JON WILLIAMSON

FOUNDATIONS FOR BAYESIAN NETWORKS

Bayesian networks are normally given one of two types of dations: they are
either treated purely formally as an abstract way of représg probability func-
tions, or they are interpreted, with some causal intergicetgiven to the graph in
a network and some standard interpretation of probabilitgrgto the probabili-
ties specified in the network. In this chapter | argue thatemirfoundations are
problematic, and put forward new foundations which invagpects of both the
interpreted and the formal approaches.

One standard approach is to interpret a Bayesian netwoelctivgly: the graph
in a Bayesian network represents causality in the world hedpecified probabil-
ities are objective, empirical probabilities. Such aniptetation founders when
the Bayesian network independence assumption (oftendcdie causal Markov
condition) fails to hold. 12 | catalogue the occasions when the independence as-
sumption fails, and show that such failures are pervasiext,Nn §3, | show that
even where the independence assumption does hold objgctineagent’s causal
knowledge is unlikely to satisfy the assumption with respecher subjective
probabilities, and that slight differences between an ggenbjective Bayesian
network and an objective Bayesian network can lead to laiffgrehces between
probability distributions determined by these networks.

To overcome these difficulties | put forward logical Bayediaundations ir§5.
| show that if the graph and probability specification in a Bsign network are
thought of as an agent’s background knowledge, then thet égemost rational
if she adopts the probability distribution determined by Bayesian network as
her belief function. Specifically, | argue that causal kredge constrains rational
belief via what | call the causal irrelevance condition, &stow that the distribu-
tion determined by the Bayesian network maximises entromnghe causal and
probabilistic knowledge in the Bayesian network.

Now even though the distribution determined by the Bayes&work may be
most rational from a logical point of view, it may not be clasgough to objec-
tive probability for practical purposes. | show §6 that by adding arrows to the
Bayesian network according to a conditional mutual infaioraarrow weight-
ing, one can decrease the cross entropy distance betwe@&ayesian network
distribution and the objective distribution. This can beneaithin the context
of constraints on the Bayesian network which limit its sipel ¢he time taken to
calculate probabilities from the network, in order to mirgmcomputational com-
plexity.

This leads to two-stage foundations for Bayesian netwdfKast adopt the
probability function determined by a Bayesian networkgthiccording to the log-
ical Bayesian interpretation, is the best subjective pbdita function one can
adopt given the knowledge encapsulated in the network)saandndly refine the
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Bayesian network to better fit objective probability (thi®gess of calibration is
required by empirical Bayesianisrh).

To start with | shall give an introduction to Bayesian netkgand their foun-
dations in§1, before proceeding to criticisms of the standard integpie@ns of
Bayesian networks if2 and§3. The remainder of the paper will be taken up with
my suggestions for new foundations.

1 BAYESIAN NETWORKS

Suppose we have a domain of variables,C4, ...,Cy, each of which takes
finitely many valuesyp}, ... ,viK",i = 1,...,N. A literal is an expressiom;
of the form(C; = v{ and astateis a conjunction of literals. Bayesian network
consists of a directed acyclic graphdag G over the node€’y, . . ., Cn together
with a set of specifying probability values = {p(c;|d;) : ¢; is a literal involv-
ing nodeC; andd; is a state of the parents 6f; in G, i = 1,...,N}.2 Now,
under an independence assumpfioramely that given its parenfs;, each node
C; is probabilistically independent of any sgtof other nodes not containing the

descendants daf;, p(c;|d; A s) = p(c;|d;), a Bayesian network suffices to deter-

mine a joint probability distributiop over the node§;, ..., Cn.* Furthermore,
any probability distribution orf , . .., C'xy can be represented by some Bayesian
network.

Bayesian networks are important in many areas where pridtabinference
must be performed efficiently, such as in expert systemsrfical intelligence.
Diagnosis constitutes a typical problem area for expettesys: here one is pre-
sented with a state of symptomand, under the probabilistic approach to diagno-
sis, one must fing(c;|s) for a range of causal literats.> Depending on the struc-
ture of the graph7, both the number of specifiers required to determine a proba-
bility distribution p and the computational time required to calculafe;|s) may
be substantially lower for a Bayesian network under thepedeence assumption
than for a representation pfwhich makes no assumptions. Thus Bayesian net-

1See the introduction to this volume for more on the distorctbetween logical and empirical
Bayesianism. Such forms of Bayesianism are often refemet tobjective’ Bayesian positions, and
confusion can arise because physical or empirical prabalfitequency, propensity or chance) is of-
ten called ‘objective’ probability in order to distinguishfrom Bayesian ‘subjective’ probability. In
this chapter | will draw the latter distinction, using ‘obf&ve’ to refer to empirical interpretations of
causality and probability that are to do with objects exdéta an agent, and using ‘subjective’ to refer
to interpretations of causality and probability that depen the perspective of an agent subject.

2If C; has no parentgi(c;|d;) is justp(c;).

3The Bayesian network independence assumption is ofteadcttie Markov or causal Markov
condition.

4The joint distributionp can be determined by thdirect method p(ci A ... A cy) =
Hf\’:l p(ci|d;) whered; is the state of the direct causes@f which is consistent witle; A ... A cy.
Alternatively p may be determined by potentially more efficigaiopagation algorithms See[Pearl
1989 or [Neapolitan 199Phere and for more on the formal properties of Bayesian nédsvor

5See[Williamson 2000 for more on the probabilistic approach to diagnosis.
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works can offer key pragmatic advantages over formalisritsoui an assumption
like independence.

There are two main types of philosophical foundations gizeBayesian net-
works. One can treat Bayesian networksabstract structuresand use machine
learning techniques to learn from a database of past caadfdainstance of the
symptoms and diagnoses of past patients) a Bayesian nethadrkepresents, or
represents an approximation to, a target probabilityiistion ® More commonly,
Bayesian networks ariaterpreted Here the graph is taken to represent a causal
structure, either objective or subjective. In the formesecthe graph contains an
arrow fromC; to C; if C; is a direct cause af’;, but in the subjective case the
graph represents the causal knowledge of an a§entith an arrow fronC; to C;
if X believes, or knows, that; is a direct cause daf’;. The specified probabilities
are also given an interpretation, either objective in teofrsmpirical frequencies,
propensities or chances, or more often subjective in terffndegrees of rational
belief. Finally the independence assumption is posited retation between the
causal interpretation and the interpretation of probpbili

In my view the most important limitation of the abstract aggueh is that there
is often not enough initial data for it to get off the groundheTabstract approach
requires a database of past case data, but there may sintjg anough such data
to invoke a machine learning algorithm for generating a Bayenetwork. Fur-
thermore, new case data may trickle in slowly and it may takénide before the
learning algorithm yields dependable results. Even ifaétisrplenty of data, the
data may not be reliable enough to generate a reliable nketaan my experience
this is a significant problem, since different people oftesasure or categorise
variables in different ways even when collecting data fersame database. There
is also a difficulty when certain variables are not measuted:adiagnostic data,
for example, rarely includes the presence or absence oy @ossible symptom
of a patient, but just the most significant symptoms, and yheoms considered
most significant are subject to biases of individual doctdnssum, the abstract
approach is not appropriate for applications which reqair@xpert system oper-
ating right from the outset, but where the data is not avhlab of poor quality,
or is subject to mixtures of unknown biases. However therjmeted approach
does not face this sort of problem: an expert can often fragnotltset provide
qualitative causal knowledge, subjective degrees of bafid even estimates of
objective probabilities, and this information can be useddnstruct a Bayesian
network right away — no past case data is required.

On the other hand the interpreted approach also has itsgmabllargely to
do with the status of the independence assumgtion.the next two sections |
shall outline these problems with the independence assomand then go on to
develop a hybrid methodology incorporating aspects of bla¢hinterpreted and
abstract accounts: the basic idea behind the hybrid melbggds to form an

6See[Jordan 1998
“One problem that | will not consider here is tkeowledge elicitation problenthe expert may find
it hard to articulate her knowledge, and the elicitationgess can be quite slow.
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initial Bayesian network from expert knowledge, and tolfertrefine this network
in the light of new case data. First we shall tackle the pnoislevith an objective
interpretation, and then investigate the subjective aggran§3.

2 OBJECTIVE NETWORKS

Under an objective interpretation, the Bayesian netwodkpendence assumption
makes a substantive claim about the relationship betwejettdle causality and
objective, empirical probability. | will show here thatstglaim is highly problem-
atic, rendering an objective interpretation inadequate.

It will be useful to note that thprinciple of the common causea logical con-
sequence of the independence assumgtidime principle of the common cause
claims the following. Suppose two variables are probafibdly dependent and
neither causes the other, then

¢ existence they have one or more causes in commamd

e screening they are probabilistically independent conditional oost com-
mon causes.

We can exploit the link between independence and the comaaseqrinciple
because when an objective interpretation is given to bdtitipes one can find
many counterexamples to the latter principle which theintradict the former.
In effect we can translate doubts about probabilistic asedyof causality in the
philosophical literature — such analyses often appeak@bjectively-interpreted
principle of the common cause — into doubts about the oljedtiterpretation of
Bayesian networks. Many of the counterexamples are wellwkrand, when con-
sidered in isolation, thought to be so unusual as to be unitapt or thought to be
susceptible to particular rebuttals. | want to provide atemy of the counterex-
amples in order to show that the problem is more widespresaddften considered
and so general that the rebuttals are either too particulamappealing when gen-
eralised®

8This principle is due to Reichenbach (déeichenbach 1936519, pages 157-167). It is also
often assumed as a basis for statistical experimentati¢Risher 1935 One can see that the principle
of the common cause is a consequence of the independeneepigsuby generalising the following
example in the obvious way. Suppose we have a Bayesian newitr graphA — B,C — D.
Thus neitherB nor D cause the other, nor do they have a common cais@and D must then be
unconditionally probabilistically independent since licgrals b andd on B and D respectively, their
joint probability p(b A d) = 3=, . p(bla)p(a)p(dlc)p(c) = [32, p(bla)p(a)][>_, p(dlc)p(c)] =
p(b)p(d), where the first equality follows from the direct decompiositof probability in a Bayesian
network (sedNeapolitan 199Dtheorems.1 for example).

9Existence of a common cause resembles Mill's Fifth Canomdiittive Reasoning: ‘Whatever
phenomenon varies in any manner whenever another phenomaries in some particular manner, is
either a cause or an effect of that phenomenon, or is corthedtk it through some fact of causation.’
[Mmill 1843], page 287.

10A Jarge literature touches on the independence assumptioné way or another. Thus there are



FOUNDATIONS FOR BAYESIAN NETWORKS 85

I shall argue against the independence assumption by dattingéwo types of
counterexample to the principle of the common cause: theataariable<”; and
C; may beaccidentally correlatedor there may be somextra-causal constraint
which ensures that they are probabilistically correldfe@here may either be no
suitable common cause to account for a correlation, coicting the existence
condition above, or if there are common causes, they wilacobunt for all of the
correlation, contradicting the screening condition.

2.1 Accidental Correlations

Christmas trees tend to be sold when most oranges ripen arsblak LetC' rep-
resent the number of Christmas trees sold on any dayampresent the number
of oranges sold on any dag'(andO are random variables). ThefC > z|O >
y) > p(C > z) for some suitable constantsandy. Now it seems clear that sales
of Christmas trees do not cause sales of oranges, nor visa.vétence, some
common cause must be found to explain their probabilistieddence if the in-
dependence assumption is to hold. If there is a common cawseiid have to be
something like the time of year or the season. However,tinaly one does not
endow the time of the year with causal powers, and there agbwous mecha-
nisms at play underlying any such causation. Intuitivegréhis no common causal
explanation for the correlation — it is accidental. If suntuitions are right, then
the independence assumption must fail for this causal sicena

In order to save the independence assumption one may welhiygé¢d to main-
tain that the time of year really is the common cause hereall shll this strategy
causal extensianThe idea is that one tries to extend the intuitive conceptoke
by counting intuitively non-causal variables, like the ¢irof the year, as causal.
In the context of Bayesian networks, causal extension dékes the form of an
assumption that there is a ‘hidden’, ‘latent’ or ‘unmeasticemmon cause when-
ever two variables are found to be correlated, even where tiseno intuitively
plausible common causé.Unfortunately, there are a number of difficulties with
the strategy of causal extension. Firstly, extending thecept of cause creates
epistemic problems. Identifying causal variables and thesal relationships be-
tween them is a hard problem. Any extension of the concephase is likely to
make the task harder. In particular, it may be very difficalt &n expert to pro-
vide a causal graph under the causal extension approacls asking the expert
to identify variables that render the independence assamptlid, rather than
to identify the causes and effects that she is used to dewaiiing Furthermore,

criticisms (for exampléHumphreys & Freedman 19BgHumphreys 1997 [Lemmer 1993 [Lemmer
1994, [Lad 1999) and defences (for examplSpirtes et al. 1997 [Hausman 1999 [Pearl 200D
§2.9.1) of the independence assumption which | will not coxeh| will however cover the criticisms
| believe most telling and the most viable reactions to tfeetieisms.

1 Correlation’ is occasionally used to denote some kindirafar dependence, but | shall just use it
as a synonym for ‘probabilistic dependence’ here.

125ee[Binder et al. 199Fand[Pearl 200D for example.
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if one increases the number of nodes and arrows that mustrisédeoed in the
graph of a Bayesian network then one risks the network bewgptob complex for
practical use. The amount of space required to store a Bayesitwork and the
amount of time required to calculate probabilities from tie¢work both increase
exponentially with the number of nodes in the worst cases Wurst case occurs
when the graph is dense — that is, there are many arrows indiplgThus causal
extension is a dangerous tactic from an epistemic and pedgtdint of view.

The second major problem is that by extending the concepto$e we are
liable to lose qualities that are important to causality.n@ge causal variables
tend to have various characteristics in common: for exaropke can normally
view them as spacio-temporally localised events, and caarse effects tend to be
related by physical mechanisms. If we allow variables widohnot have these
qualities then we can no longer be said to be explicating ttiemof cause — the
extension is ad hoc and the word ‘cause’ loses meaning, @cstrhing a synonym
for ‘variable’ if the process is pursued indefinitely. Thésdlearly undesirable if
we require a genuinely causal interpretation of the grapghérBayesian network,
as opposed to more abstract foundations.

Elliott Sober produced the following counterexample to fmciple of the
common cause:

Consider the fact that the sea level in Venice and the costedd
in Britain have both been on the rise in the past two centuBesh,

let us suppose, have monotonically increased. Imaginewbagbut

this data in the form of a chronological list; for each date, list the

Venetian sea level and the going price of British bread. Beedoth
guantities have increased steadily in time, it is true thghér than
average sea levels tend to be associated with higher theagmJeread
prices. The two quantities are very strongly positivelyretated.

| take it that we do not feel driven to explain this correlatloy pos-

tulating a common cause. Rather, we regard Venetian sels kwd
British bread prices as both increasing for somewhat isdlahdoge-
nous reasons. Local conditions in Venice have increaseskihdevel
and rather different local conditions in Britain have drivgp the cost
of bread. Here, postulating a common cause is simply not plany-

sible, given the rest of what we beliet.

Here Sober calls the existence of a common cause into qoestighere is a
causal explanation of the correlation, but it is not an exalen involvingcom-
mon causesso in a sense the correlation is accidental. Postulatiogerwn cause
conflicts with intuitions here. In particular there appearbe no common causal
mechanismWe often appeal to non-probabilistic issues like mechmagi® help
determine which correlations are causal and which are entafl As Schlegel
points out, ‘we reject a correlation between sun spots awdauic cycles as

13[Sober 198B8215.
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probably spurious, because we know of no relating procegsadeept a correla-
tion between sun spots and terrestrial magnetic stormsisedhere is a plausible
physical relationship*

Besides causal extension, there is a separate line of resmme can make to
such counterexamples, that @striction, whereby one restricts the application
of the independence assumption so that it does not apply kevard cases like
Sober'st® This response can take one of two fornesyrelation restrictionor
causal restriction Regarding the former, some, such as Papineau and Prias, cla
that British bread prices and the Venetian water level dohawe the right type
of correlation for the principle of the common cause to bdiaggsince their cor-
relation can be predicted from the co-variation within eticie-serie&® or from
determinism within each physical procégsThey thus attempt to avoid the coun-
terexample to the common cause principle by restrictingtireciple itself. How-
ever, it should be noted that they pursue this strategy ieadhéext of a defence of
a probabilistic analysis of causality. Whether or not thsveis successful in that
context, itis no help here when thought of in terms of the Bayenetwork frame-
work, for restricting the principle of the common causerietd the independence
assumption too, and the reduction of a probability functioa Bayesian network
is not possible without full-blown independence. Henceaation restriction is
not a viable move when considering Bayesian networks.

The other variety of restriction, causal restriction, isrenpromising. Here the
strategy is to argue that the variables themselves are rtbedort to which the
independence assumption applies. One may claim that thelated variables are
not causal variables, although this is rather implausibiiemit comes to the ex-
amples above. Alternatively one may accept that they arsatdout have not been
individuated correctly for the independence assumpti@apfy. For example, the
variables may need to be indexed by titienay need to be complete descriptions
of their corresponding single-case events, or may need podperties that can be
repeatedly instantiated.

While it is possible that for any particular counterexamfgendependence
there is another way of individuating the variables so thatdependency is re-
moved, it is less clear that one rule of individuation willesgome all counterex-
amples. | have used examples which exhibit temporal cdioeldere because it
is easy to see how such variables could be correlated, butangvents might ex-
hibit accidental correlation, in which case alternativéividuation will not help.
The independence assumption rules out accidental caarekpriori, and such a
restriction does not appear a priori to be any more plausipidied to one individ-
uation than another. Thus an appeal to individuation is bsneans guaranteed to
overcome the problem of accidental correlation.

14[schlegel 197K10.

15_akatos called this type of defence ‘monster-barring’.
18[papineau 199243.

Price 1992 264.

18see[Spirtes et al. 1993page 63 for example.
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Causal restriction also induces epistemic problems ofvits. df individuation
matters then one has to do a certain amount of analysis hteftkiéng a problem,
making the application of Bayesian networks harder. Funtloee, in a particular
problem one may be interested in variables which must beiohaated in a way
for which independence does not hold, in which case the maghiof Bayesian
networks cannot be applied at all.

I have illustrated the problem of accidental correlationd atroduced strate-
gies for defending the independence assumption, incluckingal extension and
causal restriction. These strategies are somewhat lasetteztive at dealing with
the problem, and if they can be made to work will only do so a¢pistemic and
intuitive cost. In§2.2 we will see how these strategies can be applied to otmer co
mon types of counterexample. Our conclusions will be muehstime. Yet these
costs are not ones we have to reluctantly accept. In the fdiows | propose later,
we will stick with our intuitive notion of cause and the inatluation of variables
will not matter.

2.2 Extra-Causal Constraints

I shall now consider counterexamples to the principle ofctvmon cause where
probabilistic dependencies have an explanation thae®tht dependent variables
— thus the dependencies are not accidental — but where tHaratjon is not
causal. There are a number of non-causal correlators: tugatgariables can be
correlated

e in virtue of their meaning,

¢ because they are logically related,

e because they are mathematically related,

e because they are related by (non-causal) physical laws, or

e because they are constrained by local laws or boundary tomsli

Let us look at each of these situations in turn.

First, the meanings of expressions can constrain theirghititles. 'Flu and
orthomyxoviridae infection are probabilistically dependl not because they have
a common cause, but because 'flu is an example of orthomysdaeiinfection —
the variables have overlapping meaning.

In response one can advocate a kind of causal restrictioe. d@n argue that
causes should be individuated so as to avoid overlappingimgaand that one
should remove a node from a Bayesian network if there is @motlth related
meaning. But this is not always a sensible move for a numbexasfons. One can
lose valuable information from a Bayesian network by defgti node, since both
the original nodes may be important to the application ofrtevork. Meaning



FOUNDATIONS FOR BAYESIAN NETWORKS 89

might be related through vagueness rather than clasgificatierlap, for exam-
ple if one symptom is a patient’s report of fever and anotkes thermometer
reading, and it may be useful to consider all such relateces.oth some cases
one may even want to include synonyms in a Bayesian networkeXample in
a network for natural language reasoning. Furthermoregvarg a node can in-
validate the independence assumption if the removed nagleasnmon cause of
other nodes. Or one simply may not know that two nodes haate@imeaning:
Yersin’s discovery that the black death coincides with ®astlla pestis was a gen-
uine example of scientific inference, not the sort of thing oan do at one’s desk
while building an expert system.

Causal extension is no better a ploy here. One could sudggsatcommon
cause variable called ‘synonymy’ or ‘meaning overlap’ dddae introduced. But
this will not in general screen off such dependencies, armbfwe we have epis-
temic cost in terms of identifying dependencies in virtuengfaning and the likely
added complexity of incorporating new variables and arr@ssvell as a commit-
ment to a counterintuitive concept of cause.

Probabilistic correlations can also be explained by ldgiektions. For in-
stance, logically equivalent sentences are necessarfigqly correlated? and if
one sentence logically implies sentencd, the probability ofd must be greater
than or equal to that of. Thus one should be wary of Bayesian networks which
involve logically complex variables. SuppoSecauses complaint®, E and F,
and that we have three clinical tests, one of which can détermhether or not a
patient has botl and E, another tells us whether or not the patient has ong of
andF, and the third tells us whether the patient hasThus there is no direct way
of determiningo(d|c), p(e|c) or p(f|c) for literalse, d, e and f of C, D, E, andF'
respectively, but one can findd A e|c) andp(e V f|c). One might then be tempted
(in the spirit of causal extension) to incorporéte— (D A E),C — (E V F)
in one’s causal graph, so that the probability specificatibthe corresponding
Bayesian network can be determined objectively. In sucluatsdbn, however(
will not screen nodé® A E off from nodeE v F and the independence assumption
is not satisfied.

This problem seriously affects situations where causataeire genuinely log-
ically complex, as happens with context-specific causaltynay causeB only
if the patient has genetic characterigfic if the patient has any other genetic
characteristic then there is no possible causal mecham@smA to B. Then the
conjunctionA A C is the cause oB, not A or C' on their own. Howeverd may
be able to caus® in everyone, so the causal graph would need to contain a node
A A C and a second nodé. One would not expect these two nodes to be screened
off by any common causes.

Next we turn to mathematical relations as a probabilisticedator. By way of
example, consider the application of Bayesian networkrshtencolon endoscopy
as documented ifSucar et al. 1993and[Kwoh & Gillies 1996. The object is

194t least according to standard axiomatisations of prokigbil
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to guide the endoscope inside the colon towards the lumeidiag the divertic-
ulum. A Bayesian network was used to identify the lumen ardrticulum from
the endoscope image. The presence of the lumen causes aléakgeegion to
appear on the endoscope screen while the diverticulum sausmall dark region.
The size of the region can be directly measured, but its dekmas measured
by its mean intensity level together with its intensity eaute in the region. A
Bayesian network was constructed incorporating thesabi@s and the indepen-
dence assumption was tested and found to fail: the mean arahea variables
were found to be correlated when, according to the causphgrader the inde-
pendence assumption, they should not have been. The pralastiat there is no
obvious common cause for this correlation: mean and vagiane related math-
ematically, not causally. We have thdurX = EX? — (EX)?, whereVarX
is the variance of random variahlé, and E signifies expectation so th&X is
the mean ofX . To take the simplest example Af is a Bernoulli random variable
andEX = z thenVarX = z(1 — z), making the mean and variance perfectly
correlated. In the endoscopy case, the light intensity aNe a more compli-
cated distribution, but the mean value will still constrtie variance, making the
mean and variance probabilistically dependent. To try $olke this failure of the
independence assumption, at first one of the two correlatddsiwas removed
(causal restriction). This gave some improvement in perforce but suffered
from significant loss of information. Next (causal extemgifkKwoh & Gillies
1994 attempted to introduce an extra common cause to screenectbiinelation,
but while this move improved the success rate of the Bayewanork, it raised
fundamental problems. Firstly it is not clear what the newetepresents (it was
just called a ‘hidden node’), so a causal interpretation mayonger be appro-
priate for the graph. Secondly, the distribution specifyprobabilities relating
the new node to the other nodes had to be ascertained: thid aoly be done
mathematically, by finding what the probabilities shouldftt@e introduction of
the new node allowed the unwanted correlation to be fullgeeed off, and could
not be tested empirically or equated with any objective phility distribution.
Therefore the Bayesian network lost both the objective alaaisd the objective
probabilistic components of its interpretation. An objeetinterpretation is just
not feasible, given extra-causal dependencies like this.

That extra-causal constraints include physical laws ha&n exemplified by
Arntzenius?°

Suppose that a particle decays igtparts, that conservation of total
momentum obtains, and that it is not determined by the ptaie of
the particle what the momentum of each part will be after theag.
By conservation, the momentum of one part will be determingd
the momentum of the other part. By indeterminism, the ptiatesof
the particle will not determine what the momenta of each pilbe
after the decay. Thus there is no prior screener off.

20[ Arntzenius 199Ppages 227-228, frofivan Fraassen 198@age 29.
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The principle of the common cause fails here because thevetigng obvi-
ous that we can call a common cause — the existence compdité@etrinciple
fails. But even if some weird and wonderful common cause c¢cte found in
such quantum situations, independence would still faiblobse screening condi-
tion would fail. Suppose we consider the spisandC of two particles: B and
C have valuesup or down The two particles are fired such that one has spin
up (represented by literd) if and only if the other doesc]. Suppose also that
either one being spin up is as likely as npth) = p(c) = 1/2, but that a com-
mon caused is found which explains the spins, sb — B, A — C, and
p(bla),p(cla) = x > 1/2. But sincep(b|c) = 1, screening off is satisfied if and
only if 1 = p(bla A ¢) = p(bla), so the cause must be deterministic, a wildly inap-
propriate assumption in the quantum world. Thus we mustlodedhat there are
quantum constraints on objective probability which areaxausat!

The philosophical literature also contains several exampf how local non-
causal constraints and initial conditions can account fgethdencies amongst
causal variables. Cartwright, for instance, points out tha

independence is not always an appropriate assumption te.malé
typical case occurs when a cause operates subject to dohsteethat
its operation to produce one effect is not independent afpieration
to produce another. For example, an individual has $10 todspe
groceries, to be divided between meat and vegetables. Thardm
that he spends on meat may be a purely probabilistic consequx
his state on entering the supermarket; so too may be the arsoemt
on vegetables. But the two effects are not produced indepelyd
The cause operates to produce an expenditure @dllars on meat
if and only if it operates to produce an expenditurel6f— n dol-
lars on vegetables. Other constraints may impose diffelfemtees of
correlation??

Salmort® gives another counterexample to the screening conditiool Ralls
are set up such that the black is pocket&] {f and only if the white is V),
and a beginner is about to play who is just as likely as not tatpoblack if she
attempts the shoty(), and is very unlikely to pot the white otherwise. Thus if we
let b, w ands be literals representing the occurrencdlfi¥ andS respectively,
p(b < w) = 1 andp(b|s) = 1/2,s01/2 = p(w|s) # p(w|s A b) = 1 and the
causeS does not screen off its effecisandi¥ from each other. As Salmon says:

2INote that[Butterfield 1992 looks at Bell's theorem and concludes (page 41) that, ‘tiéation
of the Bell inequality teaches us a lesson, ... namely, saire pf events are not screened off by their
common past.[Arntzenius 1992 has other examples and also argues on a different frontsighim
principle of the common cause assuming determinism. Seédtasaley 1991 and[Savitt 1996 pages
357-360 for a survey.

22[Cartwright 1989 113-114.

23[Salmon 198Dpp. 150-151[Salmon 198K pp. 168-169.
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It may be objected, of course, that we are not entitled tarinfethat
there is no event prior t& which does the screening. In fact, there is
such an event — namely, the compound event which consistseof t
state of motion of the cue-ball shortly after they colliddneTheed to
resort to such artificial compound events does suggest angsakn
the theory, however, for the causal relations amsn& andW seem

to embody the salient features of the situation. An adeghetary of
probabilistic causality should, it seems to me, be able tmleathe
situation in terms of the relations among these eventspwithaving

to appeal to suchd hocconstructiong?

I would echo this sentiment in the current context: in my viewadequate
objective causal-probabilistic interpretation of Bayesnetworks should not have
to appeal to ad hoc constructions. Spirtes, Glymour andiBebgive a causal-
restriction defence against Salmon’s counterexample dnyilag that the collision
should be more specifically individuated (in particular thementum of the cue
ball should be described}.Again this is less than satisfactory in the absence of a
general theory as to how causes should be individuated.

A further example: repeatedly pull one of two beads (a bluadkig and red
beadR, otherwise identical) out of a bag. Theth|r) = 0 < 1/2 = p(b). But
rather than saying that pulling out the red bead is a pretieataf pulling out the
blue bead, the correlation is explained by the set-up ofépeatable experiment:
only one bead is pulled out of the bag in any trial. Here theupetonstrains the
probabilities and isn’t the sort of thing that counts as aseau

In response to the problem of extra-causal constraintsyugiet admit defeat in
problems such as the diagnosis of apparatus for the inagistigof quantum me-
chanical system or troubleshooting pool players, but maintain that mostiapp
cations of intelligent reasoning may be unaffected. Buteegtusal constraints oc-
cur just about anywhere, including central diagnosis pais for example. When
diagnosing circuit boards, one may be constrained by théifattwo components
cannot fail simultaneouslyf A F3), for if one of them fails the circuit breaks and
the other one cannot fail. Suppose there is a common ¢adsethe failures as in
Figure 1. TherC fails to screent off from F; for p(falc A f1) = 0 # p(fz]c).

In medicine the opposite is the case: failure of one compioinghe human body

increases the chances of failure of another, as resoureedrandy weakened. In
both these cases the constraints are very general and rsatrtiod thing one would

want to call causes.

But why not pursue causal extension and include these eatraal constraints
in a Bayesian network? Besides the problem of a loss of theatamnterpreta-
tion, we have further difficulties. Knowledge of extra-calusonstraints is often in
some sense superfluous to an intelligent agent’s needs. &t pgrforming diag-

24[Salmon 198D151 (my notation).
25[Spirtes et al. 199363.
26As [Spirtes et al. 19930, pages 63-64.
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Figure 1. Failure of circuitry components.

Figure 2. Christmas tree sales, festivity, spending andgaaales

nosis, for instance, needs to know about causes and effecasibe she has to find
the probabilities of various causes given some symptomntsshmriis not directly
concerned with facts about meaning, experimental set-upbysical laws. Thus
if there is a requirement to keep the agent’s language amshtguaph small, as
in the Bayesian network formalism where computational dexify is an issue,
extra-causal constraints are the things to leave out. $ettanay be much harder
for domain experts to provide the relevant extra-causarinétion than the causal
information. In particular, discovering all physical lawich have correlational
consequences on a domain is no mean feat. Third, even if agewastraint is
identified, it is often difficult to say exactly how it shoule bonnected to the other
variables in a causal graph. Should there be an arrow bettveeset-up of a pool
table and each possible pot, or just some? Extra-causairaomns are generally
symmetric while causal relations are not. Fourthly, thesestraints often vary
between cases in the way that causal laws don't. If the seff@ppool table is
included in a causal graph and we are interested in predittia next pot then,
since the set-up changes as play progresses, the caudalghiagso have to vary
radically from shot to shot. This obviously complicates tiagk.

Note finally that accidental and extra-causal correlatwars combine to com-
plicate matters. If two variables are accidentally cotedlghen a common cause
is very unlikely to completely screen off that correlatidhore plausibly, the com-
mon cause would account for part of the correlation, ancetiveuld be a surplus
that we might call accidental. An inefficient English bakemght partly explain
why the water level rises in Venice (through global warmiagyl also partly why
bread prices rise in the UK, but the remaining bulk of the elation might be com-
pletely accidental. Likewise direct causes of an effect matyfully screen it off
from their causes. In response to our first example of actilenrrelation, one
might put forward some causal story: high Christmas treess@l) causes people
to be festive F) which causes people to spend masg\Which causes orange sales



94 JON WILLIAMSON

to rise (0), as in Figure 2. But even if this explains some of the cotiate(and
this is rather dubious), it will not explain it all, fgr(o|c) = 1, but people spend
money on many other occasions in the year afuls) is not much bigger than
p(0). Sop(olc A s) > p(o|s).

I hope to have shown that many types of dependency can bedduolcontest
the validity of the objectively-interpreted independeassumption. Two strate-
gies present themselves if we look for a defence against dbaterexamples,
causal restriction and causal extension. However eadiegyr& subject to episte-
mological, practical and intuitive difficulties, rendegian objective interpretation
of Bayesian networks at worst impossible and at best uratdsir

3 SUBJECTIVE NETWORKS

We have seen how problems arise for an objective interpoataf the compo-

nents of a Bayesian network. But there is a further reasonavhgbjective in-

terpretation is unattractive in practice: one may simplykrow of all the causal

variables or causal relations relevant to a domain of isteend one may not be
able to accurately estimate the corresponding objectigbahilities required in

the specification of a Bayesian network. In practice our Kedge is limited, and

information in a Bayesian network will often be incompletelanaccurate.

Thus it makes sense to relativise the Bayesian network t@anta perspec-
tive. In this section we shall suppose that the Bayesian orétwxpresses the
knowledge of a particular agenX; say — that the grapty¥ is interpreted as('’s
representation of causality, and that the probability Setion S is interpreted
as containing her degrees of belief in literals conditiamalparent states. The
independence assumption then links the agent’s picturaudatity to her belief
functionp: if it holds then her belief function is reducible to her Baign network.

Does the independence assumption hold here? There igditton to suppose
that it might. X'’s knowledge of causality may be very limited, and her degife
belief may wildly differ from objective probability: accding to strict-subjectivist
Bayesian theoryX may hold whatever beliefs she likes, as long as her belief
function is formally a probability function. Yet the indepeence assumption is a
very strong constraint, for it fixeX’s belief function given her Bayesian network,
thereby restricting’s subjectivity. If X's causal knowledge or the degrees of be-
lief in her probability specification were to change sligttien her other degrees
of belief would have to change correspondingly, leavingeam for subjectivity
with regard to these other beliefs. Therefore a strong cain$tike independence
does not fit well with subjectivism, whose appeal is basederireedom it allows
causal knowledge and degrees of belief.

So how can a subjective interpretation of Bayesian netwbeksaintained?
One line of reasoning goes something like this: if indepacdéiolds objectively,
and the subjective network is similar to the objective nekiythen the subjective
distribution determined by the subjective network will bese enough to objec-
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tive probability to be put to practical use. Suppose we negaim expert system for
diagnosis of liver disease. We may think we have a fair ideth@ftausal picture
relating this area, and may be able to obtain estimates @flijeetive probabilities
for a probability specification, thereby forming a Bayesi@twork that is in some
sense close to an objective version. If the independencemgs®n were to hold

in the objective case then one might expect it to hold appnaiely in the subjec-
tive case. One might further suppose that if independengmajmately held in

the subjective case then the probability distribution deired by the subjective
network might approximate objective probability, at leelsisely enough for the
practical purposes of liver diagnosis.

It is such a position that | want to argue against in this sectiThere are two
flaws in the above reasoning. First, as we saw in the lastosedtiere is often
reason to doubt the independence assumption as made ofivbdjeausality and
probability. Secondly, even if independence were to hojdatively, small differ-
ences between a subjective network and the objective nktvear lead to signif-
icant differences in the probability distributions det@red by these networks. It
is this second claim that | want to argue for here.

For this argument it will be necessary to consider subjedivd objective dis-
tributions and networks simultaneously, and so it will bertivaspelling out the
notation and concepts clearly in advance. The objectivealrility distribution
is p*. We also have an objective Bayesian network consisting n$alagraph
G* and the associated probability specificatiéh Independence is assumed to
hold of objective causality7* with respect to objective probability*, and this
has the repercussion that the objective netw@rk, S*) determineg*. Agent
X has a subjective Bayesian network consisting of causahgrapnd associated
probability specificatiors. This subjective networkG, S) determines probability
functionp under the independence assumption. The question of whatlegen-
dence holds subjectively andmatchesX'’s full belief function is not of concern
here. Instead, we are concerned with the above alternastifi¢ation of the sub-
jective interpretation which claims that if the subjectivetwork (G, S) closely
resembles the objective netwqi&*, S*) then the functiom will be close enough
to objective probability* to be of practical use. | argue that differences between
the objective and subjective networks that are likely tounda practice will yield
significant differences between resulting probabilitytritisitions.

It will be useful to distinguish two types of difference bet@n the subjective
and objective networks: differences between the causphg@ andG* and dif-
ferences between the probability specificatiSrendS™.

3.1 Causal Subjectivity

First | shall argue as follows. Even if we make the assumptiahindependence
holds objectively, we assume th&ts belief specificatiorS consists of objective
probabilities, and assume that her causal knowledge i®cofF is a subgraph
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Percentage success

Nodes in G*

Figure 3. Nodes removed.

of G*), then if, as one would expect, her causal knowledge is impteta (a strict
subgraph)p may be not be close enoughjib for practical purposes.

There are two basic types of incompletene&smay well not know about all
the variables@ has fewer nodes thas*) or even if she does, she may not know
about all the causal relations between the varialtlelsds fewer arrows thaf¥*).

To deal with the first case, suppo6&keis just G* minus one nod€' and the
arrows connecting it to the rest of the graph. Everif satisfies independence
with respect tgp* thenG can only be guaranteed (for aif) to satisfy indepen-
dence if all the direct causes 6fare direct causes @i’s direct effects, each pair
D, E of its direct effects have an arrow between them say fidro E, and the
direct causes of each sudh are direct causes df.?” Needless to say, such a
state of affairs is rather unlikely and a failure of indepemck will have practical
repercussions.

| ran a simulation to indicate just how close the subjecyiadtermined distri-
butionp will be to the objective distributiop*, the results of which form Figure 3.
The bars in the background of the graph show the performanBayesian net-
works formed by removing a single node and its incident asrnem networks
known to satisfy independence. Rgr= 2, ..., 10 I randomly generated Bayesian
networks onN nodes, and for each net removed a random node, chose a random

27See[Pearl et al. 199082.
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state of nodes and calculate@(c|s) for each literak not ins. The new networks
were deemed successful if their values f0¢|s) differed from the values deter-
mined by the original network by less tha&m5, that is|p(c|s) — p*(c|s) |< 0.05.
For eachN the percentage success was calculated over a number sttaal
each bar in the chart represents such a percentage. Thenlihesforeground of
the graph represent the percentage success where halfdeg%and their inci-
dent arrows were removed.

Such experiments are computationally time-consuming any practical for
small values ofV. While one should be wary of reading too much into a small
data set, the results do suggest a trend of decreasing suatess the size of the
networks increase. Thus it appears plausible that if on@vema node and its
incident arrows from a large Bayesian network that satisfidependence, then
the resulting network will not be useful, in the sense that phobability values
it determines will not be sufficiently close to objective patility. Moreover, re-
moving more nodes from a Bayesian net is likely to furtheuits probability
of success, as the graph shows.

This trend may be surprising, in that if one removes a noda frdarge causal
graph one is changing a smaller portion of it than if one re@scw node from a
small graph, so one might expect that removing a node chahgesgsulting dis-
tribution less as the original number of nod€sincreases. But one must bear in
mind that the independence assumption is non-local: remyavinode can imply
an independency between two nodes which are very far apdreigraph. Thus
removing a node from a small graph is likely to change fewelied independen-
cies than removing a node from a large graph.

Figure 4. Objective causal gragh .

@ ©

Figure 5.B and its incident arrows removed.

Figure 6.B removed but its incident arrows redirected.

28At least 2000 trials for eachV, and more in cases where convergence was slow.
29In fact the nearest integer less than or equal to half theswads chosen.
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Figure 7. Nodes removed - arrows re-routed.

Of course one may complain that such a simulation is unteaiissome way.
For instance, if one doesn’t know about some intermediamgean an objective
causal graph, one may yet know about the causal chain on vthesists. Thus
if Figure 4 represents the objective causal graph and ongnttdenow aboutB,
one may know thatl causeg’, as in Figure 6 rather than Figure 5. In this case
removingB’s incident arrows introduces an independence assumptigcinis not
implied by the original graph, whereas redirecting themsdoat. In simulations
| found that while redirecting rather than removing arrom@ioved success (see
Figure 7) the qualitative lesson remained: the generafitvess still that success
decreases as the number of nodes increases.

There is another way that the simulation may be unrealisiome types of
cause may be more likely to be unknown than others, so pedrepshould not
remove a node at random in the simulation. However, if westdqr this factor we
should not expect our conclusions to be undermined. To ttemethat effects are
more likely to be observable and causes to be unobservaigeyit be more likely
to know about nodes in the latter parts of causal chains thahnei earlier parts.
But while removing a leaf in a graph will not introduce any newlependence
constraints, removing common causes can do so. Thkidgsfless likely to know
about causes than effects, her subjective causal grapkrsless likely to satisfy
independence than one with nodes removed at random.
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There may be other factors which render the simulationsprapiate, based
on the way the networks are chosen at random. Here | madelkehsds not that
two nodes have an arrow between them, and as likely as natatow is in one
direction as in another, while maintaining acyclicity. Bithe graphs are unlikely
to be highly dense or highly sparse. | chose the specifyinbatilities uniformly
over machine reals if0, 1]. Roughly half the nodes\/2 nodes if N was even
otherwise(N — 1)/2 nodes) were chosen to be symptoms end the nodes and
their values were selected uniformly. In the face of a lackradwledge about the
large-scale structure of the objective causal graph | sstghese explications of
‘atrandom’ are appropriate. In any case, the trend indithyehe simulation does
not seem to be sensitive to changes in the way a network ienohaigandom.

In sum then, for &* large enough to be an objective causal graph the removal
of an arbitrary node is likely to change the independencigsied by the graph,
and to change the resulting distribution determined by tiwgeBian network. This
much is arguably true whether or not the objective situati@h p*) satisfies inde-
pendence itself, for if independence fails, removing aalpjtnodes is hardly likely
to make it hold.

Having looked at what happens when ag&nts ignorant of causal variables,
we shall now turn to the case where she is ignorant of caulsaimes.

Suppose then that is formed fromG* by deleting an arrow, say from node
C; to nodeC;. ThenG can not be guaranteed to satisfy independence with re-
spect top*. For suppos€’;, D1, ..., D;, are the direct causes 6f; in G*. Then
the independence @ with respect tgv* requires thatC; be independent of’;,
conditional onDy, . .., Dy, which is not implied by the independence®f with
respect tg*.

The situation is worse if the following condition holds, whil shall call the
dependencerinciple3 This corresponds to the intuition that a cause will either
increase the probability of an effect, or, if it is a prevene make the effect less
likely. More precisely,

e dependenceif C;, Dy, ..., Dy are the direct causes 6f; thenC; andC;
are probabilistically dependent conditional bn, .. ., Dy: there are some
literals ¢; andc¢; of C; andC; and some staté of Dy, ..., D; such that

p*(cjles A d) # p*(c;ld), as long as these probabilities are non-extreme
(that is, neithed nor1).

Now if G* satisfies dependence with respecptothe arrow between; and
C; is removed to givei as before, and the probabilities are non-extreme, the
independence assumption wdkfinitely failfor G with respect tg*. This is sim-
ply because the independencea®ivith respect tg* requires that’; andC; be
independent conditional oB, . . ., D;, which contradicts the assumption that de-
pendence holds fo&* with respect tgp*. Note that this result only depends on

30see[Williamson 1999 for a defence of this principle. Note that the dependenceciple is a
partial converse to the independence assumption.



100 JON WILLIAMSON

Percentage success
th

One arrow

Half the arrows
Nodes in G*

Figure 8. Arrows removed.

the local situation involving’;, C; and the other direct causéy, . .., D;, of C},
so that further changes elsewhere in the graph cannotyéutifsituation’* Note
also that this result doa®ot require that objective causality* satisfy indepen-
dence with respect to objective probability. Thus if the dependence principle
holds of causality in the world it is extremely unlikely thatlependence will hold
of a subjective causal theory.

Of course, we are arguing against independence by appd¢alamgalternative
principle here and the sceptical reader may not be convibgétis last argument.
But we can perform simulations as before to indicate the gérieends. The
back row of Figure 8 represents the results of the same diimulas before (the
dependence principle is not assumed to hold), except wilmdam arrow rather
than a node removed. In this case there is no clear downwamd,tbut success
rate is uniformly low. If more arrows are removed, then fdrkait small V the
resulting network is less likely still to satisfy independe, as the front row of
Figure 8 shows, and again we see a downward trend as the nofrztes inG*
increases.

311 one or more of the other direct causes or their arrows'fcare also absent i&v, then indepen-
dence may be reinstated, although this would be a freak mme and the extra change may break a
further independence relation elsewhere in the graph.
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Figure 9. Node probabilities perturbed.

In sum, causal subjectivity can lead to a significant diffieesbetween the sub-
jective and objective probability distributions.

3.2 Probabilistic Subjectivity

Turning now toX's degrees of belief, itis not hard to see hpwan differ fromp*.
We suppose that the objective situation satisfies indepmrdand thak'’s causal
graphG matches the objective causal gra@h. However, if her specificatiod
differs from the objective specification then the probapilinctionp determined
by the subjective networlG, S) would not be expected to agree exactly with
The back row of Figure 9 shows what happens if one of the noaleidassociated
probability specifiers perturbed 9y03, the middle row shows what happens if half
the nodes’ probabilities are perturbed ®©¥3, and the front rows gives the case
where all nodes have their probabilities perturbed.

In practice probabilistic and graphical subjectivity wilkcur together, making
it even less likely thap is close enough tp* for practical purposes. The back row
of Figure 10 shows what happens if a node is removed (arrownauted), then an
arrow is removed, and then one node’s probabilities areigezt! by0.03. The
front row shows what happens if half the nodes then half theareing arrows are
removed, then half the remaining nodes are perturbed.
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Thus subjectivity in a Bayesian network can lead, signifigasiten, to practi-
cal problems: the distribution determined by a subjectietvork may differ too
much from the objective distribution to be of practical use.

4 TWO-STAGE BAYESIAN NETWORKS

We have seen some of the problems that face interpretati@es/esian networks.
The independence assumption can fail for an objectivepni¢ation because cor-
relations may be accidental or have non-causal explargatibrdependence can
hardly be expected to hold for a subjective interpretatiothe-agent’s Bayesian
network will generally give rise to a probability functigrnwhich differs from her
true belief function — but more importantpyis also likely to differ from objective
probability, which upsets the alternative justificatiorsabjective networks.

| want to argue for another view of Bayesian networks, whidlelieve rests
on firmer foundations. The view | put forward here initiallgapts a subjective
interpretation, where the graph in the Bayesian networkiagent’s representa-
tion of causal structure and the probability specifiers aedegrees of rational
belief. | acknowledge the fact that, according to the abogements, the distri-
bution specified by an agent’s Bayesian network may not beeatmough to the
objective distribution to be of much practical use, but lsrghat it is a good start-

COne of each
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ing point, and can be refined to better approximate realitys §ives awo-stage
methodologwhere stage one is the representatiokXds belief functionp by an
initial Bayesian network and stage two is the further refiaatof the network. In
terms of foundations, stage one yields a subjective ing¢aion (but a different
subjective interpretation to those givengi), while stage two borrows techniques
from the abstract approach in order to deliver a network whiistribution more
closely approximates the objective distribution (and ie giiocess of refinement
the causal interpretation may be dropped as we shall see).

Two key questions require attention before we can be coadint these two-
stage foundations for Bayesian networks. Firstly, how dages one be justi-
fied? | have argued against a strict subjective interpmtatind so must somehow
demonstrate that some other kind of subjective intergoetatf the Bayesian net-
work is a good starting point. | shall do this in the rest oftbéction and the next
section. Secondly, how can stage two be performed? | slsallds the refinement
of Bayesian networks if6.

I shall interpretX’s Bayesian network as her background knowledge: the causal
graphG contains her knowledge of causal variables and their caelsdions, and
the probability specificatior$ is her knowledge of conditional probabilities of
causes given parent-staf€sThe independence assumption may then be used to
determineX’s degrees of belief from her background knowledge: hertjallef
function will be the probability function determined by tBayesian network on
G andS under the independence assumption.

Thus independence is no longer a substantive assumptikinditthe agent’s
causal graph with some pre-determined rational belieftfancit is alogic, used to
derive undetermined degrees of belief from those that arngn X's probability
specification.

The central issue then is how we can justify the use of thepeddence as-
sumption as a means of determining a rational belief functio

This issue of finding a single rational belief function giveeme background
knowledge has received plenty of attention in the litertuApproaches range
from Laplace’sprinciple of indifferenceo Jaynes'maximum entropy principle
The former says that iX is indifferent as to which off alternatives is true then
she should believe each of them to degt¢d. The latter explicates and gener-
alises the former as follows. A probability function ov@y, . .., Cx may be fully
specified by specifying values for each of the parametérs#~ = p(C; =
ViU AL ACN = vhY), whereot € {v},... vV} fori =1,..., N. We have the
constraints that eact'*~ € [0, 1], and by additivity~, ~ , aftokv =1,
together with any constraints implied by background knolgke The maximum
entropy principle says that in the absence of any furthesrin&tion X should
select a most rational belief function by choosing tHe*~ subject to these

32| shall leave it open as to whether these probabilities dento be estimates of objective proba-
bilities or informed degrees of belief. It suffices that tleyint as knowledge and may be used to guide
X's other beliefs.
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constraints which maximises the entropy

H=— xklv---ka logm‘kl""’]‘w.
ki,..,kN

There are several convincing justifications for the maximemropy principle.
The most well-known involves Shannon’s information-thetar interpretation of
entropy as a measure of uncertainty, in which case we magiemsopy subject to
some background knowledge if we determine a probabilitgtfion whose infor-
mativeness is as close as possible to that of just the baskdidmowledge itself.
A second justification is based on Boltzmann’s work with epyrin physics, and
a third involves Paris and Vencovska's demonstration tietmaximum entropy
solution is the only completion to satisfy various intugiy compelling desider-
ata, such as language invariarféeGriinwald gives a fourth, game-theoretic jus-
tification: maximum entropy is the (worst-case) optimaltmiisition for a game
requiring the prediction of outcomes under a logarithmasltunction®*

Where does this leave independence and stage one of outdage-sethod-
ology? Stage one is justified because the probability fonatietermined by the
independence assumption from the Bayesian network caacidth that deter-
mined by the maximum entropy principle, as we shall now see.

5 BAYESIAN NETWORKS HAVE MAXIMUM ENTROPY

The argument for the identity of the Bayesian network andimar entropy func-
tions requires first making the constraints imposed by tlokdpmund knowledge
explicit, and next showing that if we maximise entropy sebje these constraints
then we get the same solution as that determined by the Bayasitwork under
the independence assumption.

5.1 Background Knowledge

Agent X's background knowledge consists of the components of aadisuister-
preted Bayesian network: a causal graph and the specifibadipifities of literals
conditional on states of their parents. We first need to féateuthis knowledge
in a way that can more formally be applied to the maximum ytqarocedure.
Regarding the probability specification, there is no problg/e can simply max-
imise entropy subject to the constraints that certain fiitias, namely those in
the Bayesian network specification, are fixed from the outdetvever, the causal
graph does not provide obvious constraints — it is of qualigaform, free from
notions like entropy or probability. Therefore we need s@mrozedure for turning
the causal information into a constraint on probability.

335ee[Paris 1994, [Paris & Vencovska 1997[Paris 1999 and[Paris & Vencovska 20Q1for the
details of these justifications.
34 Gruinwald 2000,
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| suggest that the causal interpretation imposes the folipwonstraint. Sup-
pose we are presented with the components of a Bayesianmétwolving vari-
ablesC',...,Cy and then use these to determine a single rational belief func
tion p;, whether by independence, maximum entropy or some othemsndden
we find out further causal information, namely that theresan®e new variables
Dy, ..., Dy tobeaddedto the causal graph, and that these variablestaz@uses
of the currentC-variablesC, ..., Cy. Intuitively, this new information should
not affect our understanding of the original problem on@heariables. More pre-
cisely, suppose the new information takes the form of annskb@ of the original
causal graph where thig-variables do not causg-variables, and an extension to
the probability specification incorporating new condigbprobabilities of theD-
variables given their parents. If we use this new Bayesiawork to determine a
new rational belief functiop, over the larger domai€’;,...,Cn, D1, ..., Dyy,
then the restriction of, to the C-variables should agree withy, the function
based just on thé'-variables. | shall call this the principle chusal irrelevance
learning of the new variables should be irrelevant to degyoédoelief on the pre-
vious domain.

This principle is based on an asymmetry of causation whenefoymation
about causes can lead to information about their effectkrimwledge of effects
does not provide useful information about causes. Thistismsay that informa-
tion about thevalueor occurrenceof an effect is irrelevant to the question of what
the value of its cause is (which is clearly wrong), but th&btimation of the form
that a variabléhas an effect of unknown valigirrelevant to its own value. The
same need not be true of causes: if two variables thought tab&ally unrelated
are found to have a common cause, one may be wise to suppotettevariables
are probabilistically dependent to a greater extent thauipusly thought.

Take a simple example: suppoesignifies lung cancer ang bronchitis. We
know of no causal relations linking the two variables, andehéne probabilities
p(1), p(b) for each literall, b involving L, B respectively. We then use this infor-
mation to determine a joint probability distributipn over L and B. Suppose we
later learn that, smoking, is a cause of lung cancer and of bronchitis, andrvde fi
the probabilities(l]s), p(b|s), p(s) for each literal, b, s involving L, B, S respec-
tively. Then, becauss is a common cause, we might be inclined to form a new
belief functionp, over L, B andS which renderd. and B more dependent than
they were undep;: p-(I|b) > pi(I|b) for some literald andb. The motivation
is that if we find outh, then we now know this may be because some litetes
caused, in which cases may also have causédmaking it more likely than we
would previously have thought.

Suppose next we learn that each of lung cancer and bronchitie chest pains
C, as in Figure 11. If we find values fax(c|l A b) for each literak, ! andb, and
form a new belief functiorps, the causal irrelevance condition requires that
must not differ fromp,, overS, L andB. For exampleps (1|b) = pa(1|b), for each
[ andb. The idea here is that if we leabnthen knowledge of the existence of the
common effec”’ does not give us a new wdymay occur and so our degree of
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Figure 11. Smoking, lung cancer, bronchitis and chest pains

belief inl should not change&” is irrelevant toS, L andB.

In sum, | shall assume that the process of determining aesiragional belief
function is constrained not only by the probability valueghe specification of
the Bayesian network, but also by the causal graph underrtheigde of causal
irrelevance. The principle of causal irrelevance is strengugh to allow causal
information to constrain rational belief, and thereby pdagart in our new justifi-
cation of the independence assumption, yet, unlike thepieéence assumption,
weak enough to be uncontroversial in itself.

5.2 Maximising Entropy
The key proposition is this:

BAYESIAN NETWORKS MAXIMISE ENTROPY

Given the probability specification and causal graph of ad3&n networl
and the principle of causal irrelevance, the distributidnoll maximises en
tropy is just the distribution determined by the Bayesiatwoek under the
independence assumption.

Proof. The strategy of the proof will be to use Lagrange multiplierderive
conditions for entropy to be maximised, and then show thatBhyesian net-
work distribution satisfies these conditions. This strHgtward method is pos-
sible for the following reason. The constraints — which dsinef the specified
probabilities, certain probabilities fixed by the causapir under causal irrele-
vance, and additivity constraints common to all probapitiistributions — are
linear and restrict the domain of the entropy function to mpact convex set in
[0,1]%1 x ... x [0,1]%~ 35 and on that domain, entropy is a strictly concave func-
tion (as shown below). Thus the problem has a unique localrmanr, the global
maximum, and if the Bayesian network distribution satisfiesconditions for an
optimal solution then it must be the unique global maximum.

We can see that entropy is strictly concave as follofsis strictly concave if
and only if, for any two distinct vectors andb of the parameters*'-*~ and

35See[Paris 199} proposition6.1, page 66.
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A€ (0,1),
H(\a+ (1 —=X\)b) > AH(a) + (1 - NH(b) &

A ailogai+(1-X)> biloghi—» (Aai+(1=A)b;) log(Aai+(1=A)b;) > 0

a; bz
dog—— % L1- dog— L
“A) S vy v N b % N (1= Wby "
& Md(a, Aa+ (1= X)) + (1 = N)d(b, \a + (1 — \)b) > 0,

whered signifiescross entropya measure of distance of probability distributions,
anda, b andXa + (1 — A\)b are non-zero sinc® a; =1 =>_b;,A € (0,1). dis
well known to be non-negative and strictly positive if itgaments are distinct
Thusd(a, Aa + (1 — A\)b) is strictly positive ifa # Aa + (1 — X)b, which is true
sincea andb are distinct and\ € (0, 1). ThereforeH is strictly concave and the
Lagrange multiplier approach will yield the global maximum

The next thing to do is to reformulate the optimisation pesblto make it suit
the Bayesian network framework. This means finding more @pjate param-
eters than the standand- ¥~ mentioned above. Without loss of generality
we can suppose the nodés, ..., Cy are ordered ancestrally with respect to
the causal graply in the Bayesian network: that is, all the parent3%fin G
come beforeC; in the ordering®” To make the proof clearer we shall also sup-
pose that all the probabilities in the specification are tp@si— we shall see later
that zeros do not affect the result. L€t represent the literal’; = v}, for

ki=1,...,K;,i=1,...,N. The new parameters are
k1,....ki— i ki
yzlk = p(cf c’fl A.oooNeTh),
fori =1,..., N. The main thing to note about this parameterisation is thahé

chain rule of probability,

N
k1,oonkn k1yeonkioa
e 1 :
=1

Now we shall translate the entropy formula into this framegw@n what fol-
lows we shall minimise negative entropyH, which is equivalent to maximising
entropyH):*8

—H = E gk loga:kl""”“"’
ki,...kn

[ b ] &
= Z Lnyflkjk]_lj Zlogyﬁc:..,ki,l
i=1

k1,....kn [j=1

36see[Paris 1994 propositions.5 for example.
37Recall that such an ordering is always possible becauseafa structure of the causal graph.
38Note that the existence and uniqueness of a maximum is indepe of parameterisation.
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SD3 {ﬁy’“k }logy’”’ ki

i=1ky,...kn [J=1

—Z > Hy'“’ e gyt

=1 k1,....k;

where we make this last step because for gagl can separate out

N

k... kj—1
> | I wi :

ki+1,...,kN j=i+1

and these terms canceltdy additivity of probability.

We shall deal with three types of constraints. The specifinatonstraints are
determined by those values provided in the Bayesian netsgaeification. Causal
constraints are determined by the causal graph under tisaldaelevance condi-
tion. Finally additivity constraints are imposed by thears of probability. While
one might suspect that all these constraints would lead torgplicated optimisa-
tion problem, we will see that by adopting an inductive apgiowe will be able
to form a Lagrangian function which only incorporates rigkly few specification
and additivity constraints.

Within the new framework we can write the specification coaists as

p(c" Fria A cr L) = afrkl’ ke ,
where thez,,, . .., ¢, involve the parents of’;, r1, ..., rr < i (thanks to the an-
cestral order) anil=1,..., N.3% We also have constraints imposed by additivity:

Don Y "1’ kion = lforeachkl,...,ki,l,z’ =1,...,N.
Decomposmg the entropy @ = S | H; where

[ I
> Lﬂlyj,l’,? Jlogy R
e

k1,..k;

we shall prove the proposition by induction 8h The caseV = 1 is trivial since
the constraintg(ci') = a;;, completely determine the probability distribution
over(C: there is nothing to do to maximise entropy and so the Bagasiwork
distribution, which satisfies the constraints, maximisesapy. Suppose the in-
duction hypothesis holds fg¥ — 1 and consider the case fof. It is here that we
apply the principle of causal irrelevance to generate thisaaconstraints on the
maximisation process from the causal graph. Since theblasare ordered ances-
trally, the move fromV — 1 to IV essentially involves incorporating a new variable

39Note that ther1, ..., 77, depend oni. | am inclined to avoid any further subscripting however.
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Cn which is not a cause of any of the previous varialigs. .., Cnx_;. Hence

if we maximise entropy on this new domain and restrict thelltagy probability
functiontoC, ..., Cxy_1 then by causal irrelevance we must have maximised en-
tropy on this smaller domain. Applying the induction hypedls on this smaller
domain{C,...,Cn_1}, we see that entropy is maximised if the distribution is
determined by the Bayesian network@n ..., Cny_1. Thusfori=1,... N—1,

the parameterg“’ “F-1 must be fixed tmffkli"“’k". Now H,,...,Hy_1 in-
volve only these fixed parameters, so in order to maxirfisal that remains is to
maximiseH y with respect tq;'“’ k””, subject to the specification constraints

-k kv,ookn—1 _ 1

fixing the vaIueeaN "t and the additivity constraints’, yy

for eachks, ..., kyn_1.
We shall now adapt the specification constraints.

Let pFri ke = p(crll A (\c_’ﬁ?) andek kv -1 = [Ten yflk’ k-1 pe
constants, fixed by having maX|m|sed entropy@n...,Cn—_1. Then

I RTLIPN SO S kN ko krp,
Nokn b L =pleNyy ANer' Ao Aerlt)

= E Pl AL Ak
ki i#r1,...,rp,N
= > Iy
kii#r1,...,r.,N j<N
k17...,kN 1 k17 ;kN 1
- : : € yN Jkn
ki,i#r1,....ro,N

We are now in a position to specify the Lagrangian functiartfi@ minimisa-
tion of —Hy:

ki,...,kn— ki,...,kn—1 ki,....,kn—-1 kg yeenskr
Ay = E L TN 10g YN n + E Ao Ex
ki,...kn kryseoskep kN

kl,.. kN 1 k17 kN 1 k7‘17"'7k7‘L k,, ,...,kr
E: e YN kn ANk b E

ki i#ri,...,r.,N

> lnyvl’kN’ . 1—1]

ki,....kn—-1
_ ki,..okn_1,,k1: kN1 kl, kN71
= E (e yNJw logy +
ki,....kn

kg sooskop [ kyokn—1, k1yenkn—1 Koy sskrr 2k ke
Akn [e Nkn —ayy, b L+
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/Jkly---,k yfvl,kNJmN 1 ]./KN} >

By Lagrange’s theorerff, in order to find conditions for a minimum we must

first check a constraint qualification. Enumerate the caigg f,, ..., f;. Form
a matrix A by letting each row consist of the partial derivatives
0 f-

1<k;j<Kjj=1,...,N.

N-1

ai’/N kN
Finally check that the rank ofl is J — this is easily done and | shall avoid the
details here.
Entropy is maximised if the partial derivatives of the Laggen are zero,
OAN .

k17 kN 1 Epgseskrp ki,...kn-1 _
9 ki,...kn—1 1+10gy +/\ :|+'u ' =0
YN kn

Given any such equation we can eliminate the Lagrange rhiaftjpt' -k~ -1
by finding another equation involvirigy # kn,

OAN

ki,....kn—1
5?/N,kgv

=0

(there will always be another such equation siGgehas at least two values), and
substituting to give a new equation

kryseeoskep
kN

ok k1, k1,....kn—1

logyNk,’ - —logyn s

"L —

Ery s
A - AM:
We next eliminate the multiplier expression on the leftdhaide by finding an-
other such equation involving , ..., ky,_, such thatk, =k, ,... k. =k,
There will always be another such equation unless N — 1, in which case the
constraints uniquely determine the Bayesian networkibigion, and entropy is

trivially maximised. This then gives

ki,...kn—1 ki, kn—1 __ kyoeokiy g Bk 1
log YN,y — log YN kw = log YNk — log YN Jen

Finally, all we need do is note that in the Bayesian netwoskritiution the con-
straints are satisfied and the independence assumptioiemtipat

k], 7kN 7‘17 k7’L k"‘17 k7’L
YN kn = YN ox = ON kN
L ’
Eyyookyoq  kpsenkn ke ke, ghriker
YN kn = YNkn = YNkn = AN gy

40see for examplgSundaram 199635.2.1
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in which case we substitute into our condition:

[ Y I Lyt
AN k1, T AN kN = 0N g, AN kn )

and find that it clearly holds. Thus the Bayesian networkithistion is the entropy
maximiser, as required.
All that remains is to point out what happens when specifieay tme zero.

There are two (compatible) scenarios: if soafg}j’“"k“ = 0 forj < N then

the corresponding®*~-1 = T[._ y;“k’ k3=t "\which by the induction hy-

Ky sk
pothesis is[[;_ a; w0 , vanishes. This eliminates entropy terms and con-

straints equally, Ieavmg fewer partial derivative comhs These conditions are

satisfied as above. The second scenario is that sqme = 0. In this
case the Lagrangian and partial derivatives are as befme:dnstralnts are sat-
isfied as before, but when substituting zeros in the pargaivdtives we make
use of the convention, common when dealing with the crosepyimeasure, that
0[log 0 — log 0] = 0log0/0 = 0. Thus the conditions are satisfied by null speci-
fiers. |

Thus we see that the independence assumption can be jusfifieedall. The
important thing to remember is that under the two-stage dations, the inde-
pendence assumption is neither a fact of causality nor evexssertion about an
agent’'s knowledge. It is a mechanism that can be used toedaew probabil-
ity statements from those in the agent’s background knaydethdependence is
justified because as a logic it coincides with maximum entraghich has well
known justifications.

6 STAGE TWO

Given background knowledge consisting of a causal gapind associated prob-
ability specificationS, we can represent the rational (maximum entropy) belief
functionp by the Bayesian network ad andS. This is stage one of the two-stage
methodology. However, whilg is rational given background knowledge, it may
not bear a close enough resemblance to objective prolyabilite put to practical
use. If that is the case then we need to transform the Bayasi@vork into one
which more closely approximates objective probability.isTis stage two of the
two-stage methodology. Bayesian networks may be appliededical diagnosis
for example, or fault-finding in aeroplanes. In such high gsenarios it is not
sufficient that any decisions are deemed reasonable givarkaf relevant infor-
mation: it would be negligent not to collect enough relevafdrmation to reliably
model the objective situation.

Thus the next step is to refine the Bayesian network in the bdmew in-
formation, in order to achieve greater reliability. Manytioé algorithms from the
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extensive literature on learning Bayesian networks frotedaan be applied here.
In the rest of this section | will summarise my own ideas irs tléspect — these
are simple technigues which | believe have a clear justifinahat coheres well
with the entropy-based approach of the last secfoRirst | shall deal with the

case where new causal information comes to be known. Afied ghall address
the following questions. What sort of information shouldearollect in order to

best refine the network? How one can limit the complexity efriietwork?

6.1 Causal Information

Suppose our aged¥ finds out that”; causes;. | suggest that she should just
add an arrow fronC; to C; to her initial causal graph (if there is no arrow there
already), and she should ensure her specifying probaiititt; |d;) take this new
parent into account. There are two possible justificatidnthis adding-arrows
strategy. One can apply the arguments of the last sectioK. #farns of the new
causal link and the corresponding probabilities then hek@aound knowledge
now includes an extended causal graph and probability fpegaon, in which
case she should maximise entropy by adopting the new Bayastsvork formed
by adding the arrow and the specifiers.

The second possible justification relies on the dependericeiple®® as op-
posed to causal irrelevance, as follows. Suppose we sfanithf Bayesian net-
work (G, S¢), whereG is X's causal graph anfl¢ is her associated probability
specification, whose entries we shall assume agree withbjeetose probabilities
p*(ci|d;). Then we add an arrow frorfi; to C; and change the specified proba-
bilities to give a new networkH, Sg ). We measure the improvement of the new
network over the old by how much closer its induced probgtilinctionpy is to
the objective probability functiop* thanpg, according to the usual measure of
distance between probability functions, cross entropyerilie have the following
facts:

IMPROVEMENT OFADDING ARROWS

(i) the new network is no worse a network than the initial retay

(i) the new network is a better network if and onlyGf; is probabilistically
dependent od;, conditional onC';’s other parent®.

In particular, if the dependence principle holds then tlet faatC; is a cause
of C; entails that the two nodes are conditionally probabil&@hcdependent and
thus that the probability distribution represented by tbes metwork is closer to

41see[Jordan 199Band[Buntine 1998 for good surveys.

42Some related work: the Kutatd algorithm [tferskovitz 1991 also has an entropy-based justifi-
cation. However it involves minimising entropy and posem#icant computational problems in the
worst case.[Jitnah 1999 employs mutual information as | do, but as a technique fobadistic
inference given a Bayesian network rather than a means firdgethe network itself.

43Recall that the dependence principle says that a direceczhanges the probability of its effect
conditional on the effect’s other causes.
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the target objective distribution than that of the old netwaove are justified in
adding an arrow frond’; to C;.

Proof. For simplicity (but without loss of generality as we shaléshortly) we
shall assume thai; andpg are strictly positive over thaetomic states; A. . .Acy .

For (i) we need to show thd(p*, pr) —d(p*, p) < 0, whered is cross entropy
distance. So,

d(p*,pu) — d(p*, pc) Zp S) Zp*(s) In p*(s)

_Zp a(s)

pH S)

where thes are the atomic states, and bearing in mind ghats) > 0. Now for
realz > 0,In(z) < z — 1. By assumptiong(s)/pr(s) > 0, so

* pG(S) * pG(S) :|
s)In < s -1
;p ()0 225 < ;p O ewrs
* pG(S)
= S - ].
Xs:p &) e &
and thus we need to show that
* pG(S)
p (s <1
zsj ()5
Now since we are dealing with Bayesian networks,

pa(s) _ [1p* (ckldS)
pu(s)  TIp*(ckldfl)’

for each literalc;, consistent withs, whered{’ is the state of the parents 6f
according toG which is consistent witls, and likewise fordf. But H is justG

but with an arrow fromC; to C};, so the terms in each product are the same and
cancel, except when it comes to literalsinvolving nodeC;. Thus

VA

pals) _ PHeldf) — p*(eld)

pr(s)  p(cjldl) ~ p*(cjlei Ad)’

where we just letl be dJG andc; the remaining literal irdf’. Substituting and
simplifying,

() p*(cj|d)
i d)——————
Zp s Zp c Aci A ) *(cj|ci/\d)
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- Zp*(cj|d)l9*(d|ci)p*(ci).

Consider the new set of variablé¢g’;, C;, D} whereC; and C; are as before
and D takes as values the states of the parent§’phccording toG. Form a
Bayesian networld” incorporating the grapty; — D — C; (with specifying
probabilities determined as usual from the probabilityction p*). Then since
T is a Bayesian networky " p*(c;|d)p*(d|c;)p*(ci) = D pr(ci Ac; Ad) =1
by the additivity of probability. ThuS™, p*(s)pc (s)/pw (s) = 1 sod(p*, pr) —
d(p*,pa) < 0, as required.
Let us now turn to (ii). From the above reasoning we see that

pa(s) _ pa(s)
pr(s) ~ pu(s)

d(p*,pg) —d(p*,pg) <0 & In
for some atomic state Butlnz <z — 1< ¢ # 1, and

PG (s) p*(cjle;) . .
o) P O p g L e Cle Ad) —p(ld) £ 0,

where the;, ¢;, d are consistent with. Therefored(p*, pu) — d(p*, pe) < 0 if
and only if there is some;, c;, d for which the conditional dependence holds.

The assumption that; andpy are positive over atomic states is not essential.
Supposey is zero over some atomic states. Then in the above,

v 2

pH(s)

Z p*(s) In pals) + Z p*(s)In pG(S).

s:pH (s)>0 pH(S) s:pE (s)=0

The first sum on the right hand side<s0 as above. The second sum is zero
because each component is, as we shall see now. Suppdsg = 0. Then
TTos, p*(ckldH) = 0 sop*(ex A dFf) = 0 for at least one suck, in which
casep(s) = 0 since by the axioms of probability(u) = 0 = p(u Av) = 0.
Now in the sum read*(s) In pc(s)/pu(s) to bep*(s) In pe(s) — p*(s) Inpr (s).

In dealing with cross entropy by conventionn 0 is taken to be). Therefore
p*(s)Inpa(s)/pu(s) = 0lnpe(s) — 0 = 0. The same reasoning appliepif is
zero over some atomic states. Likewis@ifs) is zero then*(s) In pa(s)/pr(s)

is zero too. |

This justifies the adding-arrows approachXf learns of a new causal link
amongst the current variables. If she learns of a new var@kl, , that is causally
related to one or more of the other variables, and she alsedéhe probabilities
plen+1ldnv+1), then we can apply the above argument (or equally the argismen
of §5) to show thatX's new network should be constructed from her old network
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by adding the new node and causal arrows to her graph and whprobabilities
to her specification.

Finally note that the above argument only requires that tied arrow links
conditionally probabilistically dependent nodes. As wevénhdiscussed ir§2,
nodes need not be causally related to be probabilisticalheddent. Therefore,
if our agent is presented with information to the effect ttvad nodes are condi-
tionally dependent, she is justified in adding the corredpanarrow to her net-
work, regardless of whether those nodes are causally del&at as a result of
this generalisation, the graph in the agent’s Bayesian ar&tweed no longer be
causally interpreted: the Bayesian network becomes ansgbsbol for represent-
ing a probability function.

6.2 Mutual Information

We now have a strategy for changing the network when caufsahiation or other
probabilistic dependencies are presented to the agentisBlkre a strategy for
seeking out good arrow to add? By adding arrows we increase both theogize
the specification required in the Bayesian network @pace complexijyand the
time taken to calculate probabilities from the network (tinge complexity— is
there a means of limiting these complexities to prevent #teark from becoming
impractical? | shall address both these questions in tlotiose

The key to limiting complexity consists in finding constriaii® such that
Bayesian networks satisfying have acceptable complexity, and then ensuring
that (i) the current network satisfi€s and (ii) an arrow is only added to the cur-
rent network if the resulting network continues to sati§fyConsider by way of
example the following constraints.

¢ C1: nonode has more thak parents, for some constafit. This bound on
the number of parents serves to restrict the space complehd Bayesian
network. For instance if¢ = 0 then the discrete network (no arrows) is
the only available network, il = 1 then all networks satisfying, have
graphs that are forests, andiif = N — 1 there is no restriction at all on the
networks. It is easy to see that if all variables are bindmy,domplexity of
a network satisfying; is less than or equal taV — K +1)2% — 1, avalue
thatis linear inV.

¢ (5. the Bayesian network has space complexity of at mosdtow if K = N
the only network to satisf, is the discrete network and i = 2%V — 1
any network satisfies the constraint. Depending on the prolrh hand and
available resources we will want to choose an appropridteeviar x or K
which balances the range of networks available with thaingexity.

e (C3: the graph is singly-connected. Having a singly connecteglyensures
that the Bayesian network can be used to calculate requiaahpilities
efficiently (in time linear in the number of nod@§). Note however that a
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singly-connected network can have space complexity @3‘'to' + N — 1
on binary-valued nodes, so in practice this constraint negy be used with
another which limits space complexity.

In sum, if we fix some constraintsthe goal then is to find aonstrained net-
work (a Bayesian network satisfying) which gives a good approximation to the
target objective distributiop* (using cross entropy as a measure of degree of ap-
proximation).

We shall associatewaeightwith each arrow in a Bayesian network as follows.
In order to weigh the arrows going into a no@ewe enumerate the parents@©f
asD' ..., D*. Thenforj = 1,..., k we weigh the arrow fronD’ to C; by the
conditional mutual information

p*(ci Ad’|d)

I(C;, D|{D,... . DI 1)) = p*(e; NdAd)lo .
(P N= 2 08 e e (@)

ci,d,d?

whered ranges over the statds A ... Ad’~'. Then:

MAX-WEIGHT APPROXIMATION
The network subject to constrairgtsvhich affords the closest approximation
to p* (according to the cross entropy measure of distance) is ehgank
satisfyingC whose arrow weights are maximised.

Proof. The distance between the probability functiosletermined byX 's Bayesian
network and the target functigit is

_ “(s p*(s)
= zs:p (s)log 205)

N
—Zp )log p* (s Zp )log [T (cilds)
i=1

where thec; andd; are consistent with,

N
—Zp ) log p* (s Zp s) > logp*(cild;)
i=1
(ci /\d al
=3 vt (s)logp*(s) = S p*(s) S AT Zp s) Y _logp*(ci)
s s i=1

278

N
) =3 I( Ci,Di)+ZH<p
i=1 i=1

where H (p*) is the entropy of functiop*, I(C;, D;) is the mutual information
betweenC; and its parents anff (p*|¢;,) is the entropy ofp* restricted to node

Ci)
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C;. The entropies are independent of the choice of Bayesiamonletso the dis-
tance between the network and target distributions is mg@hjust when the total
mutual information is maximisetf.

Note that
I(A,B) + I(A,C|B)
* p*(aAb) p*(a A clb)
= p(anbAc [log + log
azbc ( ) p*(a)p*(b) p*(alb)p*(c|b)

_ (g A og L@ ADP (@ Ab A )p™(b)p* ()
=D planbnelog B (a A B A D)

a,b,c
N p*(aNbAc)
:E aNbAc)log——= =I(A,{B,C}).
a’b’cp( ) gp*(a)p*(c/\b) ( ;{ 3 })

By enumerating the parent3; of C; asD!, ..., D*, we can iterate the above

relation to get
1(Cy,D;) = I(C;, DY) + I(C;, D*| DY)+

I(Ci, D*{D',D*}) + ...+ I(C;, D*|{D'",..., D*"'}).
Therefore,
N N , ‘
ZI(Ci;Di) = ZZI(CZ',DJHDl,...,fol}),
— =

i=1 i i

and the cross entropy distance between the network distiband the target
distribution is minimised just when the sum of the arrow wsgys maximised &

Note that this result is independent of choice of enumematiothe variables,
as can be seen from the proof.

There are various ways one might try to find a constrained ortwith max-
imum or close to maximum weight, but perhaps the simplestgeeady adding-
arrows strategy: start off with the discrete graph and ah stege find and weigh
the arrows whose addition would ensure that the dag stmietod constraint§
remain satisfied, and add one with maximum weight. If more thae best arrow
exists we can spawn several new graphs by adding each basttarthe previous
graph, and we can constantly prune the number of graphs imnaliing those
which no longer have maximum weight. We stop the algorithremvho more
arrows can be added.

Given this algorithm and its justification, we now have anste our two ques-
tions of this section. We seek out a good arrow to add by finthegarrow with

44This much is a straightforward generalisation of the praof@how & Liu 1964 that the best
tree-based approximation is the maximum weight spannegy tr

45See[Williamson 2000h and[Williamson 2000 for analyses of the performance of this algorithm,
which turns out to be remarkably effective for a greedy appho
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maximum conditional mutual information weight. We limiticomplexity of the
network by imposing constraints on the network.

Thus in stage two of the two-stage methodology we can imptbeecausal
network obtained in stage one by adding arrows — these arliolwausally
related variables or more generally probabilistically elegent variables, and a
good strategy is to add the weightiest arrow which does naaig constraints
on the complexity of the network. The conditional mutuabimhation weighting
is a measure of conditional dependence and so in effect thegy is to add an
arrow between two nodes that are most (conditionally) dépetn The resulting
graph will not necessarily reflect the true causal relatmmengst the variables,
and so stage two corresponds more closely to the abstraaddétions for Bayesian
networks than any causal interpretation.

7 CONCLUSION

While the independence assumption poses significant prsbier a straightfor-
ward objective or subjective interpretation of Bayesiatwoeks, independence
can be though of as a means of determining a rational belredtifon from an
agent’s background knowledge. Thus Bayesian networks eayiven firm foun-
dations by adopting a two-stage approach, whereby one figgita a subjective
causal interpretation which may then be dropped as the miefa/cefined in order
to better approximate a target objective probability fiorct These foundations
appeal to information-theoretic notions and assumptibositcausality which are
somewhat less contentious than the independence assamftiage one is jus-
tified by maximum entropy considerations while an addingnas strategy for
stage two can be justified by minimising cross entropy netato the objective
distribution. This approach is not subject to many of thebfgms that beset the
objective or subjective interpretations consideregidrand$3: we do not need to
worry about individuation of variables, and stage two camubed to compensate
for the presence of accidental and extra-causal depereteacd any discrepan-
cies between the subjective network and an objective caadalork. The advan-
tage over the abstract approach is that we don’t require @bdag of past case
data to determine a network — stage one makes use of causakalpabilistic
background knowledge. The two-stage methodology can heedas a way of
integrating background knowledge (including qualitaibeisal knowledge) with
machine learning technigues (of which the adding-arrovegesy is one exam-
ple) A6

Department of Philosophy, King’s College, London.

46Thanks to David Corfield, Donald Gillies and Jeff Paris folpfid comments, and the UK Arts
and Humanities Research Board for funding this research.
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