facts are then determined by these probability
beliefs. The probability facts at time t are characterised by the probability
function that an agent with knowledge of everything up to time t should
adopt as her belief function. Note that there are differences between this
epistemic theory of probability and the epistemic theory of causality. In
particular, since probability has been axiomatised and shown to have
several models, a certain pluralism is inevitable. Thus objective
Bayesianism may be used to provide an account of the probability of a
single case while the frequency theory of von Mises (1928) may be used
to explicate the probability attaching to an indefinitely repeated sequence
of outcomes (see also Russo and Williamson (2007b) on this point).7

An epistemic theory of mathematics proceeds similarly
(Williamson, 2006b). Like causal beliefs, mathematical beliefs are used
for explanation as well as inference. The explanatory use requires that
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mathematical beliefs be justifiable by means of proofs and
interpretations, and that mathematical beliefs account for the evidence
and be non-committal in other respects. The inferential use also imposes
constraints: e.g., if a proof of a proposition is available as evidence then
the proposition should be believed. Under the epistemic view,
mathematical facts are characterised by the mathematical beliefs that an
agent with full evidence should adopt. This gives a grounding to
mathematics that is radically different to contemporary accounts such as
platonism, neologicism, structuralism and nominalism. 

The epistemic formula may also be applied to other problematic
X’s, e.g., logic, ethics. It is the failure of standard accounts of X which
motivates the move to an epistemic account, not some global pragmatism
or some modified criteria for adopting philosophical theories. In
particular inference to the best explanation, a favoured mode of inference
of the monistic realist, can be used to motivate an epistemic view of X. A
realist conception of X may simply be untenable – prone to
counterexamples or unable to account for the epistemology of X, for
instance. In which case it does not offer the best explanation for our
having the concept. There is thus room for an epistemic theory to provide
the best explanation of our having X: we have concept X because of its
utility (e.g., for inference and explanation), not because X corresponds to
some single non-epistemic thing, just as we have hands because of their
utility, not because of some kind of correspondence. Of course, the world
must be such that X is a useful concept – just as the world must be such
that hands are useful – so our having X says something about the world.
It just does not say that there is something X-like in the world that is
picked out by our concept. According to this stance, epistemic theories
are to be judged by the same criteria as realist theories (see Williamson
(2006a) for potential criteria). If a realist theory of X is viable, it may
then be preferred over an epistemic theory of X on the grounds of
simplicity. Thus we have the concept of table because there are tables
that the concept picks out but we have the concept of cause because of its
inferential and explanatory utility.

University of Kent
J.Williamson@kent.ac.uk
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APPENDIX: A FORMAL EPISTEMOLOGY

This appendix provides the details of a formal epistemology that can be
integrated with the epistemic theory of causality. See Williamson (2005a,
chapter 9) for further discussion of the motivation behind this
framework.

As in section 3, let $ be the agent’s background knowledge. We
shall suppose that $ can be represented by two components, B which is a
set of probabilistic evidence, and 6 which is a set of causal constraints,
determined by the agent’s other knowledge, including mechanistic and
theoretical knowledge. For example,  6 = {A v B, A /v C, A ² C, C /²
D},  where A v B signifies that A is a direct cause of B , A /v C that A is
not a direct cause of C, A ² C that A is a cause of C, and C /² D that C is
not a cause of D. Let p6,B be the probability function, from all those that
satisfy constraints imposed by 6, B, that has maximum entropy (see
Williamson (2005a, section 5.8) for an account of how causal knowledge
constrains a probability function). All probability assertions will be made
with respect to this probability function. For sets of variables X, Y, Z, X $1
Y , Z signifies that X and Y are probabilistically independent conditional
on Z, while X º Y , Z signifies the opposite, that X and Y are
probabilistically dependent conditional on Z. We are interested in
determining C6,B, a directed acyclic graph on the domain of p6,B that

represents the causal beliefs that the agent should adopt on the basis of 6
and B (arrows in the graph correspond to direct causal connections). Any
causal graph C will be assumed to be a directed acyclic graph (dag). With

respect to such a graph, DA is the set of direct causes of variable A and
NEA is the set of A’s non-effects. The question arises first as to how the
agent’s probabilistic knowledge B constrains choice of causal graph:
what set 6N of causal constraints is imposed by probabilistic knowledge
B?

DEFINITION A.1. (STRATEGIC DEPENDENCE) There is a strategic
dependence from variable A to variable B with respect to probability
function p and causal graph C, written A ò B, iff A and B are
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8 This definition is a bit simpler than that given in Williamson (2005a, section

9.5), but nothing very much hangs on the difference between the two definitions,

other than the simplicity of some proofs.

probabilistically dependent conditional on B ’s other direct causes and A
’s direct causes, A º B , DB\A, DA .8

The following definition and principle allow one to translate
probabilistic constraints B into causal constraints 6N:
DEFINITION A.2. (CAUSAL TRANSFER) Let 6* =df {A v B :  A ò B}.
Given a causal graph C that satisfies 6, a causal transfer of B with

respect to 6 and C is a maximal subset 6N of 6* such that C satisfies 6

and 6N (i.e., C satisfies 6 and 6N f 6* , and there is no 6O such that 6N d

6O f 6* and C satisfies 6 and 6O.

A

C

B

FIGURE 1: An empty graph.



CAUSAL PLURALISM VERSUS EPISTEMIC CAUSALITY 85

A

ü

C

ú

B

FIGURE 2: A common cause.

PRINCIPLE A.3. (PROBABILISTIC TO CAUSAL TRANSFER) C satisfies 6 and

B if and only if C satisfies 6 and 6N , where 6N is some causal transfer of

B with respect to 6  and C.

DEFINITION A.4. (EXPLANATORY RESIDUE) 6& =df 6*\6N is the
(explanatory) residue of C, with respect to 6 and B.

The smaller the residue the fewer the strategic dependencies that have no
causal explanation in C. Let ÷[6,B] be the set of all causal graphs that

satisfy constraints imposed by 6 and B and that have smallest residue,
÷[6,B] = {C : C satisfies 6 and B, C minimises , 6& ,}.

PRINCIPLE A.5. (RATIONAL CAUSAL BELIEF) An agent’s rational causal
belief graph C6,B should be chosen from the set ÷6,B of all minimal graphs

in the set ÷[6,B] of all minimum-residue causal graphs that satisfy
constraints imposed by 6 and B, ÷6 ,B = {C 0 ÷[6,B] : C has fewest

arrows} .

Thus C6 ,B is determined by first isolating the graphs that satisfy the

constraints, then eliminating those that do not have minimum residue,
then eliminating those that do not have the minimum number of arrows,
then choosing one of the remaining graphs. 

Here we have a minor point of departure from the approach of
Williamson (2005a, section 9.5). There it was suggested that C6,B be

determined simply by choosing a minimal graph from all those that
satisfy the constraints. Here, we have an extra condition, namely that the
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9 Two remarks are in order. First, it might be objected that background

knowledge may include a non-causal explanation of the dependence, in which

case one would not want any form of causal explanation of the dependence. But

if that were the case then 6 would rule out a common-causal explanation too, e.g.,

6 = {A /v B, B /v A,  � X¬(X v A  v X  v B)}, and Fig. 2 would then not be

adopted. Second, one might object that the common causal exp lanation doesn’t

really account for the dependence between A and B because the cause C is

independent of these variables. But it must be remembered that this independence

is with respect to rational degree of belief, i.e., with respect to current evidence.

This leaves open the question of whether there are dependencies between C and

A  and between C and B with respect to their frequencies. If so, as evidence

improves, rational degree of belief may be expected to reflect those

dependencies; the explanation of the dependence then improves. Thus a causal

picture is only by itself part of an explanation of a dependence – a full

explanation would need to appeal to probabilities based on good evidence.

residue be minimised. This condition is motivated by the following
example. 

EXAMPLE A.6. Suppose the domain consists of three binary variables, V=
{A, B, C}, with possible assignments a0, a1, for A , b0, b1, for B, and c0, c1,
for C. Suppose that B {p(b1 , a1) $ p(b1) + 0.3}, and that 6 = {A /v B, B /v
A}. Then A º B is the only dependence in p6 ,B, and the empty graph, Fig.
1, satisfies the constraints with residue 6& = {A v B, B v A}. On the
other hand, the graph Fig. 2 also satisfies the constraints with no residue.
Intuitively the latter graph is to be preferred, even though it has more
arrows, because it includes an explanation of the dependence between A
and B – it attributes the dependence to a common cause.9 Thus residues
should be taken into account.

Having isolated a rational causal belief graph, we turn to the
question of how to find such a graph in practice. Clearly an exhaustive
search through the space of all directed acyclic graphs will not be
practical. Practical methods will make use of the following condition:

DEFINITION A.7. (CAUSAL MARKOV CONDITION) The Causal Markov
Condition (CMC) is said to hold if each variable A in the domain is
probabilistically independent of its non-effects, conditional on its direct
causes, A $1  NEA , DA.
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LEMMA A.8. For any causal graph C , C satisfies 6* ] satisfies CMC.

PROOF: [Y] Suppose C satisfies 6*. Suppose for contradiction that C

does not satisfy CMC. Then there is some variable A and non-effect B
such that A º B , DA. This implies A º B, DB , DA by the contrapositive of
the Decomposition property of conditional independence (see, e.g.,
Williamson (2005a, section 3.2)), which in turn implies A º B , DA, DB by
the contrapositive of the Contraction property. 

Since DB = DB\A, A ò B. But this contradicts the assumption that C

satisfies 6*, since A /v B  in C. Thus C does satisfy CMC after all. 

[Z] Suppose C satisfies CMC. Suppose for contradiction that A ò

B but that  A /v B  in C . There are four cases: 

(i) If B is an (indirect) effect of A then CMC Y B $1  A, DA , DB Y  B $1  A ,
DA, DB (by the Weak Union property) which contradicts A ò B.
(ii) If A is an indirect effect of B then CMC Y B $1  A, DB , DA Y B $1  A ,
DA, DB contradicting A ò B.
(iii) If A is a direct effect of B then A ò B implies B º A ,  DB, DA which
is impossible since B 0 DA.
(iv) If neither is a cause of the other then CMC Y B $1  A, DB , DA Y B $1  A ,
 DA, DB contradicting A ò B.
Thus in each case we have the required contradiction. ~
 
We come now to a restatement of Theorem 3.1.: 

THEOREM A.9. Suppose there is some graph C that satisfies 6 and CMC.

Then C6,B is a minimal such graph. 

PROOF: If C satisfies 6 and CMC then by Lemma A.8 it satisfies 6 and

6*. Thus C has null residue. Hence ÷[6,B]= {C : C satisfies 6 and

CMC}. The result follows by Rational Causal Belief, Principle A.5. ~

DEFINITION A.10. (STRATEGIC CONSISTENCY) If there is a causal graph
that has no residue with respect to 6 and B (equivalently, if there is a
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10 This differs from the definition of strategic consistency given in Williamson

(2005a, section 9.6) but the sentiment is the same – 6 is strategically consistent

with B if 6 does not block the transfer of strategic dependencies to arrows in

Principle A.3.

graph that satisfies 6 and CMC) then  6 and B are said to be strategically
consistent.10 

If 6 is not strategically consistent with B then all is not lost. Suppose 6 is
consistent (i.e., there is some directed acyclic graph that satisfies 6),
contains only direct-causal constraints (i.e., constraints such as X v Y or
X /v Y that involve only direct causal connections), contains only atomic
constraints (i.e., no logically complex constraints such as (X v Y) w (Y /v
Z), and contains no repetitions. Then we can write 6 = 6+ c 6- where 6+ is
the set of positive constraints in 6 and 6- is the set of negative constraints
in 6. Consider the following algorithm: 

ALGORITHM A.11.
Input: 6 (consistent; atomic direct-causal constraints; no repetitions), B,
p6,B.

1. Choose a maximal set of constraints 8 such that 6+ f 8 f 6 and
there is some C that satisfies 8 and CMC. 

2. Take a minimal such C.

3. Remove arrows from C to satisfy the constraints in 6\8 and yield

a graph CN.

Output: CN

THEOREM A.12. Suppose 6 is consistent and contains atomic direct-
causal constraints with no repetitions. Then C6,B can be taken to be CN

produced by the above algorithm. 

PROOF: First we need to show that such a 8 exists. By Lemma A.8, C

satisfies 8 and CMC if and only if C satisfies 8 and 6*. There is such a 8

because the complete directed acyclic graph is bound to satisfy 6+ and
6*. 

By consistency of 6 and construction of CN, the graph CN satisfies

the constraints in 6 and B.



CAUSAL PLURALISM VERSUS EPISTEMIC CAUSALITY 89

By maximality of 8 and atomicity of 6, each constraint in 6\8
violates a single constraint in 8 c 6*. Since 6 contains no repetitions,
each constraint in 6\8 violates a different constraint in 8 c 6*. Since 6 is
consistent, each constraint in 6\8 must violate a different constraint in
6*. Hence the size of the residue of CN (with respect to 6, B is , 6\8 ,. 

CN must be a minimum-residue graph because 8 is maximal. 

Finally, CN must be a minimal minimum-residue graph. This is

because the choice of maximal 8 makes no difference to the size of CN. 

Note that if there is some graph C that satisfies 6 and CMC, then

the algorithm reduces to that of Theorem A.9. ~

The assumption that 6 contain only atomic direct-causal statements is
quite restrictive: while we often know claims of the form ‘X is a cause of
Y’ or ‘X is not a cause of Y’, it is rarer that causal knowledge takes the
form ‘X is a direct cause of Y’ or ‘X is not a direct cause of Y’. Thus it
would be much more useful to be able to include atomic causal
statements, so that 6 contains atomic statements of the form X ² Y, X /²
Y, X v Y, X /v Y. Unfortunately the above algorithm is not guaranteed to
succeed if we extend 6 in this way. Suppose 6 = {E /² A, B /² E, C /² E},
and the only minimal graphs that satisfy CMC are Fig. 3 and Fig. 4. Then
8 = {B /² E, C /² E} and CN is determined by removing arrows from

Fig. 4 to give, e.g., Fig. 5, which has a residue of size 3. However, the
rational causal graph is obtained by removing arrows from Fig. 3 to give
Fig. 6 which has residue of size 2.

B

ü ú

A û C û E

ú ü

D

FIGURE 3: One graph satisfying CMC.
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FIGURE 4: Another graph satisfying CMC.
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FIGURE 5: The result of the algorithm.
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FIGURE 6: The rational causal graph.

The more general form of 6 therefore requires a modified algorithm: 
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ALGORITHM A.13
Input: 6 (atomic), B,  p6,B.

1. Let C = {C : C satisfies CMC and 6+}.

2. Set D = i, nmin = 4.
3. For each C 0 C,

(a) remove as few arrows as possible from C to satisfy the

constraints in 6, yielding graph D,

(b) let n =  number of arrows removed,
(c) if n < nmin, set nmin = n , D = i,
(d) if  n = nmin and D satisfies 6, add D to D . 

4. Let E = {D 0 D : D  is minimal}.

Output: E

THEOREM A.14 Suppose 6 is atomic. Then E f  ÷6,B, where E is produced
by the above algorithm. Moreover, if 6 is consistent then E � i . 

PROOF: Each E 0 E satisfies 6. Further, E is produced in step 3a by

deleting as few arrows as possible from a graph that satisfies CMC, i.e.,
satisfies 6*, so E satisfies B as well as 6. Step 3c ensures that E has

minimum residue, while step 4 ensures that E is minimal. Thus E 0 ÷6,B.

If 6 is consistent then there is some graph C that satisfies 6. Any

complete supergraph of C satisfies 6+ and CMC, and hence is in C. Thus

C will result from step 3a and is a candidate for admission in E; if C is

not in E then that is because a graph that is smaller or has smaller residue
is in E instead. Hence E is non-empty. ~

Note that it may not be the case that E = ÷6,B, since different ways
of carrying out step 3a may lead to different graphs in ÷6,B, some of
which are omitted from E. The algorithm can be modified to output ÷6,B

by altering step 3a so that the algorithm runs through the set of maximal
D f C that satisfy 6. 

If 6 is not atomic, then it may not be possible to divide 6 into 6+

and 6-. The above algorithm can be modified to cope with this more
general type of causal constraint just by letting C = {C : C satisfies

CMC} in step 1. 
We see then that practical methods for finding a minimal graph

satisfying CMC and a set of further constraints can be applied to the
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problem in hand, namely determining C6,B. Note that such methods

invariably involve querying the probability function p6,B. However, it
may be possible to construct C6,B directly from the background

knowledge 6 and B itself, without having to determine p6,B as an
intermediary, via the following algorithm:

ALGORITHM A.15.
Input: 6 (atomic), B (strategically consistent)

1. Construct an undirected graph G on the variables in 6 and B by

linking each pair of variables with an edge if they occur together in
the same constraint in B.
2. Find a minimal (in terms of fewest edges) triangulation GT of G.

3. Form the set S = {T : T is a maximum cardinality ordering of
the variables, T is a causal ordering consistent with 6}. (N.b. T is
a maximum cardinality ordering if each variable Ai is a variable
from {Aj : j $ i} that is adjacent in GT to the largest number of

variables in {A1, ..., Ai-1}.) 
4. For each ordering T form a directed acyclic graph HT as

follows:
(a) Let D1, ..., Dl  be the cliques of GT, ordered according to highest

labelled vertex.
(b) Let Ej = Dj 1 (c i=1 

j-1 Dj) and Fj = Dj\ Ej, for  j = 1, ..., l.
(c) Take the variables as vertices of  HT.

(d) Add an arrow from each vertex in Ej to each vertex in Fj, for j =
1, ..., l.
(e) Add further arrows, from lower numbered variables to higher
numbered variables, to ensure that there is an arrow between each
pair of vertices in Dj, j = 1, ..., l. 
(f) Add arrows corresponding to the positive constraints 6+ in 6 . 
5. Let H = {HT : HT satisfies 6, HT is minimal}.

Output: H

THEOREM A.16. Suppose 6 is atomic and strategically consistent with B,
that G =  GT, and that B does not on its own imply any probabilistic
independencies. Then H f ÷6,B.
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11 Such a graph can be used as the graph in a Bayesian net representation of p6,B.

This is called an objective Bayesian net – see Williamson (2005b).

PROOF: Each graph produced by the end of step 4e is acyclic and satisfies
CMC with respect to p6,B (Williamson 2005a, Theorem 5.6), hence so
does each graph produced by the end of step 4f. Since B does not imply
any independencies and G is already triangulated, the graphs resulting

from step 4e include the minimal graphs satisfying CMC (Williamson
2005a, Theorem 5.4).11 Thus if H contains a graph at all, it is a minimal
graph satisfying 6 and CMC, hence, by Lemma A.8 , it is a minimal
graph satisfying 6 and 6*. Since there is no residue (by assumption 6 is
strategically consistent with B), it is a minimal graph satisfying 6 and B
and is in ÷6,B. ~

Note that H may be empty: in Example A.6, the smallest graph
that satisfies 6 and CMC, Fig.2, can not be obtained by removing arrows
from the smallest graph that satisfies CMC (which has only one arrow,
between A and B).

Computational considerations may motivate simplifications of this
algorithm. In particular, the second step, finding a optimal triangulation,
is NP-hard (Yannakakis, 1981). Thus rather than demanding that there be
no smaller triangulation in step 2, one might demand instead that the
triangulation be minimal in the sense that no subgraph is a triangulation –
as Berry at al. (2004) show, this is much more feasible (see also
Neapolitan (1990, section 3.2.3) for a fast triangulation algorithm).
Similarly, one might want to stop step 4 when one directed acyclic graph
has been found that satisfies 6. If such modifications are made, or if it is
not known whether B implies any probabilistic independencies, then a
resulting graph in H can be viewed as an approximation to C6,B.

If 6 is not strategically consistent with B , this algorithm can be
combined with Algorithm A.11 or Algorithm A.13 to try to identify a
rational causal belief graph.
 Finally, the set of rational causal belief graphs satisfies some
interesting properties:

PROPOSITION A.17 Suppose 6 is strategically consistent with B.
1. If 6 provides a causal ordering of the variables then C6,B is

uniquely determined if and only if p6,B is strictly positive.
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2. [C6,B] f ÷6,B, where [C6,B] is the Markov equivalence class of

C6,B.

3. If p6,B is faithful then ÷6,B =  [C6,B].

See Williamson (2005a, §9.7) for the relevant definitions and proofs. 
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