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Abstract

Determining a prior probability function via the maximum en-
tropy principle can be a computationally intractable task. How-
ever one can easily determine — in advance of entropy maximisa-
tion — a list of probabilistic independencies that the maximum
entropy function will satisfy. These independencies can be used
to reduce the complexity of the entropy maximisation task. In
particular, one can use these independencies to construct a di-
rected acyclic graph in a Bayesian network, and then maximise
entropy with respect to the numerical parameters of this net-
work. This can result in an efficient representation of a prior
probability function, and one that may allow efficient updating
and marginalisation. The computational complexity of maximis-
ing entropy can be further reduced when knowledge of causal
relationships is available. Moreover, the proposed simplification
of the entropy maximisation task may be exploited to construct
a proof theory for probabilistic logic.



1 Introduction

Bayesians argue that an agent’s degrees of belief ought to respect
the axioms of probability: a belief function ought to be a probability
function. Many Bayesians impose further mechanisms for choosing
a belief function, given an agent’s background knowledge. In partic-
ular, many accept the mazimum entropy principle, which says that
one ought to adopt, out of all the probability functions that satisfy
the constraints imposed by background knowledge, a function p that
maximises entropy

H=-) p(v)logp(v) (1)

(where the sum is taken over the assignments v to elements of the do-
main — the notation will be explained in §2). This principle is often
justified on the grounds that a maximum entropy probability function
is a least prejudiced probability function that satisfies the constraints.
It satisfies the constraints but commits to as little as possible beyond
the knowledge embodied by the constraints.! A second justification
cites a number of intuitively plausible conditions that any principle
for determining a probability function from background knowledge
ought to satisfy, and goes on to show that the maximum entropy
principle is the only principle which satisfies these conditions.? The
maximum entropy principle is still a matter of some controversy,® but
I shall not dwell on the issue of justification any further here.

The chief difficulty for those who do accept the maximum entropy
principle is that the number of parameters p(v) in the entropy expres-
sion (Equation 1) is exponential in the size of the domain (see §3), so
when the domain size is large it can be impractical to determine the
values of the parameters that maximise entropy. The object of this
paper is to put forward a principled and practical way of reducing the
number of parameters required in the entropy maximisation process.

The key idea is this. By analysing the structure of the constraints
imposed by background knowledge, it is possible to determine a host
of conditional probabilistic independencies that the maximum en-
tropy probability function p will satisfy. In §4 we shall see that the in-
dependence structure of p is most naturally represented by a Markov
network. By transforming this Markov network into a Bayesian net-
work (§5), we can exploit these independencies to reparameterise the
entropy expression, thereby reducing the computational complexity
of the maximisation task.*

HJaynes 1957].

2[Paris & Vencovska 2001].

3See [Halpern & Koller 1995], [Paris & Vencovské 1997].

4The fact that a maximum entropy probability function induces a range of
probabilistic independencies is already an established part of the folklore in this
field. Moreover, some practical proposals for maximising entropy aim to take ad-
vantage of these independencies: see for example [Rhodes & Garside 1995] which
deals with independencies representable by binary trees, and www.pit-system.de



Apart from simplifying the entropy maximisation problem, ex-
ploiting the independencies inherent in the maximum entropy func-
tion yields the following advantages. First, we are left with a Bayesian
network representation of an agent’s belief function: this is desirable
in that it may allow efficient storage and updating of the belief func-
tion (§5). Second, the approach allows further computational savings
when the background knowledge includes knowledge of conditional
independencies or causal relationships (§6). Third, the approach can
be extended to cope with reasoning in domains which have logical as
well as probabilistic structure (§7).

2 Framework and Notation

We shall be concerned with a finite domain V' = {V,...,V,,} of dis-
crete variables. Each variable V; can take one of ||V;|| € N5 possible
values, and the expression v;@QV; signifies that v; is the assignment
of V; to one of its values. For a subset U = {Vj,,...,V;, } of V, an
assignment QU consists of an assignment to each of the variables
in U, and v may be written v;, ...v;,, where v;, QV;,, ... v; QVj, .
Thus upper-case letters refer to variables or sets of variables, while
the corresponding lower-case letters refer to their assignments. Two
assignments u1@QU; and ue@Uy are consistent, written uy ~ wug, if
they agree on U; N U;. The number of variables in U is denoted
by |U|, while ||U]| refers to the number of assignments to U; clearly
Ul = HmeU [[Vill.

A probability function p over V is determined by its values on
the parameters ¥ =4 p(v), where v ranges over the assignments to
V.5 Each 2V € [0,1] and by additivity of probability Y ,q ¥ = 1.
Given some fixed ordering of assignments to V, let = denote the
vector of parameters (zV),ay. The set of probability functions then
corresponds to the space P = {x € [0, 1]IVIl: 3° o 2v = 1}.

An agent’s background knowledge is assumed to impose a number
of constraints x1, ..., xm on the set of probability functions that she
may adopt. Associated with each constraint y; is the set C; of vari-
ables involved in the constraint: if, for example, y; is the constraint
that the mean of variable V; is 1/3 then the associated constraint
set is C; = {Vi}. Let 2" =4 p(c;) where ¢;QC;, and let z; be the
vector of these parameters. Each constraint x; on C; will be assumed
to be an equality constraint of the form f;(z;) = 0 or an inequality
constraint of the form f;(z;) >0, for some function f; (no restrictions
are placed on the form of this function). Note that z; is determined
by z through the relationship z;* = Zv@u v~e; T’ Denote the set of

which deals with linear constraints. The techniques of the present paper can be
thought of as an extension of this line of work. Here we strive to capture as many
induced independencies as possible, to represent these independencies in a natu-
ral and perspicuous way, and to avoid restrictions on the form or nature of the
constraints.

®[Paris 1994] pp. 13-14.



constrained probability functions by C, so

C={zeP: fi(z21) 20,..., fm(zm) 2 0},

where 2 is either > or = according to the constraint. We shall as-
sume throughout that the constraints x1, . .., xm are consistent in the
sense that C # (), since maximising entropy subject to inconsistent
constraints is trivial.

3 Maximising Entropy

Under the above z-parameterisation, the entropy equation is

H=— Z x' log ¥ (2)
v@V

The maximum entropy principle requires that a parameter vector
x € C be found that maximises H. Typically one might use nu-
merical methods such as gradient ascent to adjust the z¥ until a local
maximum is found or one might determine a local maximum by using
the method of Lagrange multipliers. One needs of course to be wary
of the following possibilities: (i) there may be no global maximum
(although if the constraints limit = to a closed subset C of P, then a
global maximum will exist); (ii) there may be more than one global
maximum (in which case Bayesians may deem the agent in question
to be rational whichever global maximum she chooses as her belief
function); (iii) the above methods may find a local maximum that is
not the global maximum (note that there are no non-global maxima
if C is convex, which occurs for example if the constraint functions
fi are all linear®).

Perhaps the most serious difficulty is this. There are [ [, ||Vi|| as-
signments to V. One of the x-parameters is determined by additivity
from the others, and so there are ([[;_, ||Vi]|) — 1 free a-parameters,
a number exponential in n. This is a problem for numerical methods
because as n becomes large there will quickly become too many pa-
rameters to be stored and adjusted, and there may even be too many
terms in Equation 2 to be summed in available time. Lagrange multi-
plier methods suffer analogously: a system of equations (consisting of
the m constraint equations and [}, ||V;|| partial derivatives of the
Lagrange equation with respect to the z-parameters) must be solved
for z, and this system of equations will quickly become unhandleable
as m increases.

Unfortunately there appears to be no fully general solution to
the complexity problem: the task of finding an approximation to the
maximum entropy function is NP-complete” and the task of finding
a likely approximation is RP-complete,® and so if NP #P # RP then

6[Paris 1994] Proposition 6.1.
"[Paris 1994] Theorem 10.6.
8[Paris 1994] Theorem 10.7.



Figure 1: Example constraint graph

@@

there is no polynomial time algorithm for performing these tasks and
any algorithm will be intractable in the worst case as m increases.
The best we can hope for is an algorithm which performs well on the
type of problem that occurs in practice and badly only rarely. This
at least would be an improvement on naive numerical and Lagrange
multiplier approaches which perform uniformly badly.

The approach outlined in the rest of this paper is based on the
premise that in practice the sizes of the constraint sets C; are usually
small in comparison with n, as n becomes large. Constraints often
consist of observed means of single variables, marginals of small sets of
variables, hypothesised deterministic connections amongst small sets
of variables, causal connections amongst pairs of variables, indepen-
dence relationships amongst small sets of variables, and so on. The
point is that there is a limit to the amount we normally observe and to
the connections amongst variables posited by background knowledge,
in that while there may be many observations and many connections,
each observation and connection will relate only few variables. The
number of possible observations pertinent to a joint distribution over
V increases exponentially with n, but, I suggest, our ability to observe
increases sub-exponentially.

If such an assumption is correct, then as n grows there are many
conditional independencies that the entropy-maximising probability
function p will satisfy. We can identify these independencies just
from the constraint sets C;, and exploit them to simplify the task of
determining p, as we shall now see.

4  From Constraints to Markov Network

Define an undirected constraint graph G as follows. Take as vertices
the variables in V. Include an edge between two variables V;,V; € V
if and only if V; and Vj occur in the same constraint set Cj.

Suppose, for example, that V' = {Vi,...,V5} and that there
are four constraints xi,...,xs constraining C7; = {Vi,V2},Cy =
{Va, V3, Vi},Cs = {V3,V5},Cs = {Va} respectively. Then the con-
straint graph G is depicted in Figure 1.

The constraint graph is useful because it represents conditional
independencies that a maximum entropy function p satisfies. This is
best explained with the help of some additional terminology. Given
disjoint X,Y,Z C V, we shall write X 1, Y | Z if, according to a



probability function p, X is probabilistically independent of Y condi-
tional on Z, and we shall write X =, Y | Z if this independence does
not hold, i.e. if X and Y are probabilistically dependent conditional
on Z. We say that Z separates X from Y in undirected graph G if
every path from a vertex in X to a vertex in Y goes through some
vertex in Z.

Theorem 4.1 If Z separates X from Y in the constraint graph G
then X 1, Y | Z for any p satisfying the constraints which maximises
entropy.

Proof: The first step is to use standard Lagrange multiplier opti-
misation. By theorems of Lagrange and Runge-Kutta,” if z € C is
a local maximum of H then there are constants p, A1,..., A\, € R,
called multipliers, such that

OH i af;
oxv tHT ;)\lﬁx”

=0 (3)

for each assignment v@V, where p is the multiplier corresponding
to the additivity constraint ) g, 2" = 1, and where \; = 0 for
each inequality constraint which is not effective at = (i.e. for each
inequality constraint x; such that f;(z) > 0).

Now the argument of f; is the vector z; of probabilities of assign-
ments to C;. Moreover, z{* = ZU@V’UNCZ, v, so

ofi _ 0fi 05 _ 0f; |
orv 0z Ox¥ 9287

)

where ¢; is the assignment to C; that is consistent with v. Further-
more,

oH
oxV
so Equation 3 can be written

=—1—logz",

logz’ = —1 +u+i)\ia—fg.
— 0z

where each ¢; ~ v. Thus,

mooy . afci
— z ]
gV = et | | e % (4)
i=1

Hence the local maximum z is representable as a product of func-
tions, each of which depends only on variables in a single constraint
set C; (the leading term is a constant). The probability function p
corresponding to x is said to factorise according to the constraint sets
Cq,...Ch,, and since these sets are complete subsets of G, p is said to

9See for example [Sundaram 1996], Theorems 5.1 and 6.1.



factorise according to G.'0 The global Markov condition says that if
Z separates X from Y in G then X 11, Y | Z, and this condition is a
straightforward consequence of factorisation according to G.!'' Thus
the theorem follows for local maxima p, and in particular for global
maxima p. ]

The converse does not hold in general. For example, a constraint
x1 that asserts the independence of V; and Vo must of course be
satisfied by the maximum entropy function p, but would not corre-
spond to any separation in the constraint graph G. However, there
is a partial converse to Theorem 4.1: separation in G captures all
the conditional independencies of p that are due to structure of the
constraint sets and not the constraints themselves. More precisely,
suppose that as before we are given disjoint X,Y,Z C V and con-
straint sets C', . . ., Cy,, and we construct the corresponding constraint
graph G; then

Theorem 4.2 If, for all x1,..., xm constraining C, ..., Cy, respec-
tively, X 1L, Y | Z where p is a function satisfying x1,. .., xm that
maximises entropy, then Z separates X from Y in G.

Proof: We shall show the contrapositive, namely that if Z does
not separate X from Y in G then there is some xi,...,Xm con-
straining C1,...,Cy, such that, for p a maximum entropy satisfier
of X1,...sxm, X =, Y | Z.

So suppose Vi,,..., Vi, is a shortest path from some V;, € X
to some V;, € Y avoiding vertices in Z. The task is then to find
some X1,...,Xm that render V;, and Vj;, probabilistically dependent
conditional on Z for the maximum entropy p.

Forj=1,...,k—1,V;; and V;, , are connected by an edge in G,
so they are in the same constraint set, which we can call C; without
loss of generality. Moreover no three vertices on the path are in the
same constraint set, for we could otherwise construct a shorter path
from V;, to V;, avoiding Z. Thus C1,...,Cj_1 are distinct. For each
such constraint set Cj let x; consist of the constraint p(vj v} ) =1
for some distinguished assignments v;‘j,vz’-‘j L, to Vi;, Vi;,, Tespectively.
Moreover add the constraint p(v}) = 1/2 to x1, by writing x1 as
(p(v, [vi,)=1)(p(v};)—1/2) = 0. (It is straightforward to see that each
X; can be written in the form f;(z;) = 0.) Let all other constraints
(Xks - - -, Xm) be vacuous. The constraints x1, .. ., X, thus defined are
clearly consistent, and constrain C4, ..., C,, respectively.

Note that by rewriting the constraints x1, ..., xx—1 and discarding
the vacuous constraints x, - .., Xm, one can repose the optimisation
problem as one involving constraint sets C1,...,C}_; where C} =
{Vi;, Vi, ., } for j = 1,...,k — 1. These constraint sets lead to a
constraint graph G’ in which the only edges are those between Vi

Y [Lauritzen 1996] 34-35.
" Lauritzen 1996] Proposition 3.8.



and V., for j =1,...,k—1. By applying Theorem 4.1 to G’, we see
that Vi, 1, {Vi,p,--, Vi } | Viyy, for j = 1,...,k — 2, and (since
none of V;,,...,V;, arein Z) V;, 1, Z |V, and V;, 1, Z. So for
any zQZ,

p(ui[vi2) = plog; |vi,)

= Z p(v]; |Vig -+ viy 07 )p(Vig |Vig vy 07 )
Ui27"'7vik_1
. -p(Uz'k,g |Uz‘k,1vfk )p(vik,l |U§kk)

= Z p(v;} |Vis )P (Vi |vig) - - -
Vig ey Vig_q

.- 'p(vik—z |Uik—1)p(vik_1 ’U:k)

=1
(the last step follows since p(vy,;[v] . ) = 0 if v;; # v:‘]) On the other
hand, p(vj, |2) = p(v],) = 1/2 # 1 = p(v}, |v} 2), so Vi, = Vi, | Z, as

required. [ |

In sum, the constraint graph G offers a practical representation
of the independencies satisfied by the maximum entropy function on
account of the structure of the constraint sets.

Let z denote the parameter matrix with rows z;, fori =1,...,m.
Then (G, z) is called a Markov network with respect to the factori-
sation of Equation 4. Having worked out the values of the constant
multipliers u, A1, ..., Ay in Equation 4 one can recast the entropy
maximisation problem as follows. Given z, one can determine z from
the factorisation, and hence the task of finding the z-parameters of
the maximum entropy function can be reduced to that of finding
the z-parameters of the maximum entropy function. While there
were ([, ||Vil]]) — 1 free z-parameters, these are now determined
by Z;’;l(HVjeCi [|Vjl]) — 1 free z-parameters. Note that one would
expect the number of values ||V}|| that variable V; can take to be
independent of the number of variables n and subject to practical
limits. Suppose then that some constant K provides an upper bound
for the [|Vj||. At the end of §3 I suggested that the sizes |C;| of
the constraint sets would also be subject to practical limits: suppose
that the |C;| are bounded above by a constant L. Then there are at
most m(K*—1) free z-parameters. Thus if the number of constraints
m increases linearly with n then so does the number of required z-
parameters — a dramatic reduction from the number of z-parameters
(bounded above by K™ — 1) required under the original formulation
of the problem.!?

121p fact, the z-parameters are determined by their marginals on the cliques
(maximal complete subgraphs) of G (see [Lauritzen 1996], page 40). There are
at most n cliques, so if clique-size and the ||Vj|| are bounded above, then the
z-parameters are determined by a number of parameters that is at worst linear
in n.



While the Markov network formulation offers the possibility of a
reduction in the complexity of entropy maximisation, it leaves us with
two tasks: (i) to find the values of the multipliers in the factorisation,
and (ii) to find the values of the z-parameters which yield maximum
entropy. Neither of these tasks are straightforward in general: (i) the
multipliers must be determined from a system of [[;-, ||Vi|| equations
(one factorisation for each v@V'), and (ii) the z-parameters must
be determined either from the same large system of equations or
numerically from an analogue of the large summation expression for
entropy, Equation 2.

It is somewhat easier, in fact, to move to a second reparameteri-
sation. Having reduced the complexity of the problem by exploiting
independencies, we shall move from a Markov network parameterisa-
tion to a Bayesian network parameterisation. This will allow some
simplification of the above two tasks and will leave us with a prac-
tical representation of the agent’s belief function to which standard
algorithms for updating can more easily be applied.

5 From Markov to Bayesian Network

An undirected graph is triangulated if for every cycle involving four
or more vertices there is an edge in the graph between two vertices
that are non-adjacent in the cycle. The first step towards a Bayesian
network representation of the maximum entropy probability function
is to construct a triangulated graph G7 from the constraint graph G.
Of course this move is trivial when, as is often the case, the constraint
graph G is already triangulated. Figure 1, for example, is already
triangulated. If G is not already triangulated, one of a number of
standard triangulation algorithms can be applied to construct G7 .13

Next, re-order the variables in V' according to mazimum cardi-
nality search with respect to G7: choose an arbitrary vertex as V;;
at each step select the vertex which is adjacent to the largest num-
ber of previously numbered vertices, breaking ties arbitrarily. Let
Dy, ..., Dy be the cliques of G", ordered according to highest labelled
vertex. Let E; = D; N (J/Z] D;) and Fj = D\E;, for j =1,...,1.

In our example involving Figure 1, V1, ..., Vs are already ordered
according to a maximum cardinality search,

Dy = {V1,Va}, Dy = {V,V3,V4}, D3 = {V3, Vs},

By =0, Ey = {Va}, B3 = {V3},
Fl - {‘/iaVQ}?FQ - {‘/E’nvzl}aF3 - {‘/5}
Finally, construct an acyclic directed constraint graph H as fol-
lows. Take variables in V' as vertices. Step 1: add an arrow from

each vertex in E; to each vertex in Fj, for j = 1,...,1. Step 2: add
further arrows to ensure that there is an arrow between each pair of

13See for example [Neapolitan 1990] §3.2.3 and [Cowell et al. 1999] §4.4.1.



Figure 2: Example directed constraint graph

() (%)

vertices in Dj,j = 1,...,[, taking care that no cycles are introduced
(there is always some orientation of an added arrow which will not
yield a cycle). In our example, an induced directed constraint graph
‘H is depicted in Figure 2; the arrow from V3 to V4 was the only arrow
added in step 2.

For disjoint X,Y,Z CV, Z D-separates X from Y in a directed
acyclic graph if on each path between X and Y there is a structure
— V; — or «— V; — such that V; € Z, or a structure — V; «—
such that neither V; nor its descendants are in Z.

Theorem 5.1 If Z D-separates X from Y in the directed constraint
graph H then X 11, Y | Z for any p satisfying the constraints which
maximises entropy.

Proof: Since G' is triangulated, the ordering yielded by maximum
cardinality search is a perfect ordering (for each vertex, the set of
its adjacent predecessors is complete in the graph).!4 Because the
cliques are ordered according to highest labelled vertex where the
vertices have a perfect ordering, the clique order has the running
intersection property (for each clique, its intersection with the union
of its predecessors is contained in one of its predecessors).!® Now p
factorises according to the cliques of G, since it factorises according
to C1,...,Cp and these sets are complete in G7 and so are subsets
of its cliques. These three facts imply that p(v) = H§:1 p(f}|e}) for
each vQV', where f/ e} are the assignments to Fj, E; respectively
which are consistent with v.16

Take an arbitrary component p(fY|e}) of this factorisation. Each
member of E; is a parent (in H) of each member of F; and the
members of F; form a complete subgraph of H so we can write
F; = {Viy,..., Vi, } where the parents of V;, are Par;, =4 E; U
Vi, .-+, Vi;_, }. Hence,

k
= Hp(vfj\efvfl vy )
j=1

4[Neapolitan 1990] Theorem 3.2.
15[Neapolitan 1990] Theorem 3.1.
16[Neapolitan 1990] Theorem 7.4.
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| par

IIEw

where v and par are the assignments to V;;, Par;, respectively
that are con81stent With v. Furthermore, each variable V; occurs in
precisely one F7}, so

n

p(v) = [ [ p(vfIpary) ()

=1

for each v € V. When Equation 5 holds, p is said to factorise with
respect to H. It follows by a theorem due to Verma and Pearl that
if Z D-separates X from Y in H then X 1, Y | Z.17 ]

In general the directed constraint graph H is not as comprehen-
sive a representation of independencies as the undirected constraint
graph G. If G is not already triangulated then some probabilistic inde-
pendencies satisfied by entropy maximiser p in virtue of the structure
of the constraint sets will not be implied by the directed constraint
graph H. To see this note that if G # GT then there must be two
variables V; and V; which are not directly connected in G, and so
which are separated by some (possibly empty) Z in G, but which are
directly connected in G7 and thus in H, and which are therefore not
D-separated by Z in H. On the other hand if G = GT then we do
have an analogue of Theorem 4.2:

Theorem 5.2 Suppose G is triangulated. If, for all 1, ..., xm con-
straining C1,. .., Cp, respectively, X 1L, Y | Z where p is a function
satisfying x1,..., x,n that maximises entropy, then Z D-separates X
from Y in H.

Proof: To check whether Z D-separates X from Y in H it suffices to
check whether Z separates X from Y in the undirected moral graph
formed by restricting H to X,Y,Z and their ancestors, adding an
edge between any two parents in this graph that are not already di-
rectly connected, and replacing all arrows by undirected edges.'® But
all parents of vertices in ‘H are directly connected, so the moral graph
is a subgraph of G = G. By Theorem 4.2 if X 1, Y| Z for all such
p then Z separates X from Y in G. Hence Z separates X from Y in
any subgraph of G that contains X,Y and Z, and in particular in the
moral graph, as required. [ |

Given some set U C V containing V; and its parents according
to H, and u@QU, define parameter y' = p(v}*|pary), where v}, pary
are the assignments to V;, Par; respectively that are consistent with
u. Let y; be the vector of parameters y;' as u varies on V; and its

17See [Neapolitan 1990] Theorem 6.2.
8[Cowell et al. 1999] Corollary 5.11.
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Figure 3: Alternative directed constraint graph

™
Vs =@
(F——®

parents, and let y be the matrix with the y; as rows, ¢ =1,...,n. In
this notation Equation 5 corresponds to

w =Iw (6)
=1

for each v@V'.

(H,y) is called a Bayesian network. Thanks to the factorisation of
Equation 6, the task of finding z-parameters that maximise entropy
can be reduced to that of finding the corresponding y-parameters.
The number of free y-parameters required is determined by the cliques
Dy, ...,D;in H: there are Z’li:l(HijeDi [|V;])—1. Thus if clique-size
|D;| is bounded above by constant R and the number of values ||V}
bounded above by K, there are at most n(K —1) free y-parameters.
If G # G” then the Bayesian network representation of p will re-
quire more parameters than the Markov network representation of
84. However the Bayesian network representation is more convenient
for the following reasons.

First, there are no unknown multipliers in Equation 6. In con-
trast, in order to reconstruct the maximum entropy function from
its Markov network representation via Equation 4, the values of con-
stants p, A1, ..., Ay must be determined.

Second, the entropy equation can be reformulated in terms of the
y-parameters as follows:

H = —Zx”logm”
v@QV
n n
= =2 (1Iv |roe]Iw
0@V \j=1 i=1
n n
-3 (1) Ss
vaVv \j=1 i=1
n n

= =22 (1o | rosw

i=1vaV \j=1
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= =2 2 | I w)teewt

i=1 v@QAnc; \Vj€Anc;

where Anc; C V consists of V; and its ancestors in H (other terms
cancel in the last step by additivity). In our example, Figure 2 induces
an entropy equation of the form

H=-> yilogyt — > wiyslogys— > yiysyslogys
vQV4 'U@{Vl,VQ} U@{V1,V2,V3}
— ) ubwsusuilogyl — Y yiysysyd logyd
v@{V1,V5,V3,V4} v@{V1,V2,V3,V5}

Note that roughly speaking there are fewest components in the sum
of the entropy equation when the sets of ancestors Anc; are smallest,
and that when constructing H, judicious use of maximum cardinal-
ity search and orientation of arrows can lead to a directed constraint
graph with minimal ancestor sets. In our example, Figure 3 (where
the vertices are labelled according to the original ordering, not that
given by maximum cardinality search) is an alternative directed con-
straint graph, which leads to the following entropy equation:

H=-Y wlogys— > yiyslogyl — > ysyylogys
v@Vvs v@{V1,V2} v@{V5,Vs}

— > wsysuilogyi — > ysysuElogys
v@{V2,V5,V4} v@{Va,V3,V5}

This version of the entropy equation is more economical in the sense
that the largest ancestor sets are smaller than those induced by Fig-
ure 2.

Having rewritten the entropy equation in terms of a y-parameter-
isation one can then use numerical techniques or Lagrange multiplier
methods to find the values of the y-parameters that maximise H. If
using the latter approach, note that there is an additivity constraint
for each i = 1,...,n and each u@QPar;, of the form

> v =1,
vQ({V;}UPar;),v~u

and each such constraint will require its own multiplier p. Thus
for assignment v to V; and its parents, the partial derivative of the
Lagrange equation takes the form

for

oOH
i DS [T o) Dogyi+ fiei]

Vi:Vi€Ancy uQAncy,u~v \ V;E€Ancy,j#i
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where I,—; = 1 if kK = ¢ and 0 otherwise, and where as before \; = 0
for each inequality constraint y; which is not effective at yf.lg

The third advantage of the Bayesian network parameterisation is
this: the reparameterisation converts the general entropy maximisa-
tion problem into the special case problem of determining the param-
eters of a Bayesian network that maximise entropy; therefore we can
apply existing techniques that have been developed for the special
case to solve the general problem. Garside, Holmes, Markham and
Rhodes have developed a number of efficient algorithms which deter-
mine the parameters of a Bayesian network that maximise entropy.
Their approach uses Lagrange multiplier methods on the original ver-
sion of the entropy equation (Equation 2), subject to the restriction
that the constraints be linear functions of the z-parameters. They
have also developed specialised algorithms that deal with the cases in
which the directed graph in the Bayesian network is a tree or inverted
tree.?0 Schramm and Fronhéfer have investigated an alternative so-
lution to the same problem, using an efficient system for maximising
entropy that works by minimising cross entropy iteratively.?!

Fourth, a Bayesian network is a good representation of an agent’s
belief function, given the uses such a function is normally put to, be-
cause Bayesian networks can be amenable to efficient calculations and
updating.?? There is now a large literature and set of computational
tools for calculating marginals from a Bayesian network, and in par-
ticular conditional probabilities of the form p(v;|u), where v;QV; and

19T am grateful to an anonymous referee for posing the following conundrum.
Constraints that are linear with respect to the xz-parameters may well be non-linear
with respect to the y-parameters; can this introduce computational difficulties?
The answer is no, in at least two respects. First, if the constraints are linear in
the x-parameters then there is a unique function p satisfying the constraints that
maximises entropy, and thus unique values for the y-parameters which maximise
entropy — we do not need to worry about multiple global maxima. Second,
while such a constraint may be a non-linear function of several y-parameters, it
is linear when construed as a function of a single specific y-parameter, which is
advantageous when using Lagrange multiplier methods for optimisation. Suppose
for example we have the constraint xi1, p(viv2) — 1 = 0 which can be written

linearly in the z-parameters as >, - " —1 = 0 or non-linearly in the y-
~v1v2
parameters as y;'ys'"2 — 1 = 0. This constraint is linear when construed as a

function of y;* (respectively y5'"?) and thus dx1/0y;* = y5*“? does not involve

y;t. In general, when taking partial derivatives of the Lagrange equation with
respect to y;, terms involving y; itself are eliminable. This allows the associated
Lagrange multipliers to be determined from other partial derivatives using an
inductive process. See §14 of [Williamson 2002] for a detailed account of the use
of Lagrange multiplier methods to optimise y-parameters when constraints are
linear in the z-parameters.

20[Rhodes & Garside 1995], [Garside & Rhodes 1996], [Garside et al. 1998],
[Holmes & Rhodes 1998], [Rhodes & Garside 1998], [Holmes et al. 1999],
[Holmes 1999], [Markham & Rhodes 1999], [Garside et al. 2000].

2[Schramm & Fronhdfer 2002].

22Note that computational efficiency often depends on the structure of the di-
rected graphs in Bayesian networks — very highly connected graphs are often not
amenable to fast marginalisation or updating.
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Figure 4: Conditional independence constraint incorporated

Q
V) =@

u@QU C (V\{V;}).2> Many such algorithms also implement Bayesian
conditionalisation to update p on evidence u. Bayesian conditionali-
sation may be generalised to minimum cross entropy updating, which
has similar justifications to those of the maximum entropy principle.?*
A minimum cross entropy update of x is a parameter vector ' which
minimises

m/v
d(z,2") = Z 2’V log o
vQV
subject to any new constraints. By converting this to our y-param-
eterisation, it is not hard to see that the Bayesian network represen-
tation of p’ will be the same as the Bayesian network representation
of p on all variables except those in the new constraint sets and their
predecessors under an ancestral ordering. Numerical methods or La-
grange multiplier methods can then be used with respect to the y-
parameter formulation, in order to identify the new Bayesian network
representation.?®

6 Independence and Causal Constraints

Thus far we have been concerned only with the structure of the con-
straint sets, not with the nature of the constraints themselves. In
this section we shall see that certain types of constraints — namely
independence constraints and causal constraints — can be treated
especially easily, thanks to our Bayesian network representation of
the maximum entropy function.

Many conditional independence constraints can be dealt with al-
most trivially. Suppose that in our example constraint xs on con-
straint set {Va, V3, V4} says that V3 and Vj are probabilistically in-
dependent conditional on Va, V3 1L, Vi | V5. Given the Bayesian
network representation of Figure 3, this implies that for all assign-
ments u, v@Q{Va, V3, V4 } that agree on Vo and Vy, yif = yi. This will
hold just when p factorises according to Figure 4. Thus xs can be
satisfied just by manipulating H, and changing the parent sets in the

?3See for example Part 1 of [Jordan 1998] and Chapter 6 of [Cowell et al. 1999)].
24 Williams 1980].
#5See [Williamson 2002].
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y-parameterisation accordingly — the constraint can then be ignored
in the next step of the entropy maximisation process, namely that of
finding the values of the new y-parameters that maximise entropy.

Note that it may not always be possible to adjust H to incorporate
independence constraints. If, for example, yo constrains p to satisfy
Vg A, Vi | Vo and Vo 1L, Vi | V3, then there is no permutation
of arrows amongst Vs, V3, V4 which will imply both these constraints
and no others. The best one can do in this case is incorporate one of
the constraints into the graph, and retain the other constraint in the
optimisation of the corresponding y-parameters. Note also that if one
can only represent a constraint by reversing one or more arrows in H,
one must check that the new graph is valid in the sense that there is
a maximum cardinality search ordering of the vertices which would
yield arrow directions compatible with the new arrow directions.

Causal constraints also have special consequences for entropy max-
imisation, as we shall see in the remainder of this section.

Judea Pearl articulated two problems with entropy maximisation
in his pioneering book on Bayesian networks:

computational techniques for finding a maximum-entropy
[ME] distribution [Cheeseman 1983] are usually intract-
able, and the resulting distribution is often at odds with
our perception of causation.?%

The first problem — that of computational intractability — may be
ameliorated by the methods put forward in the previous sections of
this paper. The second problem is that it is counterintuitive that
adding an effect variable can lead to a change in the marginal distri-
bution over the original variables:

For example, if we first find an ME distribution for a set
of n variables X1,...,X,, and then add one of their con-
sequences, Y, we find that the ME distribution P(zq, ...,
Zn,y) constrained by the conditional probability P(y|z1,
..., Ty) changes the marginal distribution of the X vari-
ables ...and introduces new dependencies among them.
This is at variance with the common conception of causa-
tion, whereby hypothesizing the existence of unobserved
future events is presumed to leave unaltered our beliefs
about past and present events. This phenomenon was
communicated to me by Norm Dalkey and is discussed in
[Hunter 1989].27

This problem is exemplified in ‘Pearl’s puzzle’, which Daniel Hunter
describes as follows.

The puzzle is this: Suppose that you are told that three
individuals, Albert, Bill and Clyde, have been invited

26 [Pearl 1988] 463.
7 [Pearl 1988] 463-464.
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to a party. You know nothing about the propensity of
any of these individuals to go to the party nor about any
possible correlations among their actions. Using the ob-
vious abbreviations, consider the eight-point space con-
sisting of the events ABC, ABC, ABC, etc. (conjunc-
tion of events is indicated by concatenation). With no
constraints whatsoever on this space, MAXENT yields
equal probabilities for the elements of this space. Thus
Prob(A) = Prob(B) = 0.5 and Prob(AB) = 0.25, so A
and B are independent. It is reasonable that A and B
turn out to be independent, since there is no informa-
tion that would cause one to revise one’s probability for
A upon learning what B does. However, suppose that
the following information is presented: Clyde will call the
host before the party to find out whether Al or Bill or
both have accepted the invitation, and his decision to go
to the party will be based on what he learns. Al and Bill,
however, will have no information about whether or not
Clyde will go to the party. Suppose, further, that we are
told the probability that Clyde will go conditional on each
combination of Al and Bill’s going or not going. ...

When MAXENT is given these constraints ... A and B
are no longer independent! But this seems wrong: the
information about Clyde should not make A’s and B’s
actions dependent.?®

To start with, when there are no constraints, the undirected con-
straint graph on A, B, C has no edges so by Theorem 4.1 the maxi-
mum entropy function yields all variables probabilistically indepen-
dent. However when a constraint involving A, B and C' is included,
the undirected constraint graph on A, B, C' has an edge between each
pair of variables. Thus by Theorem 4.2 there is some constraint
which renders A and B probabilistically dependent for the maxi-
mum entropy function. In fact, as Hunter points out, there is some
constraint taking the form of the probability distribution of C' con-
ditional on A and B which renders A and B dependent here. But
in the context of the above example this constraint seems to provide
no information that relates A and B: their dependence does indeed
seem counterintuitive here.

The difficulty is that while we have taken into account the prob-
ability distribution of C' conditional on A and B as a constraint on
maximising entropy, we have ignored the further fact that A and B
are causes of C'. The key question is: how does causal information
constrain the entropy maximisation process?

Hunter’s answer to this conundrum is that causal statements are
counterfactual conditionals and that the constraint in this example

28 [Hunter 1989] 91.
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should be thought of as a set of probabilities of counterfactual condi-
tionals rather than as a conditional probability distribution. Under
Hunter’s analysis of counterfactuals and probabilities of counterfac-
tuals, a reconstruction of the above example retains the probabilistic
independence of A and B when the constraint is added.

Hunter’s response is in my opinion unconvincing, for two reasons.
First, the counterfactual conception of causal relations adopted by
Hunter is problematic. As Hunter himself acknowledges, his possible-
worlds account of counterfactuals is rather simplistic.2? More impor-
tantly though, the connection between causal relations and counter-
factuals that Hunter adopts is implausible. Hunter says,

the suggestion is that the relations between Al’s and Bill’s
actions on the one hand and Clyde’s on the other are ex-
pressible as counterfactual conditionals, that there is a
certain probability that if Al and Bill were to go to the
party, then Clyde would not go, and so on. The informa-
tion to MAXENT should be probabilities of counterfac-
tuals rather than conditional probabilities.?°

This type of information is written in Hunter’s notation using state-
ments of the form Prob(ABO— C) = 0.1. But such a statement
expresses uncertainty about a counterfactual connection: the proba-
bility that Clyde would go were Al and Bill to go is 0.1. It does not
express what we require, namely certain knowledge about a chancy
causal connection, which would be better represented by ABO—
(Prob(C) = 0.1): if Al and Bill were to go then Clyde would go
with probability 0.1. In Pearl’s puzzle we are told the exact causal
relationships between A, B and C, and Hunter misrepresents these
as uncertain relationships. Moreover, correcting Hunter’s representa-
tion of the causal connections seems unlikely to resolve Pearl’s puz-
zle. In fact depending on how probability is interpreted one can even
argue that ABO— (Prob(C) = 0.1) if and only if Prob(C|AB) =
0.1. For instance, under the Bayesian interpretation of probability
Prob(C|AB) = 0.1 can be taken to mean that the agent in question
would award betting quotient 0.1 to C' were AB to occur; under the
propensity interpretation it can be taken to mean that AB events
have a (counterfactual) propensity to produce C' events with prob-
ability 0.1. If this equivalence holds then Pearl’s puzzle must still
obtain, despite the counterfactual analysis.3!

The second difficulty with Hunter’s analysis is that while it re-
solves Pearl’s puzzle, it fails to resolve a minor modification of Pearl’s
puzzle. In the original puzzle we are provided with the probability

29Hunter 1989] 95.

39[Hunter 1989] 95.

31The relationship between causality and counterfactuals is in fact much more
subtle than indicated here — see [Lewis 1973] — and many believe that there
is no close relationship on account of these difficulties — see chapters 12-14 of
[Sosa & Tooley 1993].
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Figure 5: Smoking, lung cancer and bronchitis.

®

distribution of C' conditional on A and B. Suppose instead we are
provided with the distribution of C' conditional on A, and the dis-
tribution of C' conditional on B. We then get a puzzle analogous
to that of the original problem: there are constraints with respect
to which the maximum entropy probability function renders A and
B unconditionally dependent. However Hunter’s counterfactual re-
construction fails to eliminate the dependence of A and B in this
modified puzzle.?? In defence Hunter argues that his counterfactual
analysis warrants the counterintuitive conclusion in the case of the
modified puzzle, because according to his analysis situations in which
A and B are positively correlated are more probable than situations
in which A and B are negatively correlated. However, in the light
of the above doubts about Hunter’s analysis I suggest that intuition
should prevail and that this new puzzle still needs resolving.

In fact I think that Pearl’s puzzle and its modification can be re-
solved without having to appeal to a counterfactual analysis of causal-
ity, any formulation of which is likely to be contentious. The resolu-
tion that I propose depends on making explicit the way in which qual-
itative causal relationships constrain entropy maximisation. Having
made this constraint explicit, we shall see that it leads to a general
framework for maximising entropy subject to causal knowledge. Fi-
nally, at the end of this section we shall see that the framework can
be applied to resolve both Pearl’s puzzle and its modification.

In [Williamson 2001] T suggested that causality satisfies a fun-
damental asymmetry, which can be elucidated with the help of the
following example. Suppose an agent is concerned with two variables
L and B signifying lung cancer and bronchitis respectively. Initially
she knows of no causal relationships between these variables, but
she may have other background knowledge which leads her to adopt
prior probability function p;. Then the agent learns that smoking S
causes each of lung cancer and bronchitis, which can be represented
by a directed graph, Figure 5.33 One can argue that learning of the
existence of common cause S should impact on her degrees of belief
concerning L and B, making them more dependent. The reasoning is

32[Hunter 1989] 101-104.
33This graph just represents causal relationships — it should not be interpreted
as a representation of probabilistic independencies.
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Figure 6: Smoking, lung cancer, bronchitis and chest pains.

©
(®)

as follows: if an individual has bronchitis, then this may be because
he is a smoker, and smoking may also have caused lung cancer, so the
agent should believe the individual has lung cancer given bronchitis
to a greater extent than before — the two variables become depen-
dent (or more dependent if dependent already). Thus py, the new
probability function determined with respect to her current knowl-
edge (which includes the causal knowledge) might be expected to
differ from p; over the original domain {L, B}.

Next the agent learns that both lung cancer and bronchitis cause
chest pains C, giving the causal graph of Figure 6. But in this case
one can not argue that L and B should be rendered more dependent.
If an individual has bronchitis then he may well have chest pains, but
this does not render lung cancer any more probable because there
is already a perfectly good explanation for any chest pains.?* One
cannot reason via a common effect in the same way that one can via
a common cause, since learning of the existence of a common effect
is irrelevant to an agent’s current degrees of belief. Thus the new
probability function ps ought to agree with py on the domain of po,
{S,L, B}.

This central asymmetry of causality can be explicated by what
I call the causal irrelevance condition. This says roughly that if an
agent has initial belief function pyy on domain U and then learns of
the existence of new variables which are not causes of any of the
variables in U, then the restriction to U of her new belief function
py on V D U should agree with pyy on U, written py |y = py. This
condition can be rendered precise as follows.

Suppose that entropy is to be maximised subject to the causal
knowledge represented by directed acyclic causal graph C on V, as
well as the quantitative constraints x = {x1,...,xm} that we have
considered in previous sections. Let p¢ , denote the probability func-
tion that an agent adopts given her knowledge, C and x. Given U C V
let Cyy be the graph on U induced by C (the vertices are variables in
U and the arrows correspond to those arrows in C between variables
in U). We shall say that C is irrelevant to U with respect to x if
PCx|U = PCyxU» 1-e. the information in C that is not in Cy has no

34This phenomenon is sometimes known as ‘explaining away’ — see
[Wellman & Henrion 1993].
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bearing on rational belief over U. A set of variables U C V is a an-
cestral with respect to C, or C-ancestral, if it is closed under parents
as determined by C: V; € U = Parlc C U. The causal irrelevance
principle then says:

Causal Irrelevance If U is C-ancestral and y = xy involves vari-
ables only in U then C is irrelevant to U with respect to x,

L.e. pexy U = Pey,xu -

My claim is that the causal irrelevance principle captures a key
way in which causal knowledge constrains rational belief. Thus it is
not enough to maximise entropy subject to quantitative constraints x:
one ought to take qualitative causal knowledge C into account too, by
ensuring that causal irrelevance is satisfied. We shall see shortly how
the causal irrelevance principle impinges on entropy maximisation.

First some further explanation of the causal irrelevance principle
itself. The requirement that U is ancestral with respect to C is just
the requirement that V\U must not contain any causes of variables
in U. In the trivial case in which U is a singleton, Cy contains no
causal information and we set pc, y, = Py, , Which may be found
by maximising entropy subject to xr7. In general the constraints in
x may involve all variables in V', not just those in U, in which case
we can set yy to be the subset of those constraints in x which only
involve variables in U, xy = {x; : C; C U,1 <i<m}, and apply
causal irrelevance to this restricted set of constraints. In this more
general case causal irrelevance will tell us that pc ., v = Py x> but
nothing about p¢ , or pc . The qualification that xy only involves
variables in U is important, because knowledge of the existence of an
effect together with probabilistic information about the effect itself
can provide reason to change the probability distribution over its
causes. If an agent with causal knowledge as in Figure 5 learns that
lung cancer and bronchitis cause chest pains (Figure 6), and she learns
that the individual in question does have chest pains, p(c) = 1, then
arguably her degree of belief that the individual has lung cancer ought
to be raised, and so too her degree of belief that he has bronchitis and
her degree of belief that he is a smoker. Thus learning of non-causes
and their probabilities can provide evidence to change current beliefs.

However, in some situations the probabilistic information about
the non-causes V\U does not warrant any change in current beliefs,
even when taken in conjunction with new causal knowledge: the new
information is irrelevant to beliefs on the current domain U. More
precisely we shall say x is irrelevant to U with respect to C if pc | =
Pexy - For example the constraint p(c[l A b) = 0.9 is intuitively
irrelevant to U = {5, L, B} with respect to C of Figure 6: learning of
probabilities of effects conditional on their causes intuitively should
not change degrees of belief over the causes. This intuition generalises
as follows:
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Probabilistic Irrelevance Suppose y contains constraints xy on U
together with constraints of the form p(s|t) = w where sQS C
VAU, tQT C V, w € [0,1]. If x is compatible with pc 1
in the sense that there is some function p satisfying y that
extends pc |7, and U is C-ancestral, then  is irrelevant to U
with respect to C, i.e. pc yjuv = pc,yy|U-

The compatibility qualification is just a kind of consistency condition:
clearly x can not be irrelevant to U if x rules out the degrees of belief
expressed by pc ., LU-35 The qualification that U should be ancestral
with respect to C is also required: suppose C is the graph of Figure 5,
U ={L,B},xv =0 but x = {p(s|l) = 0.99}; an agent may plausibly
render L and B more probabilistically dependent under C and x than
under C and yy.

If x is irrelevant to C-ancestral U with respect to C then causal
irrelevance tells us that

Pex\U = PCoxu U = PCu,xu (7)

Thus C and x are jointly irrelevant to U.

In our example, the agent’s belief function with respect to Figure 6
and x = {p(c|l Ab) = 0.9} U xu should, when restricted to U =
{S, L, B}, be the same as her original belief function with respect to
Figure 5 and original constraints xy .

Thus we see that causal irrelevance has practical consequences
for rational belief (via Equation 7) just when accompanied by irrele-
vance of x with respect to C. This motivates the following recipe for
determining exactly how causal knowledge fixes rational belief:

Transfer Suppose x is irrelevant to Uy,..., U, with respect to C,
where Uy,...,Uy are C-ancestral. Then p¢, = p,/ ., the prob-
ability function p satisfying constraints in ¥’ and y which max-
imises entropy, where x' = {p|y, = Pey, xu, 10 =1,... k}.

The transfer principle allows us to transfer qualitative causal con-
straints represented by C into quantitative constraints y’. We can
determine pc,; .. recursively, and thereby find p by maximising en-
tropy. Notinglthalt the constraint set for constraint p|, = pey, vy 18
just U;, we can apply the techniques of §5 to determine a solution.

Let us recap. I have argued that the causal irrelevance condition
is a fundamental link between causality and rational belief. However
this condition is only useful when accompanied by irrelevance of
with respect to C — in which case the transfer principle becomes
applicable. Thus the causal irrelevance principle motivates the trans-
fer principle, which in turn offers a practical way to determine the
agent’s belief function p.

Note that the constraint sets U; could well be large subsets of
V' — one would naturally think that this creates a problem for our

35See §11 of [Williamson 2002] for more on compatibility.
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analysis of §5, which depends on small constraint sets for viability.
In fact a bit of further analysis shows that the opposite is the case.
Suppose the variables in V' are ordered ancestrally with respect to C
(i.e. for each parent Vj of each V;, j < i). Then the Bayesian network
representation of pc , is particularly neat when x is irrelevant to each
of Uy = {V1,...,V;}, for i = 1,...,n, as we see from the following
results.

Theorem 6.1
e Order V ancestrally. Let U; = {V4,...,V;} fori=1,... n.

e Construct directed acyclic constraint graph H on V' by includ-
ing an arrow to a variable V; from each predecessor V; that
occurs in some constraint set containing V; but none of its suc-
cessors: V; — V; iff j < i and V;,V; € C), C U; for some
k,1<k<m.

If x is irrelevant to U; with respect to C for each i =1,...,n, then

» Z D-separates X from Y in H = X 11, Y|Z for p = pc .

Proof: By Corollary 3 of [Pearl 1988] it is enough to show that
V; 1, Uiy | Parlt for each i =1,...,n.

Clearly V; 1L, Ui-1 | Parlﬁ iff V; Ape 1o, Ui—1 | ParlH. Since
U, is ancestral and Y is irrelevant to U;, we have as in Equation 7 that
pex\U; = Py, xu, SO We need to show that V; J'LPCU.,XU. Ui—1 | ParZ".
But this holds as follows. By the transfer principle, lpCUZ,XUi = Px';xu, -

Par!t is the set of variables in U; that occur in the same constraints

in xy, as V;. Now V; does not occur in any of the constraint sets

of X/, and so ParZH is the set of variables in U; that occur in the

same constraints in xy, and x’ as V;. Then applying Theorem 4.1,

Vi J_pr, N U,_1 ‘ PCZTZ_[. |
XU,

Note in particular that this directed constraint graph H corre-
sponding to pc  is no larger (in the sense that it has no more arrows)
than the directed constraint graph corresponding to p, that would
be determined by the techniques of §5.

Thus under the conditions of Theorem 6.1 (H, y) forms a Bayesian
network representation of pc ., where the y parameters are defined
by y¥ = p(v¥|pary) as in §5. We saw in §5 that in the absence of
causal knowledge the y parameters are the parameters that maximise
H =3%"", H; where

Hi=— % | II v ]logy

v@Anc; \V;€Anc;

However when we have causal knowledge the situation is simpler yet:
we can determine the y; parameters by maximising Hi, then the yo
parameters by maximising Hy subject to the y; parameters having
been fixed in the previous step, and so on:
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Theorem 6.2 Suppose as in Theorem 6.1 that the V; are ancestrally
ordered, y is irrelevant to each U; = {V1,...,V;} with respect to C,
and H contains just arrows to V; from predecessors that occur in the
same constraint set in xy,. Then pc , is represented by the Bayesian
network (H,y) where for i = 1,...,n the y; maximise H; subject to
the constraints in x,.

Proof: We shall use induction on i. For the base case ¢ = 1, we
proceed as in Equation 7: yi' = pey (v}) = pey, xu, (V1) = Py, (V1)
since the causal knowledge is trivial in this case. This is found by
maximising entropy H on domain U; subject only to xg,, which
is just maximising H; subject to xy,. Assume the inductive hy-
pothesis for case 7 — 1 and consider case i. Here we have that
yit = pex(vilpary) = pey, xo, (vf'lpary). We find the yi' by max-
imising H on domain Uj;, le. 22:1 Hj, subject to xy,. Now the
y;-‘, j=1,...,i—1, are fixed by the inductive hypothesis, and hence
so are the Hj;,j = 1,...,7 — 1. This it suffices to maximise H; with
respect to parameters y; and subject to xy;. [ |

Thus when there is causal knowledge and the quantitative knowl-
edge is irrelevant to each U; = {V1,...,V;}, the general entropy max-
imisation task, which requires simultaneously finding the y parame-
ters that maximise H, reduces to the simpler task of sequentially find-
ing the y; parameters that maximise H;, as ¢ runs through 1,...,n.
Clearly this can offer enormous efficiency savings, both for numer-
ical optimisation techniques and Lagrange multiplier methods. In
the Lagrange multiplier case partial derivatives are simpler and each
partial derivative involves only one free parameter — in fact it is
straightforward to derive an analogue of Equation 4:

w_y 220
yi=ex ] em ™,
C;CU;

where the constant ™= 3", 6 ane; uv ijeAmi’#i y; is fixed by hav-
ing determined y7 for j < i earlier in the sequential maximisation.

There is an important special case. Suppose that each variable
V; occurs only with its direct causes Parz-c in the constraint sets. If x
is irrelevant to each U; = {V41,...,V;} then the independence graph
H is just C, the causal graph, and (C,y) offers a Bayesian network
representation of pc7x.36

Suppose for example that all constraints take the form of probabil-
ities of a variable conditional on assignments to their parents. Then
compatibility and hence the probabilistic irrelevance of these con-
straints is guaranteed. If each probability of the form y}* = p(v}*|par}')

36This analysis can be used to provide an account of when we can expect the
causal Markov condition to hold. The causal Markov condition says that the
independencies implied by a causal graph under D-separation must hold in virtue
of the graph being constructed causally. See [Pearl 2000], [Williamson 2001] and
[Williamson 2002b] for more on this condition.
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is given as a constraint then the probability function (C,y) is fully
determined by the causal graph and the constraints and no work is
required to maximise entropy.?” If some of these parameters are given
then sequential maximisation can be used to determine the others.?®

Another example occurs when background knowledge takes the
form of a structural equation model.?? Such a model can be thought
of as a causal graph C together with, for each variable V;, an equa-
tion v; = fi(par;,e;) determining the assignment v;@QV; as a func-
tion of assignments par; to its direct causes Par; and an assignment
e; to error variable E; that is not itself a variable in V. Thus for
each equation the constraint set consists of V; and its direct causes.
Moreover, these equations are interpreted causally: wv; is fixed by
the values of its direct causes; effects do not fix the values of their
causes. Under this interpretation constraint equations are irrelevant
to C-ancestral sets of variables, since each equation provides infor-
mation about the effect variable and not its direct causes. Hence
the constraint graph H, determined via Theorem 6.1, is just the
causal graph C and by determining y-parameters via Theorem 6.2
we generate a Bayesian network (C,y) representation of pc ,, where
x = {vi = filpar;,e;) : i = 1,...,n}.4% The y-parameters may
be found as follows. Form an extended domain V' which includes
the error variables. Then maximise entropy subject to deterministic
constraints y amongst the variables in V’. The Bayesian network rep-
resentation is trivial to determine: in the independence graph H, the
parents of V; include the error variable F; as well as the direct causes
of C, and each parameter p(v;|par;e;) is 1 or 0 according to whether
fi(par;,e;) is v; or not. Then the y-parameters of the original network
V can be determined from this extended network over V'’ via the iden-
tity p(vilpar;) = 3., p(vilpar;ei)p(eilpar;) = > .. p(vilpar;e;)p(e;)
[since e; 1L Par; in the extended network] = > . I, (par, e;)=v;P(€i)
[where the indicator Iy, (per,e;)—y, 18 1 or 0 according to whether
fi(par;, ei) = v; or not] = >°_ It (par,e)=v; 1/||Eil| [maximising en-
tropy gives p(e;) = 1/||E;|| since no constraints convey any informa-
tion about E;], and this is just the proportion of assignments e; to
E; for which f;(par;,e;) = v;.

The situation in Pearl’s puzzle resembles the former example. In
Pearl’s puzzle we are given the causal information A — C, B — C,
and the conditional probability distribution of C' conditional on A and
B. By probabilistic irrelevance this conditional probability distribu-
tion is irrelevant to {4, B} with respect to the causal information.
By causal irrelevance the causal knowledge that C' is common effect

3"Thus the approach here generalises that of [Williamson 2001].

38This is essentially the context in which [Lukasiewicz 2000] advocated sequen-
tial entropy maximisation. The framework here clearly provides a justification for
his approach.

39[Pearl 2000] §1.4.1.

40This provides a justification of the causal Markov condition for structural
equation models. The standard justification in this context appeals to a further
assumption that error terms are independent — see [Pearl 2000] Theorem 1.4.1.
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of A and B is irrelevant to {4, B} (with respect to x{a,53 = 0).
Our analysis now tells us that the agent’s probability function over
{4, B, C} is represented by a Bayesian network (C,y), where C is the
graph capturing the causal information and the y-parameters consist
of the given conditional distribution together with p(a) = 1/2 and
p(b) = 1/2 found by sequential entropy maximisation. In particular
this probability function agrees with that formed on domain {A, B}
under no constraints. Thus we do not have any puzzling counterin-
tuitive change in degrees of belief.

Moreover, the same reasoning goes through in the modification
of Pearl’s puzzle. Here we are given the same causal knowledge but
the distribution of C conditional on A and that of C conditional
on B, not that of C' conditional on A and B. We now have to use
sequential maximisation to provide the distribution of C' conditional
on A and B as parameters for a Bayesian network representation, but
probabilistic and causal irrelevance still rid us of any counterintuitive
dependency between A and B.

7 Maximum Entropy and Probabilistic Logic

The approach developed above has an interesting application to the
foundations of probabilistic logic, as we shall now see.

A finite propositional language £ may be thought of as a domain
V of n variables V1,...,V,, each of which is two-valued with possible
assignments v; and —w;, for ¢ = 1,...,n. The sentences SL of L are
constructed in the usual manner from these assignments, by applying
the connectives A, V,—, <. The probabilistic sentences PSL are of
the form p(0) = r, where § € SL and r € [0, 1].

The goal of a probabilistic logic is to decide whether and how a
probabilistic sentence follows from a set of probabilistic sentences.
One attempt at a semantics is to say p(61) = 71,...,p(Om) = m =
p(¢) = s iff p(¢) = s follows by deductive logic from the axioms of
probability and the premises p(61) = 71, ...,0(0m) = 7. This yields
rather a weak logic though, in the sense that the premises need not
imply p(¢) = s for any value of s, via the axioms of probability. The
premises often underdetermine the probability of ¢.

More interesting, then, is a probabilistic logic with the seman-
tics: p(6h) = r1,...,p(Om) = ™m E p(¢) = s iff p(¢p) = s for a
function p, from all those that satisfy the constraints imposed by
the premises, that maximises entropy.*! The constraints imposed
by the premises are linear with respect to the z-parameterisation,*?
and so if 01, ...,0,,, ¢ are consistent there is a unique maximum en-
tropy p satisfying the constraints, and thus a unique value s for which

“!Nilsson 1986] appears to have been the first to advocate this solution to the
problem of probability underdetermination in the context of probabilistic logic.
He acknowledges in §5 that his own computational methods become impractical
in large problems.

“2[Paris 1994] pp. 13-14.
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p<91) =T1,... ;p(em) =Tm ): p<¢) =S.
To complete the logic we require a proof theory such that

p(1) =7r1,....p(Om) = rm F p(¢) =5

if and only if

p(@l) =Tl 7p(9m) =Tm ):p(¢) = S.

We can apply the methods developed in preceding sections to develop
such a proof theory. These methods give a practical procedure for
finding the value of p(¢) for maximum entropy p, given the constraints
p(6h) =711,...,p(0m) = mm. We can then compare this value with s
in order to decide the probabilistic consequence.

In this case the constraint sets C; are the variables whose as-
signments occur in 6;, for ¢ = 1,...,m. We construct a Bayesian
network that represents the maximum entropy probability function
p using the procedure outlined in §5. Let V, be the variables whose
assignments occur in ¢. Note that p(¢) = Zv@v¢7v':¢p(v). Thus by
querying the Bayesian network to find these p(v) one can determine
the correct value for s. If few variables occur in each 6; in compari-
son with n as n becomes large then the constraint sets will be small
relative to n, the induced Bayesian network correspondingly sparse,
and the querying for p(v) correspondingly quick.

We have, then, a fully general proof procedure for probabilistic
logic which promises to be practical for a range of problems.*? While
our techniques for maximising entropy efficiently were developed for
simple domains of finitely-many finitely-valued variables, they can be
applied to quite complex problems, such as reasoning under uncer-
tainty about sentences of logical languages.

8 Concluding Remarks

Merely given the sets of variables that feature in constraints imposed
by background knowledge one can achieve significant reductions in
the number of parameters required to specify a maximum entropy
probability function. I have described two representations of the
maximum entropy function — a Markov network and a Bayesian
network representation. A Markov network offers a natural represen-
tation of the independencies determined by the constraint sets, while
a Bayesian network captures many if not all of these independen-
cies and moreover offers a useful factorisation in terms of conditional
probabilities of variables given their parents.

The approach presented here is perhaps best viewed as an exten-
sion or enhancement of, rather than an alternative to, several of the

“3For an in-depth discussion of the foundations of probabilistic logic see
[Williamson 2002c]. [Lukasiewicz & Kern-Isberner 1999] discusses maximum en-
tropy applied to probabilistic logic programming.
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other proposed solutions to the entropy maximisation problem. First,
as noted earlier, simple numerical or Lagrange multiplier techniques
can be very inefficient when directly applied to entropy maximisa-
tion in its standard parameterisation. However, by applying these
methods to the Bayesian network parameterisation, dramatic effi-
ciency savings can be made.** Second, the approach presented here
can be viewed as an extension of the entropy maximisation tech-
niques of Garside, Holmes, Markham and Rhodes, and of Schramm
and Fronhofer, from Bayesian networks to the general case. Third,
Cheeseman presented a method for exploiting the log-linear factorisa-
tion of the maximum entropy function to compute conditional prob-
abilities more efficiently,*® and the present approach takes this a step
further by enabling all the machinery developed for calculating con-
ditional probabilities from Bayesian networks to be directly applied
to the maximum entropy function.*6

I have argued that the reparameterisations are most useful when
the constraint sets are small in comparison with n, as n grows. I
suggested that small constraints sets are the norm, but I have made
no attempt to analyse their ubiquity here. This is an empirical claim
and some form of empirical testing of this claim, as well as an empir-
ical analysis of the practical performance of the reparameterisation
approach, would clearly be of interest as the next step in develop-
ing this research. It remains to be seen whether small constraint
sets are predominant in applications of probabilistic logic, and in
other specialised applications of maximum entropy reasoning such as
communication theory?” and statistical physics.*® Note that natural
language processing has recently become an important application
domain for maximum entropy techniques.*® In natural language pro-
cessing one often considers constraints imposed by context on the
meaning of terms.’ The number of context variables that can be

40f course in certain situations the problem may be simple enough not to
warrant reparameterisation. If there are a small number of linear constraints, for
example, then Lagrange multiplier methods can be used quite efficiently by con-
verting to unconstrained dual form and optimising with respect to the multipliers
as parameters.

45[Cheeseman 1983].

“Note that while Goldman and Rivest also build on Cheeseman’s ap-
proach and also construct graphs as part of the entropy maximisation process
([Goldman & Rivest 1986], [Goldman & Rivest 1988]), their resulting proposal is
quite different from the one presented here: they restrict attention to the case
in which constraints are marginal probabilities; they construct a hypergraph (a
graph involving sets of variables as vertices) and suggest the collecting of new data,
and thus new constraints, in order to make the hypergraph acyclic; when this is
achieved, the maximum entropy function can be calculated from the marginal
constraints.

47[Gray 1990].

“®http://bayes.wustl.edu/

“9Berger et al. 1996], [Ratnaparkhi 1998], [Ratnaparkhi 1999],
[Borthwick 1999], [Nigam et al. 1999], [Wu & Khudanpur 2000], [Charniak 2000],
[Varea et al. 2001], [Mullen et al. 2001], [Osborne 2002].

50Here the context of a term is taken to include its surrounding terms and
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considered in these constraints is not fixed in advance but is dictated
by available computational power. By pursuing a Bayesian network
parameterisation, one may therefore be able to increase the size of
the contexts that can be used to ascertain meaning.

It would also be interesting to look more closely at implemen-
tational issues. We have seen, for instance, that different maximal
cardinality search orderings will yield different directed constraint
graphs from the same undirected constraint graph, some of which
lead to an entropy equation with fewer terms: is there a way of
quickly identifying an optimal directed constraint graph? A variety
of numerical techniques are used for maximising entropy with re-
spect to the standard parameterisation:®' how do they compare on
the Bayesian network parameterisation? How do Lagrange multiplier
methods fare on the Bayesian network parameterisation?

While several questions remain open, I hope to have shown here
that the construction of a Bayesian network from constraints offers
the prospect of efficient entropy maximisation.
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