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Summary. This paper proposes a common framework for various probabilistic logics.
It consists of a set of uncertain premises with probabilities attached to them. This raises
the question of the strength of a conclusion, but without imposing a particular seman-
tics, no general solution is possible. The paper discusses several possible semantics by
looking at it from the perspective of probabilistic argumentation.

1 Introduction

If the premises of a valid logical inference are not entirely certain, how cer-
tain is its conclusion? To find an answer to this is an important question, it is
necessary to overcome the restrictions and limits of the classical fields of log-
ical and probabilistic inference. This simple observations is not entirely new
[3, 4, 6, 9, 22, 30, 26], but attempts of building such unifying probabilistic logics
(or logics of probability) are rather sparse, especially in comparison with the long
traditions of logic and probability theory as independent disciplines both in phi-
losophy and in science.1 Nevertheless, probabilistic logic is nowadays a rapidly
developing interdisciplinary research topic with contributions from philosophical
logic [1, 8, 17, 19, 31] and Artificial Intelligence [7, 10, 18, 25, 24, 27], but also
from mathematics, linguistics, statistics, and decision theory [2, 20]. While it is
clear that logic and probability theory are intimately related, the exact shape of
this relationship is still the subject of an ongoing debate.

In principle, there are at least two different ways of constructing a combined
theory of logical and probabilistic inference, depending on whether logic or
1 For more information about the historical account of probabilistic logics, we refer

to the excellent survey in [17].
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probability theory is at its center. The majority of approaches in the litera-
ture is logic-centered, either by defining a probability function on the sentences
of the logic [9, 30, 25] or by incorporating probabilities into the syntax of the
logic [7, 24]. In the theory of probabilistic argumentation [11, 15, 21], where the
available knowledge is partly encoded as a set of logical premises and partly as
a fully specified probability space, the starting point is neither biased towards
logic, nor is it biased towards probability. This setting gets particularly interest-
ing when some of the logical premises include variables that are not contained
in the probability space. The two classical questions of the probability and the
logical deducibility of a hypothesis can then be replaced by the more general
question of the probability of a hypothesis being logically deducible from the
premises.

In Section 2, we first propose a neutral common framework for a variety of
different probabilistic logics. The framework as such has no particular seman-
tics, but we will shortly discuss what most people would probably consider its
“standard semantics”. In Section 3, we first give a short summary of the theory
of probabilistic argumentation, which then allows us to discuss various seman-
tics for the common framework. Hence, the goal of this paper is to establish a
link between probabilistic argumentation and other probabilistic logics via the
common framework.

2 Probabilistic Logics

The principal goal of any probabilistic logic (sometimes called probability logic
[1, 16, 31], or progic for short) is to combine the capacity of probability theory
to handle uncertainty with the capacity of deductive logic to cope with qualita-
tive and structural knowledge such as logical relationships. As most probabilistic
logics are constructed on top of an existing logic (propositional logic in the sim-
plest case), probabilities are usually treated as an addendum rather than as an
integral part of the theory. In this section, we propose such a simple addendum,
in which probabilities (or sets of probabilities) are attached to premises to rep-
resent their respective uncertainties. This then raises the question of the extent
to which a possible conclusion follows from the uncertain premises. Given the
simplicity and generality of the proposed extension, which allows it to be taken
as a common unifying umbrella for many existing probabilistic logics, we will
refer to as the progic framework.

2.1 The Progic Framework

In a classical logic, the fundamental question of interest is whether a conclusion
ψ is logically entailed by a given set of premises Φ = {ϕ1, . . . , ϕn}. Logical
inference is thus essentially a problem of verifying the entailment relation |=
between Φ and ψ. The entailment relation itself is usually defined in terms of
a subset relation ⊆ of corresponding sets of truth assignments (models) in the
respective logic.
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To augment the fundamental question of classical logic towards probabilistic
logic, we will now consider a set of premises with probabilities attached to them.
In the simplest case, this means that each premise ϕi has an attached probability
xi ∈ [0, 1], but to be as general as possible, we may also allow the case where a
set of probabilities Xi ⊆ [0, 1] is attached to each premise ϕi. In this augmented
setting, which includes the special case of sharp probabilities by Xi = {xi}, the
traditional question of classical logic turns into a more general question of the form

ϕX1
1 , . . . , ϕXn

n |= ψY , (1)

where the set Y ⊆ [0, 1] is intended to represent the extent to which the conclu-
sion ψ follows from the premises.2 This is a very general question, which covers
a multitude of frameworks of existing probabilistic logics. We will thus refer to
is as the general progic framework (or progic framework for short). Note that
the problem is the determination of the set Y itself, not the verification of the
entailment relation for a given Y . Needless to say that the determination of Y
is heavily dependent on the semantics imposed by the chosen framework. In the
next subsection, we will discuss one of the most straightforward semantics for
the progic framework.

2.2 The Standard Semantics

In the so-called standard semantics of the progic framework, we consider each
attached probability set Xi as a constraint for the probability P (ϕi) in a cor-
responding probability space. For the sake of simplicity, we will restrict the
premises to be propositional sentences. Formally, we write V = {Y1, . . . , Yr} to
denote the set of involved Boolean variables Yi, each with a set Ωi = {0, 1}
of possible values. In the corresponding propositional language LV , we use
propositional symbols yi as placeholders for Yi = 1. The Cartesian product
ΩV = Ω1 × · · · × Ωr = {0, 1}r then contains the set of all possible truth assign-
ments of the propositional language, each of which representing a possible (state
of the) world. For a given propositional sentence ϕ ∈ LV , we write �ϕ� ⊆ ΩV

to denote the set of truth assignments for which ϕ evaluates to 1 (according to
the usual semantics of propositional logic), and we say that ϕ entails ψ, or that
ϕ |= ψ holds, iff �ϕ� ⊆ �ψ�.

To make a connection to probability theory, let ΩV play the role of a finite
sample space. The finiteness of ΩV allows us to work with the σ-algebra 2ΩV

of all subsets of ΩV , i.e. we obtain a probability space (ΩV , 2ΩV , P ) for any
measure P : 2ΩV → [0, 1] that satisfies the Kolmogorov’s probability axioms.
With P we denote the set of all such probability measures for a given set of
variable V . Note that we adopt the usual notational convention of writing P (ϕ)
rather than P (�ϕ�) for the probability of the event �ϕ�.

According to the above-mentioned general idea of the standard semantics, we
consider each set Xi as a constraint P (ϕi) ∈ Xi for the unknown probability

2 For Xi = {1}, this general setting degenerates into the classical problem of logical
inference.
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measure P . Formally, let Pi = {P ∈ P : P (ϕi) ∈ Xi} denote the set of all prob-
ability measures satisfying the constraint for the i-th premise. The intersection
of all these sets, P∗ = P1 ∩ · · · ∩ Pn, defines then the set of probability measures
satisfying all constraints. From this, we obtain with Y = {P (ψ) : P ∈ P∗} a
simple solution for the generalized inference problem of the progic framework.
Note that inference according to the standard semantics can be seen as a gen-
eralization of classical logical inference, which is concerned with a continuum of
truth assignments in form of all possible probability measures.

An important special case of the above setting arises when the attached prob-
ability sets Xi are all functionally unrelated intervals, i.e. Xi = [�i, ui]. This
means that all sets Pi are convex, which implies that P∗ is also convex and
that Y is again an interval with a lower and an upper bound.3 The lower and
upper bounds of Y are usually denoted by P (ψ) = min{P (ψ) : P ∈ P∗} and
P (ψ) = max{P (ψ) : P ∈ P∗}, respectively. Note that the convexity of P∗ guar-
antees that P and P are among the extremal points of P∗. Interestingly, we
may obtain an interval for Y even if all sets Xi are singletons. From a compu-
tational point of view, we can translate the problem of finding Y according to
the standard semantics into a (very large) linear optimization problem, e.g. with
three constraints P (ϕi) ≥ �i, P (ϕi) ≤ ui, and P (ϕi) =

∑
ω∈�ϕi�

P ({ω}) for all
premises [1, 25].

Example 1. To illustrate the standard semantics, consider two premises (a ∧
b)[0,0.25] and (a ∨ ¬b){1}. For the specification of a probability measure with
respect to the corresponding 2-dimensional sample space {0, 1}2 at least three
parameters are needed (the size of the sample space minus 1). This means that
the set of all possible probability measures P can be nicely depicted by a tetra-
hedron (3-simplex) with maximal probabilities for the state descriptions a ∧ b,
a ∧ ¬b, ¬a ∧ b, and ¬a ∧ ¬b at each of its four extremities. This tetrahedron is
depicted in Fig. 1, together with the convex sets P1, P2, and P∗. The picture also
shows that Y = [0, 1] is the result for the conclusion a, whereas Y = [0, 0.25] is
the result for the conclusion b.

3 Probabilistic Argumentation

The theory of probabilistic argumentation [11, 13, 15, 21] is first of all driven by
the general idea of putting forward the pros and cons of a hypothesis in question,
from which it derives its name. The weights of the resulting logical arguments
and counter-arguments are measured by probabilities, which are then turned
into (sub-additive) degrees of support and (super-additive) degrees of possibil-
ity. Intuitively, degrees of support measure the presence of evidence supporting
the hypothesis, whereas degrees of possibility measure the absence of evidence
refuting the hypothesis. For this, probabilistic argumentation is concerned with
probabilities of a particular type of event of the form “the hypothesis is a logical
consequence” rather than “the hypothesis is true”, i.e. very much like Ruspini’s
3 Convex set of probability measures are sometimes called credal sets [5, 23].
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P (a ∧ ¬b) = 1 P (¬a ∧ b) = 1

P (a ∧ b) = 1

0.25

P2

P (a) = 1
P (b) = 0.25

P (a) = 0.25
P (b) = 0.25

P∗

P (a) = 1
P (b) = 0

P (a) = 0
P (b) = 0

P1

Fig. 1. The set P of all possible probability measures for the sample space {0, 1}2,
depicted as a tetrahedron, together with the convex sets P1, P2, and P∗ of Example 1

epistemic probabilities [28, 29]. Apart from that, they are classical additive prob-
abilities in the sense of Kolmogorov’s axioms.

3.1 Degrees of Support and Possibility

Probabilistic argumentation requires the available evidence to be encoded by a
finite set Φ = {ϕ1, . . . , ϕn} ⊂ LV of sentences in a logical language LV (over a
set of discrete variables V ) and a fully specified probability measure P : 2ΘW →
[0, 1], where ΘW denotes the discrete sample space generated by a subset W ⊆ V
of so-called probabilistic variables. These are the theory’s basic ingredients. There
are no further assumptions regarding the specification of the probability measure
P (we may for example use a Bayesian network) or the language LV .

Definition 1. A probabilistic argumentation system is a quintuple

A = (V, LV , Φ, W, P ), (2)

where V , LV , Φ, W , and P are as defined above [13].

For a given probabilistic argumentation system A, let another logical sentence
ψ ∈ LV represent the hypothesis in question. For the formal definition of degrees
of support and possibility, consider the subset of ΘW , whose elements, if assumed
to be true, are each sufficient to make ψ a logical consequence of Φ. Formally,
this set of so-called arguments is denoted and defined by

ArgsA(ψ) = {ω ∈ ΩW : Φω |= ψ} = ΩW \ �Φ ∪ {¬ψ}�↓W , (3)

where Φω is obtained from Ω by instantiating all the variables from W according
to the partial truth assignment ω [13]. The elements of ArgsA(¬ψ) are sometimes
called counter-arguments of ψ, see Fig. 2 for an illustration. Note that the ele-
ments of ArgsA(⊥) are inconsistent with the available evidence Φ, which is why
they are sometimes called conflicts. The complement of the set of conflicts,
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ΩW

ΩV \W

ArgsA(ψ)

ArgsA(¬ψ)

�Φ�

�ψ�

ArgsA(¬ψ)

Fig. 2. The sets of arguments and counter-arguments of a hypothesis ψ obtained
from the given premises Φ. The sample space ΩW is a sub-space of the entire space
ΩV = ΩW × ΩV \W .

EA = ΩW \ ArgsA(⊥) = �Φ�↓W , (4)

can thus be interpreted as the available evidence in the sample space ΩW induced
by Φ. We will use EA in its typical role to condition P .

Definition 2. The degree of support of ψ, denoted by dspA(ψ), is the conditional
probability of the event Args(ψ) given the evidence EA,

dspA(ψ) = P (ArgsA(ψ)|EA) =
P (ArgsA(ψ)) − P (ArgsA(⊥))

1 − P (ArgsA(⊥))
. (5)

Definition 3. The degree of possibility of ψ, denoted by dpsA(ψ), is defined by

dpsA(ψ) = 1 − dspA(¬ψ). (6)

Note that these formal definitions imply dspA(ψ) ≤ dpsA(ψ) for all hypothe-
ses ψ ∈ LV and dspA(ψ) = dpsA(ψ) for W = V . An important property of
degree of support is its consistency with pure logical and pure probabilistic in-
ference. By looking at the extreme cases of W = ∅ and W = V , it turns out
that degrees of support naturally degenerate into logical entailment Φ |= ψ and
into ordinary posterior probabilities P (ψ|Φ), respectively. This underlines the
theory’s pretense of being a unified formal theory of logical and probabilistic
reasoning [11].

When it comes to quantitatively evaluate the truth of a hypothesis ψ, it is
possible to interpret degrees of support and possibility as respective lower and
upper bounds of an interval. The fact that such bounds are obtained without
effectively dealing with probability sets or probability intervals distinguishes the
theory from most other approaches to probabilistic logic.

3.2 Possible Semantics for the Progic Framework

Now let’s turn our attention to the question of interpreting an instance of
the progic framework in form of Equation (1) as a probabilistic argumentation
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system. For this, we will first generalize in various ways the idea of the standard
semantics as exposed in Subsection 2.2 to degrees of support and possibility (Se-
mantics 1 to 4). Then we will explore the perspective obtained by considering
each attached probability set as an indicator of the premise’s reliability (Seman-
tics 5–7). In all cases we will end up with lower and upper bounds for the target
interval Y in Equation (1).

Semantics 1: The Generalized Standard Semantics

As in the standard semantics, let each attached probability set Xi be interpreted
as a constraint for the possible probability measures, except that we will now
restrict the sample space to be a sub-space ΩW of ΩV for some fixed set W ⊆ V of
probabilistic variables. We use again P to denote the set of all possible probability
measures. Since each premise ϕi defines an event �ϕi�

↓W in ΩW , we can interpret
the set Xi as a constraint P (�ϕi�

↓W ) ∈ Xi. As before, we use Pi = {P ∈ P :
P (ϕ↓W

i ) ∈ Xi} to denote4 the set of all probability measures satisfying the
constraint for the i-th premise, and P∗ = P1 ∩ · · · ∩Pn for the combination of all
constraints. This leads then to a whole family A = {(V, LV , Φ, W, P ) : P ∈ P∗}
of probabilistic argumentation systems, each of which with its own degree of
support (and degree of possibility) function.

To use this interpretation to produce an answer to our main question regarding
the extent of the set Y for a conclusion ψ, there are different ways to go. By
considering all possible degrees of support, i.e. by defining Y1 = {dspA(ψ) :
A ∈ A}, the first option focuses on degrees of support. As a second option, we
may consider the counterpart of the first one with degrees of possibility in its
center, from which we get Y2 = {dpsA(ψ) : A ∈ A}. As a third alternative, we
may consider the minimal degree of support, dsp(ψ) = min{dspA(ψ) : A ∈ A},
and the maximal degree of possibility, dps(ψ) = max{dpsA(ψ) : A ∈ A}, and
use them as respective lower and upper bounds for the target interval Y3 =
[dsp(ψ), dps(ψ)]. Note that in the special case of W = V , all three options
coincide with the standard semantics as described in Subsection 2.2.

Semantics 2: The Standard Semantics Applied to Degrees of Support

A similar semantics arises, if we consider each set Xi to be a constraint for the de-
gree of support of ϕi. Again, we need to fix a set W ⊆ V of probabilistic variables
to get started. Consider then the set S = {dspA : A = (V, LV , Φ, W, P ), P ∈ P}
of all possible degree of support functions, the corresponding constraints Si =
{dspA ∈ S : dspA(ϕi) ∈ Xi} for each premise, and the combined constraint
S∗ = S1 ∩ · · · ∩ Sn. As before, we obtain a whole family A = {A : dspA ∈ S∗} of
probabilistic argumentation systems.

For the determination of the target set Y , we may now consider the same
three options as in the first semantics. The story is exactly the same, except
that it starts from a different set A. As before, W = V leads in all three cases
back to the standard semantics.
4 We prefer to use the simplified notation P (ϕ↓W

i ) as an abbreviation for P (�ϕi�
↓W ).
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Semantics 3: The Standard Semantics Applied to Degrees of
Possibility

By considering each sets Xi as a constraint for the degree of support of ϕi, we
obtain another possible semantics for the progic framework. Due to its perfect
symmetry to the previous semantics, we will not not discuss it explicitly. Note
that we may “simulate” this option by applying the second semantics to the
negated premises ¬ϕY1

1 , . . . , ¬ϕYn
n , where Yi = {1 − x : x ∈ Xi} denotes the

corresponding set of “negated” probabilities, and vice versa. This string rela-
tionships is a simple consequence of the relationship between degrees of support
and possibility.

Semantics 4: The Standard Semantics Applied Symmetrically

To obtain a more symmetrical semantics, in which degrees of support and degrees
of possibility are equally important, we consider the restricted case where each
set Xi = [�i, ui] is an interval. We may then interpret the lower bound �i as a
sharp constraint for the degree of support and the upper bound ui as a sharp
constraint for the degree of possibility of ϕi. For this, we need again a fixed
set W ⊆ V of probabilistic variables to get started. Note that we can use the
relationship dpsA(ψ) = 1 − dspA(¬ψ) to turn the two constraints dspA(ψi) = �i

and dpsA(ψi) = ui into two constraints for respective degrees of support or into
two constraints for respective degrees of possibility. To obtain a target interval
Y for a conclusion ψ, we may then proceed in the same way as in Semantics 2
and 3, the results however will be quite different for all possible options for Y .

Semantics 5: Unreliable Premises (Incompetent Sources)

A very simple, but quite different semantics exists when each premise has a
sharp probability Xi = {xi} attached to it. We can then think of xi to represent
the evidential uncertainty of the premise ϕi in the sense that ϕi belongs to Φ
with probability xi. Formally, we could express this idea by P (ϕi ∈ Φ) = xi and
thus interpret Φ as a fuzzy set whose membership function is determined by the
attached probabilities.

To make this setting compatible with a probabilistic argumentation system,
let us first redirect each attached probability xi to an auxiliary propositional
variable reli. The intuitive idea of this is to consider each premise ϕi as a piece of
evidence from a possibly unreliable source Si. The reliability of Si is thus modeled
by the proposition reli, and with P (reli) = xi we measure its degree of reliability.
The subsequent discussion will be restricted to the case of independent5 sources,
which allows us to multiply the marginal probabilities P (reli) to obtain a fully
specified probability measure P over all auxiliary variables.

5 This assumption may appear to be overly idealized, but there are many practical
situations in which this is approximately correct [12, 14]. Relaxing the independence
assumption would certainly allow us to cover a broader class of problems, but it
would also make the analysis more complicated.
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On the purely logical side, we should expect that any statement from a reliable
source is indeed true. This allows us to write reli → ϕi to connect the auxiliary
variable reli with ϕi. With

Φ+ = {rel1 → ϕ1, . . . , reln → ϕn}

we denote the set of all such material implications, from which we obtain a
probabilistic argumentation system A+ = (V ∪ W, LV ∪W , Φ+, W, P ) with W =
{rel1, . . . , reln} and P as defined above. This allows us then to compute the
degrees of support and possibility for the conclusion ψ and to use them as lower
and upper bounds for the target interval Y .

In the proposed setting, only the positive case of a reliable source is modeled,
but nothing is said about the behaviour of an unreliable source. For this, it is pos-
sible to distinguish between incompetent or dishonest (but competent) sources.
In the case of an incompetent source, from which no meaningful evidence should
be expected, we may model the negative behaviour by auxiliary implications of
the form ¬reli → �. Note that these implications are all irrelevant tautologies,
i.e. we get back to the same set Φ+ from above. In this semantics, the values
P (reli) = xi should therefore be interpreted as degrees of competence rather
than degrees of reliability.

Semantics 6: Unreliable Premises (Dishonest Sources)

As before, we suppose that all attached probabilities are sharp values xi, but
now we consider the possibility of the sources being malicious, i.e. competent but
not necessarily honest. In this case, the interpretation of P (reli) = xi becomes
the one of a degree of honesty of source Si. Dishonest sources are different from
incompetent sources in their attitude of deliberately stating the opposite of the
truth. From a logical point of view, ¬reli allows us thus to infer ¬ϕi, which we
may express by additional material implications ¬reli → ¬ϕi. This leads to an
extended set of premises,

Φ± = Φ+ ∪ {¬rel1 → ¬ϕ1, . . . , ¬reln → ¬ϕn} ≡ {rel1 ↔ ϕ1, . . . , reln ↔ ϕn},

and a different probabilistic argumentation system A±=(V ∪W, LV ∪W, Φ±,W, P ).
Note that the difference between the two interpretations may have a huge impact
on the resulting degrees of support and possibility of ψ, and therefore produce
quite different target sets Y .

Semantics 7: Unreliable Premises (Incompetent and Dishonest
Sources)

For the more general case, where each Xi = [�i, ui] is an interval, we will now
consider a refined model of the above-mentioned idea of splitting up reliability
into competence and honesty. Let Xi still refer to the reliability of the source,
but consider now two auxiliary variables compi (for competence) and honi (for
honesty). This allows us to distinguish three exclusive and exhaustive cases,
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namely compi ∧ honi (the source is reliable), compi ∧ ¬honi (the source is ma-
licious), and ¬compi (the source is incompetent). As before, we assume that ϕi

holds if Si is reliable, but also that ¬ϕi holds if Si is malicious. Statements from
incompetent sources will again be neglected. Logically, the general behaviour of
such a source can thus be modeled by two sentences compi ∧ honi → ϕ and
compi ∧ ¬honi → ¬ϕi, which can be merged into compi → (honi ↔ ϕi). This
leads to the set of premises

Φ∗ = {comp1 → (hon1 ↔ ϕ1), . . . , compn → (honn ↔ ϕn)}.

To turn this model into a probabilistic argumentation system, we need to link the
auxiliary variables W = {comp1, . . . , compn, hon1, . . . , honn} to corresponding
probabilities. For this, we assume independence between compi and honi, which
is often quite reasonable. If we assume the least restrictive interval [0, 1] to
represent a totally incompetent source, and similarly the most restrictive interval
[xi, xi] to represent a totally competent source, then ui − �i surely represents the
source’s degree of incompetence, from which we obtain

P (compi) = 1 − (ui − �i) = 1 − ui + �i

for the marginal probability of compi. Following a similar line of reasoning, we
first obtain P (compi ∧ honi) = �i for the combined event compi ∧ honi of a
reliable source, which then leads to

P (honi) =
�i

P (compi)
=

�i

1 − ui + li

for the marginal probability of honi. As before, we can use the independence as-
sumption to multiply these values to obtain a fully specified probability measure
P over all auxiliary variables. With A∗ = (V ∪ W, LV ∪W , Φ∗, W, P ) we denote
the resulting probabilistic argumentation system, from which we obtain degrees
of support and possibility for ψ, the bounds for the target interval Y . Note that
A+ and A± from the previous two semantics are special cases of A∗, namely
for ui = 1 (honi becomes irrelevant, and reli undertakes the role of compi)
and �i = ui (compi becomes irrelevant, and reli undertakes the role of honi),
respectively.

4 Conclusion

Attaching probabilities to logical sentences is one of the most intuitive and pop-
ular starting points for the construction of a probabilistic logic. With the pro-
posed progic framework, for which no particular semantics is imposed, the paper
presents a unifying umbrella which covers many existing probabilistic logics. This
is the first contribution of the paper.

The second contribution is the discussion of several possible semantics ob-
tained by looking at it as different instances of a probabilistic argumentation
system. This underlines the richness and diversity of the common framework.
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The discussion also contributes to a better understanding of the connection be-
tween the theory of probabilistic argumentation and other probabilistic logics.

This paper is an important partial result in the context of a more compre-
hensive project, in which other possible semantics and a common computational
machinery are currently under investigation.

Acknowledgement. This research is supported by the Swiss National Science
Foundation, Project No. PP002-102652/1, and The Leverhulme Trust.
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