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FOUNDATIONS FOR BAYESIAN NETWORKS

Bayesian networks are normally given one of two types of foundations: they are
either treated purely formally as an abstract way of representing probability func-
tions, or they are interpreted, with some causal interpretation given to the graph in
a network and some standard interpretation of probability given to the probabili-
ties specified in the network. In this chapter I argue that current foundations are
problematic, and put forward new foundations which involveaspects of both the
interpreted and the formal approaches.

One standard approach is to interpret a Bayesian network objectively: the graph
in a Bayesian network represents causality in the world and the specified probabil-
ities are objective, empirical probabilities. Such an interpretation founders when
the Bayesian network independence assumption (often called the causal Markov
condition) fails to hold. Inx2 I catalogue the occasions when the independence as-
sumption fails, and show that such failures are pervasive. Next, inx3, I show that
even where the independence assumption does hold objectively, an agent’s causal
knowledge is unlikely to satisfy the assumption with respect to her subjective
probabilities, and that slight differences between an agent’s subjective Bayesian
network and an objective Bayesian network can lead to large differences between
probability distributions determined by these networks.

To overcome these difficulties I put forward logical Bayesian foundations inx5.
I show that if the graph and probability specification in a Bayesian network are
thought of as an agent’s background knowledge, then the agent is most rational
if she adopts the probability distribution determined by the Bayesian network as
her belief function. Specifically, I argue that causal knowledge constrains rational
belief via what I call the causal irrelevance condition, andI show that the distribu-
tion determined by the Bayesian network maximises entropy given the causal and
probabilistic knowledge in the Bayesian network.

Now even though the distribution determined by the Bayesiannetwork may be
most rational from a logical point of view, it may not be closeenough to objec-
tive probability for practical purposes. I show inx6 that by adding arrows to the
Bayesian network according to a conditional mutual information arrow weight-
ing, one can decrease the cross entropy distance between theBayesian network
distribution and the objective distribution. This can be done within the context
of constraints on the Bayesian network which limit its size and the time taken to
calculate probabilities from the network, in order to minimise computational com-
plexity.

This leads to two-stage foundations for Bayesian networks:x4 first adopt the
probability function determined by a Bayesian network (this, according to the log-
ical Bayesian interpretation, is the best subjective probability function one can
adopt given the knowledge encapsulated in the network), andsecondly refine the
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Bayesian network to better fit objective probability (this process of calibration is
required by empirical Bayesianism).1

To start with I shall give an introduction to Bayesian networks and their foun-
dations inx1, before proceeding to criticisms of the standard interpretations of
Bayesian networks inx2 andx3. The remainder of the paper will be taken up with
my suggestions for new foundations.

1 BAYESIAN NETWORKS

Suppose we have a domain ofN variables,C1; : : : ; CN , each of which takes
finitely many values,v1i ; : : : ; vKii ; i = 1; : : : ; N . A literal is an expression
i
of the formCi = vji and astateis a conjunction of literals. ABayesian network
consists of a directed acyclic graph, ordag,G over the nodesC1; : : : ; CN together
with a set of specifying probability valuesS = fp(
ijdi) : 
i is a literal involv-
ing nodeCi anddi is a state of the parents ofCi in G, i = 1; : : : ; Ng.2 Now,
under an independence assumption,3 namely that given its parentsDi, each nodeCi is probabilistically independent of any setS of other nodes not containing the
descendants ofCi, p(
ijdi ^ s) = p(
ijdi), a Bayesian network suffices to deter-
mine a joint probability distributionp over the nodesC1; : : : ; CN .4 Furthermore,
any probability distribution onC1; : : : ; CN can be represented by some Bayesian
network.

Bayesian networks are important in many areas where probabilistic inference
must be performed efficiently, such as in expert systems for artificial intelligence.
Diagnosis constitutes a typical problem area for expert systems: here one is pre-
sented with a state of symptomss and, under the probabilistic approach to diagno-
sis, one must findp(
ijs) for a range of causal literals
i.5 Depending on the struc-
ture of the graphG, both the number of specifiers required to determine a proba-
bility distribution p and the computational time required to calculatep(
ijs) may
be substantially lower for a Bayesian network under the independence assumption
than for a representation ofp which makes no assumptions. Thus Bayesian net-

1See the introduction to this volume for more on the distinction between logical and empirical
Bayesianism. Such forms of Bayesianism are often referred to as ‘objective’ Bayesian positions, and
confusion can arise because physical or empirical probability (frequency, propensity or chance) is of-
ten called ‘objective’ probability in order to distinguishit from Bayesian ‘subjective’ probability. In
this chapter I will draw the latter distinction, using ‘objective’ to refer to empirical interpretations of
causality and probability that are to do with objects external to an agent, and using ‘subjective’ to refer
to interpretations of causality and probability that depend on the perspective of an agent subject.

2If Ci has no parents,p(
ijdi) is justp(
i).
3The Bayesian network independence assumption is often called the Markov or causal Markov

condition.
4The joint distribution p can be determined by thedirect method: p(
1 ^ : : : ^ 
N ) =QNi=1 p(
ijdi) wheredi is the state of the direct causes ofCi which is consistent with
1 ^ : : :^ 
N .

Alternatively p may be determined by potentially more efficientpropagation algorithms. See[Pearl
1988] or [Neapolitan 1990] here and for more on the formal properties of Bayesian networks.

5See[Williamson 2000] for more on the probabilistic approach to diagnosis.
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works can offer key pragmatic advantages over formalisms without an assumption
like independence.

There are two main types of philosophical foundations givento Bayesian net-
works. One can treat Bayesian networks asabstract structures, and use machine
learning techniques to learn from a database of past case data (for instance of the
symptoms and diagnoses of past patients) a Bayesian networkthat represents, or
represents an approximation to, a target probability distribution.6 More commonly,
Bayesian networks areinterpreted. Here the graph is taken to represent a causal
structure, either objective or subjective. In the former case the graph contains an
arrow fromCi to Cj if Ci is a direct cause ofCj , but in the subjective case the
graph represents the causal knowledge of an agentX , with an arrow fromCi toCj
if X believes, or knows, thatCi is a direct cause ofCj . The specified probabilities
are also given an interpretation, either objective in termsof empirical frequencies,
propensities or chances, or more often subjective in terms of degrees of rational
belief. Finally the independence assumption is posited as arelation between the
causal interpretation and the interpretation of probability.

In my view the most important limitation of the abstract approach is that there
is often not enough initial data for it to get off the ground. The abstract approach
requires a database of past case data, but there may simply not be enough such data
to invoke a machine learning algorithm for generating a Bayesian network. Fur-
thermore, new case data may trickle in slowly and it may take awhile before the
learning algorithm yields dependable results. Even if there is plenty of data, the
data may not be reliable enough to generate a reliable network — in my experience
this is a significant problem, since different people often measure or categorise
variables in different ways even when collecting data for the same database. There
is also a difficulty when certain variables are not measured at all: diagnostic data,
for example, rarely includes the presence or absence of every possible symptom
of a patient, but just the most significant symptoms, and the symptoms considered
most significant are subject to biases of individual doctors. In sum, the abstract
approach is not appropriate for applications which requirean expert system oper-
ating right from the outset, but where the data is not available, is of poor quality,
or is subject to mixtures of unknown biases. However the interpreted approach
does not face this sort of problem: an expert can often from the outset provide
qualitative causal knowledge, subjective degrees of belief and even estimates of
objective probabilities, and this information can be used to construct a Bayesian
network right away — no past case data is required.

On the other hand the interpreted approach also has its problems, largely to
do with the status of the independence assumption.7 In the next two sections I
shall outline these problems with the independence assumption and then go on to
develop a hybrid methodology incorporating aspects of boththe interpreted and
abstract accounts: the basic idea behind the hybrid methodology is to form an

6See[Jordan 1998].
7One problem that I will not consider here is theknowledge elicitation problem: the expert may find

it hard to articulate her knowledge, and the elicitation process can be quite slow.
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initial Bayesian network from expert knowledge, and to further refine this network
in the light of new case data. First we shall tackle the problems with an objective
interpretation, and then investigate the subjective approach inx3.

2 OBJECTIVE NETWORKS

Under an objective interpretation, the Bayesian network independence assumption
makes a substantive claim about the relationship between objective causality and
objective, empirical probability. I will show here that this claim is highly problem-
atic, rendering an objective interpretation inadequate.

It will be useful to note that theprinciple of the common causeis a logical con-
sequence of the independence assumption.8 The principle of the common cause
claims the following. Suppose two variables are probabilistically dependent and
neither causes the other, then� existence: they have one or more causes in common,9 and� screening: they are probabilistically independent conditional on those com-

mon causes.

We can exploit the link between independence and the common cause principle
because when an objective interpretation is given to both principles one can find
many counterexamples to the latter principle which therebycontradict the former.
In effect we can translate doubts about probabilistic analyses of causality in the
philosophical literature — such analyses often appeal to the objectively-interpreted
principle of the common cause — into doubts about the objective interpretation of
Bayesian networks. Many of the counterexamples are well-known and, when con-
sidered in isolation, thought to be so unusual as to be unimportant, or thought to be
susceptible to particular rebuttals. I want to provide a taxonomy of the counterex-
amples in order to show that the problem is more widespread than often considered
and so general that the rebuttals are either too particular or unappealing when gen-
eralised.10

8This principle is due to Reichenbach (see[Reichenbach 1956], x19, pages 157-167). It is also
often assumed as a basis for statistical experimentation —[Fisher 1935]. One can see that the principle
of the common cause is a consequence of the independence assumption by generalising the following
example in the obvious way. Suppose we have a Bayesian network with graphA �! B;C �! D.
Thus neitherB nor D cause the other, nor do they have a common cause.B andD must then be
unconditionally probabilistically independent since forliterals b andd onB andD respectively, their
joint probability p(b ^ d) = Pa;
 p(bja)p(a)p(dj
)p(
) = [Pa p(bja)p(a)℄[P
 p(dj
)p(
)℄ =p(b)p(d), where the first equality follows from the direct decomposition of probability in a Bayesian
network (see[Neapolitan 1990] theorem5.1 for example).

9Existence of a common cause resembles Mill’s Fifth Canon of Inductive Reasoning: ‘Whatever
phenomenon varies in any manner whenever another phenomenon varies in some particular manner, is
either a cause or an effect of that phenomenon, or is connected with it through some fact of causation.’
[Mill 1843], page 287.

10A large literature touches on the independence assumption in one way or another. Thus there are
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I shall argue against the independence assumption by documenting two types of
counterexample to the principle of the common cause: the causal variablesCi andCj may beaccidentally correlated, or there may be someextra-causal constraint
which ensures that they are probabilistically correlated.11 There may either be no
suitable common cause to account for a correlation, contradicting the existence
condition above, or if there are common causes, they will notaccount for all of the
correlation, contradicting the screening condition.

2.1 Accidental Correlations

Christmas trees tend to be sold when most oranges ripen and are sold. LetC rep-
resent the number of Christmas trees sold on any day andO represent the number
of oranges sold on any day (C andO are random variables). Thenp(C > xjO >y) > p(C > x) for some suitable constantsx andy. Now it seems clear that sales
of Christmas trees do not cause sales of oranges, nor vice versa. Hence, some
common cause must be found to explain their probabilistic dependence if the in-
dependence assumption is to hold. If there is a common cause it would have to be
something like the time of year or the season. However, intuitively one does not
endow the time of the year with causal powers, and there are noobvious mecha-
nisms at play underlying any such causation. Intuitively there is no common causal
explanation for the correlation — it is accidental. If such intuitions are right, then
the independence assumption must fail for this causal scenario.

In order to save the independence assumption one may well be tempted to main-
tain that the time of year really is the common cause here. I shall call this strategy
causal extension. The idea is that one tries to extend the intuitive concept ofcause
by counting intuitively non-causal variables, like the time of the year, as causal.
In the context of Bayesian networks, causal extension oftentakes the form of an
assumption that there is a ‘hidden’, ‘latent’ or ‘unmeasured’ common cause when-
ever two variables are found to be correlated, even when there is no intuitively
plausible common cause.12 Unfortunately, there are a number of difficulties with
the strategy of causal extension. Firstly, extending the concept of cause creates
epistemic problems. Identifying causal variables and the causal relationships be-
tween them is a hard problem. Any extension of the concept of cause is likely to
make the task harder. In particular, it may be very difficult for an expert to pro-
vide a causal graph under the causal extension approach: oneis asking the expert
to identify variables that render the independence assumption valid, rather than
to identify the causes and effects that she is used to dealingwith. Furthermore,

criticisms (for example[Humphreys & Freedman 1996], [Humphreys 1997], [Lemmer 1993], [Lemmer
1996], [Lad 1999]) and defences (for example[Spirtes et al. 1997], [Hausman 1999], [Pearl 2000]x2.9.1) of the independence assumption which I will not cover here. I will however cover the criticisms
I believe most telling and the most viable reactions to thesecriticisms.

11‘Correlation’ is occasionally used to denote some kind oflinear dependence, but I shall just use it
as a synonym for ‘probabilistic dependence’ here.

12See[Binder et al. 1997] and[Pearl 2000] for example.
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if one increases the number of nodes and arrows that must be considered in the
graph of a Bayesian network then one risks the network becoming too complex for
practical use. The amount of space required to store a Bayesian network and the
amount of time required to calculate probabilities from thenetwork both increase
exponentially with the number of nodes in the worst case. This worst case occurs
when the graph is dense — that is, there are many arrows in the graph. Thus causal
extension is a dangerous tactic from an epistemic and practical point of view.

The second major problem is that by extending the concept of cause we are
liable to lose qualities that are important to causality. Genuine causal variables
tend to have various characteristics in common: for exampleone can normally
view them as spacio-temporally localised events, and causes and effects tend to be
related by physical mechanisms. If we allow variables whichdo not have these
qualities then we can no longer be said to be explicating the notion of cause — the
extension is ad hoc and the word ‘cause’ loses meaning, just becoming a synonym
for ‘variable’ if the process is pursued indefinitely. This is clearly undesirable if
we require a genuinely causal interpretation of the graph inthe Bayesian network,
as opposed to more abstract foundations.

Elliott Sober produced the following counterexample to theprinciple of the
common cause:

Consider the fact that the sea level in Venice and the cost of bread
in Britain have both been on the rise in the past two centuries. Both,
let us suppose, have monotonically increased. Imagine thatwe put
this data in the form of a chronological list; for each date, we list the
Venetian sea level and the going price of British bread. Because both
quantities have increased steadily in time, it is true that higher than
average sea levels tend to be associated with higher than average bread
prices. The two quantities are very strongly positively correlated.

I take it that we do not feel driven to explain this correlation by pos-
tulating a common cause. Rather, we regard Venetian sea levels and
British bread prices as both increasing for somewhat isolated endoge-
nous reasons. Local conditions in Venice have increased thesea level
and rather different local conditions in Britain have driven up the cost
of bread. Here, postulating a common cause is simply not veryplau-
sible, given the rest of what we believe.13

Here Sober calls the existence of a common cause into question — there is a
causal explanation of the correlation, but it is not an explanation involvingcom-
mon causes, so in a sense the correlation is accidental. Postulating a common cause
conflicts with intuitions here. In particular there appearsto be no common causal
mechanism. We often appeal to non-probabilistic issues like mechanisms to help
determine which correlations are causal and which are accidental. As Schlegel
points out, ‘we reject a correlation between sun spots and economic cycles as

13[Sober 1988] 215.
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probably spurious, because we know of no relating process, but accept a correla-
tion between sun spots and terrestrial magnetic storms because there is a plausible
physical relationship.’14

Besides causal extension, there is a separate line of response one can make to
such counterexamples, that ofrestriction, whereby one restricts the application
of the independence assumption so that it does not apply to awkward cases like
Sober’s.15 This response can take one of two forms,correlation restrictionor
causal restriction. Regarding the former, some, such as Papineau and Price, claim
that British bread prices and the Venetian water level do nothave the right type
of correlation for the principle of the common cause to be applied since their cor-
relation can be predicted from the co-variation within eachtime-series16 or from
determinism within each physical process.17 They thus attempt to avoid the coun-
terexample to the common cause principle by restricting theprinciple itself. How-
ever, it should be noted that they pursue this strategy in thecontext of a defence of
a probabilistic analysis of causality. Whether or not this move is successful in that
context, it is no help here when thought of in terms of the Bayesian network frame-
work, for restricting the principle of the common cause restricts the independence
assumption too, and the reduction of a probability functionto a Bayesian network
is not possible without full-blown independence. Hence correlation restriction is
not a viable move when considering Bayesian networks.

The other variety of restriction, causal restriction, is more promising. Here the
strategy is to argue that the variables themselves are not ofthe sort to which the
independence assumption applies. One may claim that the correlated variables are
not causal variables, although this is rather implausible when it comes to the ex-
amples above. Alternatively one may accept that they are causal, but have not been
individuated correctly for the independence assumption toapply. For example, the
variables may need to be indexed by time,18 may need to be complete descriptions
of their corresponding single-case events, or may need to beproperties that can be
repeatedly instantiated.

While it is possible that for any particular counterexampleto independence
there is another way of individuating the variables so that the dependency is re-
moved, it is less clear that one rule of individuation will overcome all counterex-
amples. I have used examples which exhibit temporal correlation here because it
is easy to see how such variables could be correlated, but anytwo events might ex-
hibit accidental correlation, in which case alternative individuation will not help.
The independence assumption rules out accidental correlation a priori, and such a
restriction does not appear a priori to be any more plausibleapplied to one individ-
uation than another. Thus an appeal to individuation is by nomeans guaranteed to
overcome the problem of accidental correlation.

14[Schlegel 1974] 10.
15Lakatos called this type of defence ‘monster-barring’.
16[Papineau 1992] 243.
17[Price 1992] 264.
18See[Spirtes et al. 1993] page 63 for example.
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Causal restriction also induces epistemic problems of its own. If individuation
matters then one has to do a certain amount of analysis beforetackling a problem,
making the application of Bayesian networks harder. Furthermore, in a particular
problem one may be interested in variables which must be individuated in a way
for which independence does not hold, in which case the machinery of Bayesian
networks cannot be applied at all.

I have illustrated the problem of accidental correlations and introduced strate-
gies for defending the independence assumption, includingcausal extension and
causal restriction. These strategies are somewhat less than effective at dealing with
the problem, and if they can be made to work will only do so at anepistemic and
intuitive cost. Inx2.2 we will see how these strategies can be applied to other com-
mon types of counterexample. Our conclusions will be much the same. Yet these
costs are not ones we have to reluctantly accept. In the foundations I propose later,
we will stick with our intuitive notion of cause and the individuation of variables
will not matter.

2.2 Extra-Causal Constraints

I shall now consider counterexamples to the principle of thecommon cause where
probabilistic dependencies have an explanation that relates the dependent variables
— thus the dependencies are not accidental — but where the explanation is not
causal. There are a number of non-causal correlators: two causal variables can be
correlated� in virtue of their meaning,� because they are logically related,� because they are mathematically related,� because they are related by (non-causal) physical laws, or� because they are constrained by local laws or boundary conditions.

Let us look at each of these situations in turn.
First, the meanings of expressions can constrain their probabilities. ’Flu and

orthomyxoviridae infection are probabilistically dependent, not because they have
a common cause, but because ’flu is an example of orthomyxoviridae infection —
the variables have overlapping meaning.

In response one can advocate a kind of causal restriction. One can argue that
causes should be individuated so as to avoid overlapping meaning, and that one
should remove a node from a Bayesian network if there is another with related
meaning. But this is not always a sensible move for a number ofreasons. One can
lose valuable information from a Bayesian network by deleting a node, since both
the original nodes may be important to the application of thenetwork. Meaning
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might be related through vagueness rather than classification overlap, for exam-
ple if one symptom is a patient’s report of fever and another is a thermometer
reading, and it may be useful to consider all such related nodes. In some cases
one may even want to include synonyms in a Bayesian network, for example in
a network for natural language reasoning. Furthermore, removing a node can in-
validate the independence assumption if the removed node isa common cause of
other nodes. Or one simply may not know that two nodes have related meaning:
Yersin’s discovery that the black death coincides with Pasteurella pestis was a gen-
uine example of scientific inference, not the sort of thing one can do at one’s desk
while building an expert system.

Causal extension is no better a ploy here. One could suggest that a common
cause variable called ‘synonymy’ or ‘meaning overlap’ should be introduced. But
this will not in general screen off such dependencies, and asbefore we have epis-
temic cost in terms of identifying dependencies in virtue ofmeaning and the likely
added complexity of incorporating new variables and arrows, as well as a commit-
ment to a counterintuitive concept of cause.

Probabilistic correlations can also be explained by logical relations. For in-
stance, logically equivalent sentences are necessarily perfectly correlated,19 and if
one sentence
 logically implies sentenced, the probability ofd must be greater
than or equal to that of
. Thus one should be wary of Bayesian networks which
involve logically complex variables. SupposeC causes complaintsD, E andF ,
and that we have three clinical tests, one of which can determine whether or not a
patient has bothD andE, another tells us whether or not the patient has one ofE
andF , and the third tells us whether the patient hasC. Thus there is no direct way
of determiningp(dj
); p(ej
) or p(f j
) for literals
, d, e andf of C,D,E, andF
respectively, but one can findp(d^ej
) andp(e_f j
). One might then be tempted
(in the spirit of causal extension) to incorporateC �! (D ^ E); C �! (E _ F )
in one’s causal graph, so that the probability specificationof the corresponding
Bayesian network can be determined objectively. In such a situation, however,C
will not screen nodeD^E off from nodeE_F and the independence assumption
is not satisfied.

This problem seriously affects situations where causal relata are genuinely log-
ically complex, as happens with context-specific causality. A may causeB only
if the patient has genetic characteristicC: if the patient has any other genetic
characteristic then there is no possible causal mechanism fromA toB. Then the
conjunctionA ^ C is the cause ofB, notA orC on their own. However,A may
be able to causeD in everyone, so the causal graph would need to contain a nodeA^C and a second nodeA. One would not expect these two nodes to be screened
off by any common causes.

Next we turn to mathematical relations as a probabilistic correlator. By way of
example, consider the application of Bayesian network theory to colon endoscopy
as documented in[Sucar et al. 1993] and[Kwoh & Gillies 1996]. The object is

19At least according to standard axiomatisations of probability.
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to guide the endoscope inside the colon towards the lumen, avoiding the divertic-
ulum. A Bayesian network was used to identify the lumen and diverticulum from
the endoscope image. The presence of the lumen causes a largedark region to
appear on the endoscope screen while the diverticulum causes a small dark region.
The size of the region can be directly measured, but its darkness was measured
by its mean intensity level together with its intensity variance in the region. A
Bayesian network was constructed incorporating these variables and the indepen-
dence assumption was tested and found to fail: the mean and variance variables
were found to be correlated when, according to the causal graph under the inde-
pendence assumption, they should not have been. The problemwas that there is no
obvious common cause for this correlation: mean and variance are related math-
ematically, not causally. We have thatV arX = EX2 � (EX)2, whereV arX
is the variance of random variableX , andE signifies expectation so thatEX is
the mean ofX . To take the simplest example, ifX is a Bernoulli random variable
andEX = x thenV arX = x(1 � x), making the mean and variance perfectly
correlated. In the endoscopy case, the light intensity willhave a more compli-
cated distribution, but the mean value will still constrainthe variance, making the
mean and variance probabilistically dependent. To try to resolve this failure of the
independence assumption, at first one of the two correlated nodes was removed
(causal restriction). This gave some improvement in performance but suffered
from significant loss of information. Next (causal extension) [Kwoh & Gillies
1996] attempted to introduce an extra common cause to screen off the correlation,
but while this move improved the success rate of the Bayesiannetwork, it raised
fundamental problems. Firstly it is not clear what the new node represents (it was
just called a ‘hidden node’), so a causal interpretation mayno longer be appro-
priate for the graph. Secondly, the distribution specifying probabilities relating
the new node to the other nodes had to be ascertained: this could only be done
mathematically, by finding what the probabilities should beif the introduction of
the new node allowed the unwanted correlation to be fully screened off, and could
not be tested empirically or equated with any objective probability distribution.
Therefore the Bayesian network lost both the objective causal and the objective
probabilistic components of its interpretation. An objective interpretation is just
not feasible, given extra-causal dependencies like this.

That extra-causal constraints include physical laws has been exemplified by
Arntzenius:20

Suppose that a particle decays into2 parts, that conservation of total
momentum obtains, and that it is not determined by the prior state of
the particle what the momentum of each part will be after the decay.
By conservation, the momentum of one part will be determinedby
the momentum of the other part. By indeterminism, the prior state of
the particle will not determine what the momenta of each partwill be
after the decay. Thus there is no prior screener off.

20[Arntzenius 1992] pages 227-228, from[van Fraassen 1980] page 29.
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The principle of the common cause fails here because there isnothing obvi-
ous that we can call a common cause — the existence component of the principle
fails. But even if some weird and wonderful common cause could be found in
such quantum situations, independence would still fail because screening condi-
tion would fail. Suppose we consider the spinsB andC of two particles:B andC have valuesup or down. The two particles are fired such that one has spin
up (represented by literalb) if and only if the other does (
). Suppose also that
either one being spin up is as likely as not,p(b) = p(
) = 1=2, but that a com-
mon causeA is found which explains the spins, soA �! B;A �! C, andp(bja); p(
ja) = x > 1=2. But sincep(bj
) = 1, screening off is satisfied if and
only if 1 = p(bja^ 
) = p(bja), so the cause must be deterministic, a wildly inap-
propriate assumption in the quantum world. Thus we must conclude that there are
quantum constraints on objective probability which are extra-causal.21

The philosophical literature also contains several examples of how local non-
causal constraints and initial conditions can account for dependencies amongst
causal variables. Cartwright, for instance, points out that

independence is not always an appropriate assumption to make. . . . A
typical case occurs when a cause operates subject to constraint, so that
its operation to produce one effect is not independent of itsoperation
to produce another. For example, an individual has $10 to spend on
groceries, to be divided between meat and vegetables. The amount
that he spends on meat may be a purely probabilistic consequence of
his state on entering the supermarket; so too may be the amount spent
on vegetables. But the two effects are not produced independently.
The cause operates to produce an expenditure ofn dollars on meat
if and only if it operates to produce an expenditure of10 � n dol-
lars on vegetables. Other constraints may impose differentdegrees of
correlation.22

Salmon23 gives another counterexample to the screening condition. Pool balls
are set up such that the black is pocketed (B) if and only if the white is (W ),
and a beginner is about to play who is just as likely as not to pot the black if she
attempts the shot (S), and is very unlikely to pot the white otherwise. Thus if we
let b, w ands be literals representing the occurrence ofB, W andS respectively,p(b $ w) = 1 andp(bjs) = 1=2, so1=2 = p(wjs) 6= p(wjs ^ b) = 1 and the
causeS does not screen off its effectsB andW from each other. As Salmon says:

21Note that[Butterfield 1992] looks at Bell’s theorem and concludes (page 41) that, ‘the violation
of the Bell inequality teaches us a lesson, . . . namely, some pairs of events are not screened off by their
common past.’[Arntzenius 1992] has other examples and also argues on a different front against the
principle of the common cause assuming determinism. See also [Healey 1991] and[Savitt 1996] pages
357-360 for a survey.

22[Cartwright 1989] 113-114.
23[Salmon 1980] pp. 150-151,[Salmon 1984] pp. 168-169.
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It may be objected, of course, that we are not entitled to infer . . . that
there is no event prior toB which does the screening. In fact, there is
such an event — namely, the compound event which consists of the
state of motion of the cue-ball shortly after they collide. The need to
resort to such artificial compound events does suggest a weakness in
the theory, however, for the causal relations amongS,B andW seem
to embody the salient features of the situation. An adequatetheory of
probabilistic causality should, it seems to me, be able to handle the
situation in terms of the relations among these events, without having
to appeal to suchad hocconstructions.24

I would echo this sentiment in the current context: in my viewan adequate
objective causal-probabilistic interpretation of Bayesian networks should not have
to appeal to ad hoc constructions. Spirtes, Glymour and Scheines give a causal-
restriction defence against Salmon’s counterexample by arguing that the collision
should be more specifically individuated (in particular themomentum of the cue
ball should be described).25 Again this is less than satisfactory in the absence of a
general theory as to how causes should be individuated.

A further example: repeatedly pull one of two beads (a blue beadB and red
beadR, otherwise identical) out of a bag. Thenp(bjr) = 0 < 1=2 = p(b). But
rather than saying that pulling out the red bead is a preventative of pulling out the
blue bead, the correlation is explained by the set-up of the repeatable experiment:
only one bead is pulled out of the bag in any trial. Here the set-up constrains the
probabilities and isn’t the sort of thing that counts as a cause.

In response to the problem of extra-causal constraints, onemight admit defeat in
problems such as the diagnosis of apparatus for the investigation of quantum me-
chanical systems,26 or troubleshooting pool players, but maintain that most appli-
cations of intelligent reasoning may be unaffected. But extra-causal constraints oc-
cur just about anywhere, including central diagnosis problems for example. When
diagnosing circuit boards, one may be constrained by the fact that two components
cannot fail simultaneously (F1 ^F2), for if one of them fails the circuit breaks and
the other one cannot fail. Suppose there is a common causeC for the failures as in
Figure 1. ThenC fails to screenF1 off from F2 for p(f2j
 ^ f1) = 0 6= p(f2j
).
In medicine the opposite is the case: failure of one component in the human body
increases the chances of failure of another, as resources are already weakened. In
both these cases the constraints are very general and not thesort of thing one would
want to call causes.

But why not pursue causal extension and include these extra-causal constraints
in a Bayesian network? Besides the problem of a loss of the causal interpreta-
tion, we have further difficulties. Knowledge of extra-causal constraints is often in
some sense superfluous to an intelligent agent’s needs. An agent performing diag-

24[Salmon 1980] 151 (my notation).
25[Spirtes et al. 1993] 63.
26As [Spirtes et al. 1993] do, pages 63-64.
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Figure 1. Failure of circuitry components.����C -����F -����S -����O

Figure 2. Christmas tree sales, festivity, spending and orange sales

nosis, for instance, needs to know about causes and effects because she has to find
the probabilities of various causes given some symptoms, but she is not directly
concerned with facts about meaning, experimental set-ups or physical laws. Thus
if there is a requirement to keep the agent’s language and causal graph small, as
in the Bayesian network formalism where computational complexity is an issue,
extra-causal constraints are the things to leave out. Second, it may be much harder
for domain experts to provide the relevant extra-causal information than the causal
information. In particular, discovering all physical lawswhich have correlational
consequences on a domain is no mean feat. Third, even if a general constraint is
identified, it is often difficult to say exactly how it should be connected to the other
variables in a causal graph. Should there be an arrow betweenthe set-up of a pool
table and each possible pot, or just some? Extra-causal constraints are generally
symmetric while causal relations are not. Fourthly, these constraints often vary
between cases in the way that causal laws don’t. If the set-upof a pool table is
included in a causal graph and we are interested in predicting the next pot then,
since the set-up changes as play progresses, the causal graph will also have to vary
radically from shot to shot. This obviously complicates thetask.

Note finally that accidental and extra-causal correlationscan combine to com-
plicate matters. If two variables are accidentally correlated then a common cause
is very unlikely to completely screen off that correlation.More plausibly, the com-
mon cause would account for part of the correlation, and there would be a surplus
that we might call accidental. An inefficient English bakerymight partly explain
why the water level rises in Venice (through global warming)and also partly why
bread prices rise in the UK, but the remaining bulk of the correlation might be com-
pletely accidental. Likewise direct causes of an effect maynot fully screen it off
from their causes. In response to our first example of accidental correlation, one
might put forward some causal story: high Christmas tree sales (C) causes people
to be festive (F ) which causes people to spend more (S) which causes orange sales
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to rise (O), as in Figure 2. But even if this explains some of the correlation (and
this is rather dubious), it will not explain it all, forp(oj
) = 1, but people spend
money on many other occasions in the year andp(ojs) is not much bigger thanp(o). Sop(oj
 ^ s) > p(ojs).

I hope to have shown that many types of dependency can be invoked to contest
the validity of the objectively-interpreted independenceassumption. Two strate-
gies present themselves if we look for a defence against the counterexamples,
causal restriction and causal extension. However each strategy is subject to episte-
mological, practical and intuitive difficulties, rendering an objective interpretation
of Bayesian networks at worst impossible and at best undesirable.

3 SUBJECTIVE NETWORKS

We have seen how problems arise for an objective interpretation of the compo-
nents of a Bayesian network. But there is a further reason whyan objective in-
terpretation is unattractive in practice: one may simply not know of all the causal
variables or causal relations relevant to a domain of interest, and one may not be
able to accurately estimate the corresponding objective probabilities required in
the specification of a Bayesian network. In practice our knowledge is limited, and
information in a Bayesian network will often be incomplete and inaccurate.

Thus it makes sense to relativise the Bayesian network to an agent’s perspec-
tive. In this section we shall suppose that the Bayesian network expresses the
knowledge of a particular agent,X say — that the graphG is interpreted asX ’s
representation of causality, and that the probability specification S is interpreted
as containing her degrees of belief in literals conditionalon parent states. The
independence assumption then links the agent’s picture of causality to her belief
functionp: if it holds then her belief function is reducible to her Bayesian network.

Does the independence assumption hold here? There is littlereason to suppose
that it might.X ’s knowledge of causality may be very limited, and her degrees of
belief may wildly differ from objective probability: according to strict-subjectivist
Bayesian theoryX may hold whatever beliefs she likes, as long as her belief
function is formally a probability function. Yet the independence assumption is a
very strong constraint, for it fixesX ’s belief function given her Bayesian network,
thereby restrictingX ’s subjectivity. IfX ’s causal knowledge or the degrees of be-
lief in her probability specification were to change slightly then her other degrees
of belief would have to change correspondingly, leaving no room for subjectivity
with regard to these other beliefs. Therefore a strong constraint like independence
does not fit well with subjectivism, whose appeal is based on the freedom it allows
causal knowledge and degrees of belief.

So how can a subjective interpretation of Bayesian networksbe maintained?
One line of reasoning goes something like this: if independence holds objectively,
and the subjective network is similar to the objective network, then the subjective
distribution determined by the subjective network will be close enough to objec-
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tive probability to be put to practical use. Suppose we require an expert system for
diagnosis of liver disease. We may think we have a fair idea ofthe causal picture
relating this area, and may be able to obtain estimates of theobjective probabilities
for a probability specification, thereby forming a Bayesiannetwork that is in some
sense close to an objective version. If the independence assumption were to hold
in the objective case then one might expect it to hold approximately in the subjec-
tive case. One might further suppose that if independence approximately held in
the subjective case then the probability distribution determined by the subjective
network might approximate objective probability, at leastclosely enough for the
practical purposes of liver diagnosis.

It is such a position that I want to argue against in this section. There are two
flaws in the above reasoning. First, as we saw in the last section, there is often
reason to doubt the independence assumption as made of objective causality and
probability. Secondly, even if independence were to hold objectively, small differ-
ences between a subjective network and the objective network can lead to signif-
icant differences in the probability distributions determined by these networks. It
is this second claim that I want to argue for here.

For this argument it will be necessary to consider subjective and objective dis-
tributions and networks simultaneously, and so it will be worth spelling out the
notation and concepts clearly in advance. The objective probability distribution
is p�. We also have an objective Bayesian network consisting of causal graphG� and the associated probability specificationS�. Independence is assumed to
hold of objective causalityG� with respect to objective probabilityp�, and this
has the repercussion that the objective network(G�; S�) determinesp�. AgentX has a subjective Bayesian network consisting of causal graphG and associated
probability specificationS. This subjective network(G;S) determines probability
functionp under the independence assumption. The question of whetherindepen-
dence holds subjectively andp matchesX ’s full belief function is not of concern
here. Instead, we are concerned with the above alternative justification of the sub-
jective interpretation which claims that if the subjectivenetwork(G;S) closely
resembles the objective network(G�; S�) then the functionp will be close enough
to objective probabilityp� to be of practical use. I argue that differences between
the objective and subjective networks that are likely to occur in practice will yield
significant differences between resulting probability distributions.

It will be useful to distinguish two types of difference between the subjective
and objective networks: differences between the causal graphsG andG� and dif-
ferences between the probability specificationsS andS�.
3.1 Causal Subjectivity

First I shall argue as follows. Even if we make the assumptionthat independence
holds objectively, we assume thatX ’s belief specificationS consists of objective
probabilities, and assume that her causal knowledge is correct (G is a subgraph
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Figure 3. Nodes removed.

of G�), then if, as one would expect, her causal knowledge is incomplete (a strict
subgraph),p may be not be close enough top� for practical purposes.

There are two basic types of incompleteness.X may well not know about all
the variables (G has fewer nodes thanG�) or even if she does, she may not know
about all the causal relations between the variables (G has fewer arrows thanG�).

To deal with the first case, supposeG is justG� minus one nodeC and the
arrows connecting it to the rest of the graph. Even ifG� satisfies independence
with respect top� thenG can only be guaranteed (for allp�) to satisfy indepen-
dence if all the direct causes ofC are direct causes ofC ’s direct effects, each pairD;E of its direct effects have an arrow between them say fromD to E, and the
direct causes of each suchD are direct causes ofE.27 Needless to say, such a
state of affairs is rather unlikely and a failure of independence will have practical
repercussions.

I ran a simulation to indicate just how close the subjectively-determined distri-
butionp will be to the objective distributionp�, the results of which form Figure 3.
The bars in the background of the graph show the performance of Bayesian net-
works formed by removing a single node and its incident arrows from networks
known to satisfy independence. ForN = 2; : : : ; 10 I randomly generated Bayesian
networks onN nodes, and for each net removed a random node, chose a random

27See[Pearl et al. 1990] 82.
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state of nodess and calculatedp(
js) for each literal
 not ins. The new networks
were deemed successful if their values forp(
js) differed from the values deter-
mined by the original network by less than0.05, that is,jp(
js)� p�(
js) j< 0:05.
For eachN the percentage success was calculated over a number of trials28 and
each bar in the chart represents such a percentage. The bars in the foreground of
the graph represent the percentage success where half the nodes29 and their inci-
dent arrows were removed.

Such experiments are computationally time-consuming and only practical for
small values ofN . While one should be wary of reading too much into a small
data set, the results do suggest a trend of decreasing success rate as the size of the
networks increase. Thus it appears plausible that if one removes a node and its
incident arrows from a large Bayesian network that satisfiesindependence, then
the resulting network will not be useful, in the sense that the probability values
it determines will not be sufficiently close to objective probability. Moreover, re-
moving more nodes from a Bayesian net is likely to further reduce its probability
of success, as the graph shows.

This trend may be surprising, in that if one removes a node from a large causal
graph one is changing a smaller portion of it than if one removes a node from a
small graph, so one might expect that removing a node changesthe resulting dis-
tribution less as the original number of nodesN increases. But one must bear in
mind that the independence assumption is non-local: removing a node can imply
an independency between two nodes which are very far apart inthe graph. Thus
removing a node from a small graph is likely to change fewer implied independen-
cies than removing a node from a large graph.����A -����B -����C

Figure 4. Objective causal graphG�.����A ����C
Figure 5.B and its incident arrows removed.����A -����C

Figure 6.B removed but its incident arrows redirected.

28At least 2000 trials for eachN , and more in cases where convergence was slow.
29In fact the nearest integer less than or equal to half the nodes was chosen.



98 JON WILLIAMSON

Figure 7. Nodes removed - arrows re-routed.

Of course one may complain that such a simulation is unrealistic in some way.
For instance, if one doesn’t know about some intermediary cause in an objective
causal graph, one may yet know about the causal chain on whichit exists. Thus
if Figure 4 represents the objective causal graph and one doesn’t know aboutB,
one may know thatA causesC, as in Figure 6 rather than Figure 5. In this case
removingB’s incident arrows introduces an independence assumption which is not
implied by the original graph, whereas redirecting them does not. In simulations
I found that while redirecting rather than removing arrows improved success (see
Figure 7) the qualitative lesson remained: the general trend was still that success
decreases as the number of nodes increases.

There is another way that the simulation may be unrealistic.Some types of
cause may be more likely to be unknown than others, so perhapsone should not
remove a node at random in the simulation. However, if we adjust for this factor we
should not expect our conclusions to be undermined. To the extent that effects are
more likely to be observable and causes to be unobservable, one will be more likely
to know about nodes in the latter parts of causal chains than in the earlier parts.
But while removing a leaf in a graph will not introduce any newindependence
constraints, removing common causes can do so. Thus ifX is less likely to know
about causes than effects, her subjective causal graph is even less likely to satisfy
independence than one with nodes removed at random.
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There may be other factors which render the simulations inappropriate, based
on the way the networks are chosen at random. Here I made it as likely as not that
two nodes have an arrow between them, and as likely as not thatan arrow is in one
direction as in another, while maintaining acyclicity. Thus the graphs are unlikely
to be highly dense or highly sparse. I chose the specifying probabilities uniformly
over machine reals in[0; 1℄. Roughly half the nodes (N=2 nodes ifN was even
otherwise(N � 1)=2 nodes) were chosen to be symptoms ins and the nodes and
their values were selected uniformly. In the face of a lack ofknowledge about the
large-scale structure of the objective causal graph I suggest these explications of
‘at random’ are appropriate. In any case, the trend indicated by the simulation does
not seem to be sensitive to changes in the way a network is chosen at random.

In sum then, for aG� large enough to be an objective causal graph the removal
of an arbitrary node is likely to change the independencies implied by the graph,
and to change the resulting distribution determined by the Bayesian network. This
much is arguably true whether or not the objective situation(G�; p�) satisfies inde-
pendence itself, for if independence fails, removing arbitrary nodes is hardly likely
to make it hold.

Having looked at what happens when agentX is ignorant of causal variables,
we shall now turn to the case where she is ignorant of causal relations.

Suppose then thatG is formed fromG� by deleting an arrow, say from nodeCi to nodeCj . ThenG can not be guaranteed to satisfy independence with re-
spect top�. For supposeCi; D1; : : : ; Dk are the direct causes ofCj in G�. Then
the independence ofG with respect top� requires thatCi be independent ofCj ,
conditional onD1; : : : ; Dk, which is not implied by the independence ofG� with
respect top�.

The situation is worse if the following condition holds, which I shall call the
dependenceprinciple.30 This corresponds to the intuition that a cause will either
increase the probability of an effect, or, if it is a preventative, make the effect less
likely. More precisely,� dependence: if Ci; D1; : : : ; Dk are the direct causes ofCj thenCi andCj

are probabilistically dependent conditional onD1; : : : ; Dk: there are some
literals 
i and
j of Ci andCj and some stated of D1; : : : ; Dk such thatp�(
j j
i ^ d) 6= p�(
j jd), as long as these probabilities are non-extreme
(that is, neither0 nor1).

Now if G� satisfies dependence with respect top�, the arrow betweenCi andCj is removed to giveG as before, and the probabilities are non-extreme, the
independence assumption willdefinitely failfor G with respect top�. This is sim-
ply because the independence ofG with respect top� requires thatCi andCj be
independent conditional onD1; : : : ; Dk which contradicts the assumption that de-
pendence holds forG� with respect top�. Note that this result only depends on

30See[Williamson 1999] for a defence of this principle. Note that the dependence principle is a
partial converse to the independence assumption.
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Figure 8. Arrows removed.

the local situation involvingCi, Cj and the other direct causesD1; : : : ; Dk of Cj ,
so that further changes elsewhere in the graph cannot rectify the situation.31 Note
also that this result doesnot require that objective causalityG� satisfy indepen-
dence with respect to objective probabilityp�. Thus if the dependence principle
holds of causality in the world it is extremely unlikely thatindependence will hold
of a subjective causal theory.

Of course, we are arguing against independence by appealingto an alternative
principle here and the sceptical reader may not be convincedby this last argument.
But we can perform simulations as before to indicate the general trends. The
back row of Figure 8 represents the results of the same simulation as before (the
dependence principle is not assumed to hold), except with a random arrow rather
than a node removed. In this case there is no clear downward trend, but success
rate is uniformly low. If more arrows are removed, then for all but smallN the
resulting network is less likely still to satisfy independence, as the front row of
Figure 8 shows, and again we see a downward trend as the numberof nodes inG�
increases.

31If one or more of the other direct causes or their arrows toCj are also absent inG, then indepen-
dence may be reinstated, although this would be a freak occurrence and the extra change may break a
further independence relation elsewhere in the graph.
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Figure 9. Node probabilities perturbed.

In sum, causal subjectivity can lead to a significant difference between the sub-
jective and objective probability distributions.

3.2 Probabilistic Subjectivity

Turning now toX ’s degrees of belief, it is not hard to see howp can differ fromp�.
We suppose that the objective situation satisfies independence, and thatX ’s causal
graphG matches the objective causal graphG�. However, if her specificationS
differs from the objective specification then the probability functionp determined
by the subjective network(G;S) would not be expected to agree exactly withp�.
The back row of Figure 9 shows what happens if one of the nodes has its associated
probability specifiers perturbed by0.03, the middle row shows what happens if half
the nodes’ probabilities are perturbed by0.03, and the front rows gives the case
where all nodes have their probabilities perturbed.

In practice probabilistic and graphical subjectivity willoccur together, making
it even less likely thatp is close enough top� for practical purposes. The back row
of Figure 10 shows what happens if a node is removed (arrows re-routed), then an
arrow is removed, and then one node’s probabilities are perturbed by0.03. The
front row shows what happens if half the nodes then half the remaining arrows are
removed, then half the remaining nodes are perturbed.
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Figure 10. Nodes and arrows removed, node probabilities perturbed.

Thus subjectivity in a Bayesian network can lead, significantly often, to practi-
cal problems: the distribution determined by a subjective network may differ too
much from the objective distribution to be of practical use.

4 TWO-STAGE BAYESIAN NETWORKS

We have seen some of the problems that face interpretations of Bayesian networks.
The independence assumption can fail for an objective interpretation because cor-
relations may be accidental or have non-causal explanations. Independence can
hardly be expected to hold for a subjective interpretation —the agent’s Bayesian
network will generally give rise to a probability functionp which differs from her
true belief function — but more importantlyp is also likely to differ from objective
probability, which upsets the alternative justification ofsubjective networks.

I want to argue for another view of Bayesian networks, which Ibelieve rests
on firmer foundations. The view I put forward here initially adopts a subjective
interpretation, where the graph in the Bayesian network is an agent’s representa-
tion of causal structure and the probability specifiers are her degrees of rational
belief. I acknowledge the fact that, according to the above arguments, the distri-
bution specified by an agent’s Bayesian network may not be close enough to the
objective distribution to be of much practical use, but I argue that it is a good start-
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ing point, and can be refined to better approximate reality. This gives atwo-stage
methodologywhere stage one is the representation ofX ’s belief functionp by an
initial Bayesian network and stage two is the further refinement of the network. In
terms of foundations, stage one yields a subjective interpretation (but a different
subjective interpretation to those given inx3), while stage two borrows techniques
from the abstract approach in order to deliver a network whose distribution more
closely approximates the objective distribution (and in the process of refinement
the causal interpretation may be dropped as we shall see).

Two key questions require attention before we can be convinced of these two-
stage foundations for Bayesian networks. Firstly, how can stage one be justi-
fied? I have argued against a strict subjective interpretation, and so must somehow
demonstrate that some other kind of subjective interpretation of the Bayesian net-
work is a good starting point. I shall do this in the rest of this section and the next
section. Secondly, how can stage two be performed? I shall discuss the refinement
of Bayesian networks inx6.

I shall interpretX ’s Bayesian network as her background knowledge: the causal
graphG contains her knowledge of causal variables and their causalrelations, and
the probability specificationS is her knowledge of conditional probabilities of
causes given parent-states.32 The independence assumption may then be used to
determineX ’s degrees of belief from her background knowledge: her fullbelief
function will be the probability function determined by theBayesian network onG andS under the independence assumption.

Thus independence is no longer a substantive assumption linking the agent’s
causal graph with some pre-determined rational belief function, it is alogic, used to
derive undetermined degrees of belief from those that are given inX ’s probability
specification.

The central issue then is how we can justify the use of the independence as-
sumption as a means of determining a rational belief function.

This issue of finding a single rational belief function givensome background
knowledge has received plenty of attention in the literature. Approaches range
from Laplace’sprinciple of indifferenceto Jaynes’maximum entropy principle.
The former says that ifX is indifferent as to which ofJ alternatives is true then
she should believe each of them to degree1=J . The latter explicates and gener-
alises the former as follows. A probability function overC1; : : : ; CN may be fully
specified by specifying values for each of the parametersxk1;:::;kN = p(C1 =vk11 ^: : :^CN = vkNN ), wherevkii 2 fv1i ; : : : ; vKNi g for i = 1; : : : ; N . We have the
constraints that eachxk1;:::;kN 2 [0; 1℄, and by additivity

Pk1;:::;kN xk1;:::;kN = 1,
together with any constraints implied by background knowledge. The maximum
entropy principle says that in the absence of any further informationX should
select a most rational belief function by choosing thexk1;:::;kN subject to these

32I shall leave it open as to whether these probabilities are taken to be estimates of objective proba-
bilities or informed degrees of belief. It suffices that theycount as knowledge and may be used to guideX ’s other beliefs.
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constraints which maximises the entropyH = � Xk1;:::;kN xk1;:::;kN logxk1;:::;kN :
There are several convincing justifications for the maximumentropy principle.
The most well-known involves Shannon’s information-theoretic interpretation of
entropy as a measure of uncertainty, in which case we maximise entropy subject to
some background knowledge if we determine a probability function whose infor-
mativeness is as close as possible to that of just the background knowledge itself.
A second justification is based on Boltzmann’s work with entropy in physics, and
a third involves Paris and Vencovská’s demonstration thatthe maximum entropy
solution is the only completion to satisfy various intuitively compelling desider-
ata, such as language invariance.33 Grünwald gives a fourth, game-theoretic jus-
tification: maximum entropy is the (worst-case) optimal distribution for a game
requiring the prediction of outcomes under a logarithmic loss function.34

Where does this leave independence and stage one of our two-stage method-
ology? Stage one is justified because the probability function determined by the
independence assumption from the Bayesian network coincides with that deter-
mined by the maximum entropy principle, as we shall now see.

5 BAYESIAN NETWORKS HAVE MAXIMUM ENTROPY

The argument for the identity of the Bayesian network and maximum entropy func-
tions requires first making the constraints imposed by the background knowledge
explicit, and next showing that if we maximise entropy subject to these constraints
then we get the same solution as that determined by the Bayesian network under
the independence assumption.

5.1 Background Knowledge

AgentX ’s background knowledge consists of the components of a causally inter-
preted Bayesian network: a causal graph and the specified probabilities of literals
conditional on states of their parents. We first need to formulate this knowledge
in a way that can more formally be applied to the maximum entropy procedure.
Regarding the probability specification, there is no problem. We can simply max-
imise entropy subject to the constraints that certain probabilities, namely those in
the Bayesian network specification, are fixed from the outset. However, the causal
graph does not provide obvious constraints — it is of qualitative form, free from
notions like entropy or probability. Therefore we need someprocedure for turning
the causal information into a constraint on probability.

33See[Paris 1994], [Paris & Vencovská 1997], [Paris 1999] and[Paris & Vencovská 2001] for the
details of these justifications.

34[Grünwald 2000].
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I suggest that the causal interpretation imposes the following constraint. Sup-
pose we are presented with the components of a Bayesian network involving vari-
ablesC1; : : : ; CN and then use these to determine a single rational belief func-
tion p1, whether by independence, maximum entropy or some other means. Then
we find out further causal information, namely that there aresome new variablesD1; : : : ; DM to be added to the causal graph, and that these variables are not causes
of the currentC-variablesC1; : : : ; CN . Intuitively, this new information should
not affect our understanding of the original problem on theC-variables. More pre-
cisely, suppose the new information takes the form of an extension of the original
causal graph where theD-variables do not causeC-variables, and an extension to
the probability specification incorporating new conditional probabilities of theD-
variables given their parents. If we use this new Bayesian network to determine a
new rational belief functionp2 over the larger domainC1; : : : ; CN ; D1; : : : ; DM ,
then the restriction ofp2 to theC-variables should agree withp1, the function
based just on theC-variables. I shall call this the principle ofcausal irrelevance:
learning of the new variables should be irrelevant to degrees of belief on the pre-
vious domain.

This principle is based on an asymmetry of causation wherebyinformation
about causes can lead to information about their effects, but knowledge of effects
does not provide useful information about causes. This is not to say that informa-
tion about thevalueor occurrenceof an effect is irrelevant to the question of what
the value of its cause is (which is clearly wrong), but that information of the form
that a variablehas an effect of unknown valueis irrelevant to its own value. The
same need not be true of causes: if two variables thought to becausally unrelated
are found to have a common cause, one may be wise to suppose that these variables
are probabilistically dependent to a greater extent than previously thought.

Take a simple example: supposeL signifies lung cancer andB bronchitis. We
know of no causal relations linking the two variables, and have the probabilitiesp(l); p(b) for each literall; b involving L;B respectively. We then use this infor-
mation to determine a joint probability distributionp1 overL andB. Suppose we
later learn thatS, smoking, is a cause of lung cancer and of bronchitis, and we find
the probabilitiesp(ljs); p(bjs); p(s) for each literall; b; s involvingL;B; S respec-
tively. Then, becauseS is a common cause, we might be inclined to form a new
belief functionp2 overL, B andS which rendersL andB more dependent than
they were underp1: p2(ljb) > p1(ljb) for some literalsl andb. The motivation
is that if we find outb, then we now know this may be because some literals has
causedb, in which cases may also have causedl, making it more likely than we
would previously have thought.

Suppose next we learn that each of lung cancer and bronchitiscause chest painsC, as in Figure 11. If we find values forp(
jl ^ b) for each literal
, l andb, and
form a new belief functionp3, the causal irrelevance condition requires thatp3
must not differ fromp2, overS,L andB. For example,p3(ljb) = p2(ljb), for eachl andb. The idea here is that if we learnb, then knowledge of the existence of the
common effectC does not give us a new wayl may occur and so our degree of
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Figure 11. Smoking, lung cancer, bronchitis and chest pains.

belief in l should not change.C is irrelevant toS, L andB.
In sum, I shall assume that the process of determining a single rational belief

function is constrained not only by the probability values in the specification of
the Bayesian network, but also by the causal graph under the principle of causal
irrelevance. The principle of causal irrelevance is strongenough to allow causal
information to constrain rational belief, and thereby playa part in our new justifi-
cation of the independence assumption, yet, unlike the independence assumption,
weak enough to be uncontroversial in itself.

5.2 Maximising Entropy

The key proposition is this:

BAYESIAN NETWORKSMAXIMISE ENTROPY

Given the probability specification and causal graph of a Bayesian network
and the principle of causal irrelevance, the distribution which maximises en-
tropy is just the distribution determined by the Bayesian network under the
independence assumption.

Proof. The strategy of the proof will be to use Lagrange multipliersto derive
conditions for entropy to be maximised, and then show that the Bayesian net-
work distribution satisfies these conditions. This straightforward method is pos-
sible for the following reason. The constraints — which consist of the specified
probabilities, certain probabilities fixed by the causal graph under causal irrele-
vance, and additivity constraints common to all probability distributions — are
linear and restrict the domain of the entropy function to a compact convex set in[0; 1℄K1 � : : :� [0; 1℄KN ,35 and on that domain, entropy is a strictly concave func-
tion (as shown below). Thus the problem has a unique local maximum, the global
maximum, and if the Bayesian network distribution satisfiesthe conditions for an
optimal solution then it must be the unique global maximum.

We can see that entropy is strictly concave as follows.H is strictly concave if
and only if, for any two distinct vectorsa andb of the parametersxk1;:::;kN and

35See[Paris 1994], proposition6.1, page 66.



FOUNDATIONS FOR BAYESIAN NETWORKS 107� 2 (0; 1), H(�a+ (1� �)b) > �H(a) + (1� �)H(b),�X ai log ai+(1��)X bi log bi�X(�ai+(1��)bi) log(�ai+(1��)bi) > 0, �X ai log ai�ai + (1� �)bi + (1� �)X bi log bi�ai + (1� �)bi > 0, �d(a; �a + (1� �)b) + (1� �)d(b; �a+ (1� �)b) > 0;
whered signifiescross entropy, a measure of distance of probability distributions,
anda, b and�a+ (1� �)b are non-zero since

Pai = 1 =P bi; � 2 (0; 1). d is
well known to be non-negative and strictly positive if its arguments are distinct.36

Thusd(a; �a + (1 � �)b) is strictly positive ifa 6= �a + (1 � �)b, which is true
sincea andb are distinct and� 2 (0; 1). ThereforeH is strictly concave and the
Lagrange multiplier approach will yield the global maximum.

The next thing to do is to reformulate the optimisation problem to make it suit
the Bayesian network framework. This means finding more appropriate param-
eters than the standardxk1;:::;kN mentioned above. Without loss of generality
we can suppose the nodesC1; : : : ; CN are ordered ancestrally with respect to
the causal graphG in the Bayesian network: that is, all the parents ofCi in G
come beforeCi in the ordering.37 To make the proof clearer we shall also sup-
pose that all the probabilities in the specification are positive — we shall see later
that zeros do not affect the result. Let
kii represent the literalCi = vkii , forki = 1; : : : ;Ki; i = 1; : : : ; N . The new parameters areyk1;:::;ki�1i;ki = p(
kii j
k11 ^ : : : ^ 
ki�1i�1 );
for i = 1; : : : ; N . The main thing to note about this parameterisation is that by the
chain rule of probability, xk1;:::;kN = NYi=1 yk1;:::;ki�1i;ki :

Now we shall translate the entropy formula into this framework (in what fol-
lows we shall minimise negative entropy�H , which is equivalent to maximising
entropyH):38 �H = Xk1;:::;kN xk1;:::;kN logxk1;:::;kN= Xk1;:::;kN 24 NYj=1 yk1;:::;kj�1j;kj 35 NXi=1 log yk1;:::;ki�1i;ki

36See[Paris 1994] proposition8.5 for example.
37Recall that such an ordering is always possible because of the dag structure of the causal graph.
38Note that the existence and uniqueness of a maximum is independent of parameterisation.



108 JON WILLIAMSON= NXi=1 Xk1;:::;kN 24 NYj=1 yk1;:::;kj�1j;kj 35 log yk1;:::;ki�1i;ki= NXi=1 Xk1;:::;ki 24 iYj=1 yk1;:::;kj�1j;kj 35 log yk1;:::;ki�1i;ki ;
where we make this last step because for eachi we can separate outXki+1;:::;kN 24 NYj=i+1 yk1;:::;kj�1j;kj 35 ;
and these terms cancel to1 by additivity of probability.

We shall deal with three types of constraints. The specification constraints are
determined by those values provided in the Bayesian networkspecification. Causal
constraints are determined by the causal graph under the causal irrelevance condi-
tion. Finally additivity constraints are imposed by the axioms of probability. While
one might suspect that all these constraints would lead to a complicated optimisa-
tion problem, we will see that by adopting an inductive approach we will be able
to form a Lagrangian function which only incorporates relatively few specification
and additivity constraints.

Within the new framework we can write the specification constraints asp(
kii j
kr1r1 ^ : : : ^ 
krLrL ) = akr1 ;:::;krLi;ki ;
where the
r1 ; : : : ; 
rL involve the parents ofCi, r1; : : : ; rL < i (thanks to the an-
cestral order) andi = 1; : : : ; N .39 We also have constraints imposed by additivity:Pki yk1;:::;ki�1i;ki = 1 for eachk1; : : : ; ki�1; i = 1; : : : ; N .

Decomposing the entropy asH =PNi=1Hi whereHi = Xk1;:::;ki 24 iYj=1 yk1;:::;kj�1j;kj 35 log yk1;:::;ki�1i;ki ;
we shall prove the proposition by induction onN . The caseN = 1 is trivial since
the constraintsp(
k11 ) = a1;k1 completely determine the probability distribution
overC1: there is nothing to do to maximise entropy and so the Bayesian network
distribution, which satisfies the constraints, maximises entropy. Suppose the in-
duction hypothesis holds forN � 1 and consider the case forN . It is here that we
apply the principle of causal irrelevance to generate the causal constraints on the
maximisation process from the causal graph. Since the variables are ordered ances-
trally, the move fromN �1 toN essentially involves incorporating a new variable

39Note that ther1; : : : ; rL depend oni. I am inclined to avoid any further subscripting however.



FOUNDATIONS FOR BAYESIAN NETWORKS 109CN which is not a cause of any of the previous variablesC1; : : : ; CN�1. Hence
if we maximise entropy on this new domain and restrict the resulting probability
function toC1; : : : ; CN�1 then by causal irrelevance we must have maximised en-
tropy on this smaller domain. Applying the induction hypothesis on this smaller
domainfC1; : : : ; CN�1g, we see that entropy is maximised if the distribution is
determined by the Bayesian network onC1; : : : ; CN�1. Thus fori = 1; : : : ; N�1,

the parametersyk1;:::;ki�1i;ki must be fixed toakr1 ;:::;krLi;ki . Now H1; : : : ; HN�1 in-
volve only these fixed parameters, so in order to maximiseH all that remains is to
maximiseHN with respect toyk1;:::;kN�1N;kN , subject to the specification constraints

fixing the valuesakr1 ;:::;krLN;kN and the additivity constraints
PkN yk1;:::;kN�1N;kN = 1

for eachk1; : : : ; kN�1.
We shall now adapt the specification constraints.

Let bkr1 ;:::;krL = p(
kr1r1 ^ : : : ^ 
krLrL ) andek1;:::;kN�1 = Qj<N yk1;:::;kj�1j;kj be
constants, fixed by having maximised entropy onC1; : : : ; CN�1. Thenakr1 ;:::;krLN;kN bkr1 ;:::;krL = p(
kNN ^ 
kr1r1 ^ : : : ^ 
krLrL )= Xki;i6=r1;:::;rL;N p(
k11 ^ : : : ^ 
kNN )= Xki;i6=r1;:::;rL;N Yj�N yk1;:::;kj�1j;kj ;= Xki;i6=r1;:::;rL;N ek1;:::;kN�1yk1;:::;kN�1N;kN :

We are now in a position to specify the Lagrangian function for the minimisa-
tion of�HN :�N = Xk1;:::;kN ek1;:::;kN�1yk1;:::;kN�1N;kN log yk1;:::;kN�1N;kN + Xkr1 ;:::;krL ;kN �kr1 ;:::;krLkN �24 Xki;i6=r1;:::;rL;N ek1;:::;kN�1yk1;:::;kN�1N;kN � akr1 ;:::;krLN;kN bkr1 ;:::;krL35+ Xk1;:::;kN�1 �k1;:::;kN�1 "XkN yk1;:::;kN�1N;kN � 1#= Xk1;:::;kN �ek1;:::;kN�1yk1;:::;kN�1N;kN log yk1;:::;kN�1N;kN +�kr1 ;:::;krLkN hek1;:::;kN�1yk1;:::;kN�1N;kN � akr1 ;:::;krLN;kN bkr1 ;:::;krL i+



110 JON WILLIAMSON�k1;:::;kN�1 hyk1;:::;kN�1N;kN � 1=KNi�:
By Lagrange’s theorem,40 in order to find conditions for a minimum we must

first check a constraint qualification. Enumerate the constraintsf1; : : : ; fJ . Form
a matrixA by letting each rowi consist of the partial derivatives�fi�yk1;:::;kN�1N;kN ; 1�kj�Kj ; j = 1; : : : ; N:
Finally check that the rank ofA is J — this is easily done and I shall avoid the
details here.

Entropy is maximised if the partial derivatives of the Lagrangian are zero,��N�yk1;:::;kN�1N;kN = ek1;:::;kN�1 h1 + log yk1;:::;kN�1N;kN + �kr1 ;:::;krLkN i+�k1;:::;kN�1 = 0
Given any such equation we can eliminate the Lagrange multiplier �k1;:::;kN�1

by finding another equation involvingk0N 6= kN ,��N�yk1;:::;kN�1N;k0N = 0
(there will always be another such equation sinceCN has at least two values), and
substituting to give a new equation�kr1 ;:::;krLkN � �kr1 ;:::;krLk0N = log yk1;:::;kN�1N;k0N � log yk1;:::;kN�1N;kN
We next eliminate the multiplier expression on the left-hand side by finding an-
other such equation involvingk01; : : : ; k0N�1 such thatk0r1 = kr1 ; : : : ; k0rL = krL .
There will always be another such equation unlessL = N � 1, in which case the
constraints uniquely determine the Bayesian network distribution, and entropy is
trivially maximised. This then giveslog yk1;:::;kN�1N;k0N � log yk1;:::;kN�1N;kN = log yk01;:::;k0N�1N;k0N � log yk01;:::;k0N�1N;kN :
Finally, all we need do is note that in the Bayesian network distribution the con-
straints are satisfied and the independence assumption implies thatyk1;:::;kN�1N;kN = ykr1 ;:::;krLN;kN = akr1 ;:::;krLN;kN ;yk01;:::;k0N�1N;kN = yk0r1 ;:::;k0rLN;kN = ykr1 ;:::;krLN;kN = akr1 ;:::;krLN;kN ;

40See for example[Sundaram 1996] x5.2.1



FOUNDATIONS FOR BAYESIAN NETWORKS 111

in which case we substitute into our condition:akr1 ;:::;krLN;k0N � akr1 ;:::;krLN;kN = akr1 ;:::;krLN;k0N � akr1 ;:::;krLN;kN ;
and find that it clearly holds. Thus the Bayesian network distribution is the entropy
maximiser, as required.

All that remains is to point out what happens when specifiers may be zero.

There are two (compatible) scenarios: if someakr1 ;:::;krLj;kj = 0 for j < N then

the correspondingek1;:::;kN�1 = Qj<N yk1;:::;kj�1j;kj , which by the induction hy-

pothesis is
Qj<N akr1 ;:::;krLj;kj , vanishes. This eliminates entropy terms and con-

straints equally, leaving fewer partial derivative conditions. These conditions are

satisfied as above. The second scenario is that someakr1 ;:::;krLN;kN = 0. In this
case the Lagrangian and partial derivatives are as before, the constraints are sat-
isfied as before, but when substituting zeros in the partial derivatives we make
use of the convention, common when dealing with the cross entropy measure, that0[log 0 � log 0℄ = 0 log 0=0 = 0. Thus the conditions are satisfied by null speci-
fiers. �

Thus we see that the independence assumption can be justifiedafter all. The
important thing to remember is that under the two-stage foundations, the inde-
pendence assumption is neither a fact of causality nor even an assertion about an
agent’s knowledge. It is a mechanism that can be used to derive new probabil-
ity statements from those in the agent’s background knowledge. Independence is
justified because as a logic it coincides with maximum entropy, which has well
known justifications.

6 STAGE TWO

Given background knowledge consisting of a causal graphG and associated prob-
ability specificationS, we can represent the rational (maximum entropy) belief
functionp by the Bayesian network onG andS. This is stage one of the two-stage
methodology. However, whilep is rational given background knowledge, it may
not bear a close enough resemblance to objective probability to be put to practical
use. If that is the case then we need to transform the Bayesiannetwork into one
which more closely approximates objective probability. This is stage two of the
two-stage methodology. Bayesian networks may be applied tomedical diagnosis
for example, or fault-finding in aeroplanes. In such high risk scenarios it is not
sufficient that any decisions are deemed reasonable given a lack of relevant infor-
mation: it would be negligent not to collect enough relevantinformation to reliably
model the objective situation.

Thus the next step is to refine the Bayesian network in the light of new in-
formation, in order to achieve greater reliability. Many ofthe algorithms from the
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extensive literature on learning Bayesian networks from data41 can be applied here.
In the rest of this section I will summarise my own ideas in this respect — these
are simple techniques which I believe have a clear justification that coheres well
with the entropy-based approach of the last section.42 First I shall deal with the
case where new causal information comes to be known. After this I shall address
the following questions. What sort of information should one collect in order to
best refine the network? How one can limit the complexity of the network?

6.1 Causal Information

Suppose our agentX finds out thatCi causesCj . I suggest that she should just
add an arrow fromCi to Cj to her initial causal graph (if there is no arrow there
already), and she should ensure her specifying probabilitiesp(
j jdj) take this new
parent into account. There are two possible justifications of this adding-arrows
strategy. One can apply the arguments of the last section. IfX learns of the new
causal link and the corresponding probabilities then her background knowledge
now includes an extended causal graph and probability specification, in which
case she should maximise entropy by adopting the new Bayesian network formed
by adding the arrow and the specifiers.

The second possible justification relies on the dependence principle43 as op-
posed to causal irrelevance, as follows. Suppose we start off with Bayesian net-
work (G;SG), whereG isX ’s causal graph andSG is her associated probability
specification, whose entries we shall assume agree with the objective probabilitiesp�(
ijdi). Then we add an arrow fromCi to Cj and change the specified proba-
bilities to give a new network(H;SH ). We measure the improvement of the new
network over the old by how much closer its induced probability functionpH is to
the objective probability functionp� thanpG, according to the usual measure of
distance between probability functions, cross entropy. Then we have the following
facts:

IMPROVEMENT OFADDING ARROWS

(i) the new network is no worse a network than the initial network;
(ii) the new network is a better network if and only ifCj is probabilistically
dependent onCi, conditional onCj ’s other parentsD.

In particular, if the dependence principle holds then the fact thatCi is a cause
of Cj entails that the two nodes are conditionally probabilistically dependent and
thus that the probability distribution represented by the new network is closer to

41See[Jordan 1998] and[Buntine 1996] for good surveys.
42Some related work: the Kutató algorithm of[Herskovitz 1991] also has an entropy-based justifi-

cation. However it involves minimising entropy and poses significant computational problems in the
worst case.[Jitnah 1999] employs mutual information as I do, but as a technique for probabilistic
inference given a Bayesian network rather than a means for deriving the network itself.

43Recall that the dependence principle says that a direct cause changes the probability of its effect
conditional on the effect’s other causes.
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the target objective distribution than that of the old network: we are justified in
adding an arrow fromCi toCj .
Proof. For simplicity (but without loss of generality as we shall see shortly) we
shall assume thatpG andpH are strictly positive over theatomic states
1^: : :^
N .

For (i) we need to show thatd(p�; pH)�d(p�; pG) � 0, whered is cross entropy
distance. So,d(p�; pH)� d(p�; pG) =Xs p�(s) ln p�(s)pH(s) �Xs p�(s) ln p�(s)pG(s)=Xs p�(s) ln pG(s)pH(s) ;
where thes are the atomic states, and bearing in mind thatpH(s) > 0. Now for
realx > 0; ln(x) � x� 1. By assumptionpG(s)=pH(s) > 0, soXs p�(s) ln pG(s)pH(s) �Xs p�(s) � pG(s)pH(s) � 1�=Xs p�(s) pG(s)pH(s) � 1;
and thus we need to show thatXs p�(s) pG(s)pH(s) � 1:
Now since we are dealing with Bayesian networks,pG(s)pH(s) = Q p�(
kjdGk )Q p�(
kjdHk ) ;
for each literal
k consistent withs, wheredGk is the state of the parents ofC
according toG which is consistent withs, and likewise fordGk . ButH is justG
but with an arrow fromCi to Cj , so the terms in each product are the same and
cancel, except when it comes to literals
j involving nodeCj . ThuspG(s)pH(s) = p�(
j jdGj )p�(
j jdHj ) = p�(
j jd)p�(
j j
i ^ d) ;
where we just letd be dGj and 
i the remaining literal indHj . Substituting and
simplifying, Xs p�(s) pG(s)pH(s) =X p�(
i ^ 
j ^ d) p�(
j jd)p�(
j j
i ^ d)
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j jd)p�(dj
i)p�(
i):
Consider the new set of variablesfCi; Cj ; Dg whereCi andCj are as before
andD takes as values the states of the parents ofCj according toG. Form a
Bayesian networkT incorporating the graphCi �! D �! Cj (with specifying
probabilities determined as usual from the probability function p�). Then sinceT is a Bayesian network,

P p�(
j jd)p�(dj
i)p�(
i) = P pT (
i ^ 
j ^ d) = 1
by the additivity of probability. Thus

Ps p�(s)pG(s)=pH(s) = 1 sod(p�; pH) �d(p�; pG) � 0, as required.
Let us now turn to (ii). From the above reasoning we see thatd(p�; pH)� d(p�; pG) < 0, ln pG(s)pH(s) < pG(s)pH(s) � 1

for some atomic states. But lnx < x� 1, x 6= 1, andpG(s)pH(s) 6= 1, p�(
j j
i)p�(
j j
i ^ d) 6= 1, p�(
j j
i ^ d)� p�(
j jd) 6= 0;
where the
i; 
j ; d are consistent withs. Therefore,d(p�; pH)� d(p�; pG) < 0 if
and only if there is some
i; 
j ; d for which the conditional dependence holds.

The assumption thatpG andpH are positive over atomic states is not essential.
SupposepH is zero over some atomic states. Then in the above,Xs p�(s) ln pG(s)pH(s) =Xs:pH (s)>0 p�(s) ln pG(s)pH(s) + Xs:pH (s)=0 p�(s) ln pG(s)pH(s) :
The first sum on the right hand side is� 0 as above. The second sum is zero
because each component is, as we shall see now. SupposepH(s) = 0. ThenQNk=1 p�(
kjdHk ) = 0 so p�(
k ^ dHk ) = 0 for at least one suchk, in which
casep(s) = 0 since by the axioms of probability,p(u) = 0 ) p(u ^ v) = 0.
Now in the sum readp�(s) ln pG(s)=pH(s) to bep�(s) ln pG(s)� p�(s) ln pH(s).
In dealing with cross entropy by convention0 ln 0 is taken to be0. Thereforep�(s) ln pG(s)=pH(s) = 0 ln pG(s) � 0 = 0. The same reasoning applies ifpG is
zero over some atomic states. Likewise, ifp�(s) is zero thenp�(s) ln pG(s)=pH(s)
is zero too. �

This justifies the adding-arrows approach ifX learns of a new causal link
amongst the current variables. If she learns of a new variableCN+1 that is causally
related to one or more of the other variables, and she also learns the probabilitiesp(
N+1jdN+1), then we can apply the above argument (or equally the arguments
of x5) to show thatX ’s new network should be constructed from her old network
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by adding the new node and causal arrows to her graph and the new probabilities
to her specification.

Finally note that the above argument only requires that the added arrow links
conditionally probabilistically dependent nodes. As we have discussed inx2,
nodes need not be causally related to be probabilistically dependent. Therefore,
if our agent is presented with information to the effect thattwo nodes are condi-
tionally dependent, she is justified in adding the corresponding arrow to her net-
work, regardless of whether those nodes are causally related. But as a result of
this generalisation, the graph in the agent’s Bayesian network need no longer be
causally interpreted: the Bayesian network becomes an abstract tool for represent-
ing a probability function.

6.2 Mutual Information

We now have a strategy for changing the network when causal information or other
probabilistic dependencies are presented to the agent. Butis there a strategy for
seeking outa good arrow to add? By adding arrows we increase both the sizeof
the specification required in the Bayesian network (thespace complexity) and the
time taken to calculate probabilities from the network (thetime complexity) — is
there a means of limiting these complexities to prevent the network from becoming
impractical? I shall address both these questions in this section.

The key to limiting complexity consists in finding constraints C such that
Bayesian networks satisfyingC have acceptable complexity, and then ensuring
that (i) the current network satisfiesC, and (ii) an arrow is only added to the cur-
rent network if the resulting network continues to satisfyC. Consider by way of
example the following constraints.� C1: no node has more thanK parents, for some constantK. This bound on

the number of parents serves to restrict the space complexity of a Bayesian
network. For instance ifK = 0 then the discrete network (no arrows) is
the only available network, ifK = 1 then all networks satisfyingC1 have
graphs that are forests, and ifK = N � 1 there is no restriction at all on the
networks. It is easy to see that if all variables are binary, the complexity of
a network satisfyingC1 is less than or equal to(N �K +1)2K � 1, a value
that is linear inN .� C2: the Bayesian network has space complexity of at most�. Now if � = N
the only network to satisfyC2 is the discrete network and if� = 2N � 1
any network satisfies the constraint. Depending on the problem in hand and
available resources we will want to choose an appropriate value for� orK
which balances the range of networks available with their complexity.� C3: the graph is singly-connected. Having a singly connected graph ensures
that the Bayesian network can be used to calculate required probabilities
efficiently (in time linear in the number of nodesN ). Note however that a
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singly-connected network can have space complexity up to2N�1 +N � 1
on binary-valued nodes, so in practice this constraint may best be used with
another which limits space complexity.

In sum, if we fix some constraintsC the goal then is to find aconstrained net-
work (a Bayesian network satisfyingC) which gives a good approximation to the
target objective distributionp� (using cross entropy as a measure of degree of ap-
proximation).

We shall associate aweightwith each arrow in a Bayesian network as follows.
In order to weigh the arrows going into a nodeCi we enumerate the parents ofCi
asD1; : : : ; Dk. Then forj = 1; : : : ; k we weigh the arrow fromDj to Ci by the
conditional mutual information,I(Ci; Dj jfD1; : : : ; Dj�1g) = X
i;d;dj p�(
i ^ d ^ dj) log p�(
i ^ dj jd)p�(
ijd)p�(dj jd) ;
whered ranges over the statesd1 ^ : : : ^ dj�1. Then:

MAX -WEIGHT APPROXIMATION

The network subject to constraintsC which affords the closest approximation
to p� (according to the cross entropy measure of distance) is the network
satisfyingC whose arrow weights are maximised.

Proof. The distance between the probability functionp determined byX ’s Bayesian
network and the target functionp� isd(p�; p) =Xs p�(s) log p�(s)p(s)=Xs p�(s) log p�(s)�Xs p�(s) log NYi=1 p�(
ijdi)
where the
i anddi are consistent withs,=Xs p�(s) log p�(s)�Xs p�(s) NXi=1 log p�(
ijdi)=Xs p�(s) log p�(s)�Xs p�(s) NXi=1 log p�(
i ^ di)p�(
i)p�(di) �Xs p�(s) NXi=1 log p�(
i)= �H(p�)� NXi=1 I(Ci; Di) + NXi=1 H(p�jCi)
whereH(p�) is the entropy of functionp�, I(Ci; Di) is the mutual information
betweenCi and its parents andH(p�jCi) is the entropy ofp� restricted to node
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tance between the network and target distributions is minimised just when the total
mutual information is maximised.44

Note that I(A;B) + I(A;CjB)= Xa;b;
 p�(a ^ b ^ 
) �log p�(a ^ b)p�(a)p�(b) + log p�(a ^ 
jb)p�(ajb)p�(
jb)�= Xa;b;
 p�(a ^ b ^ 
) log p�(a ^ b)p�(a ^ b ^ 
)p�(b)p�(b)p�(a)p�(b)p�(b)p�(a ^ b)p�(
 ^ b)= Xa;b;
 p�(a ^ b ^ 
) log p�(a ^ b ^ 
)p�(a)p�(
 ^ b) = I(A; fB;Cg):
By enumerating the parentsDi of Ci asD1; : : : ; Dk, we can iterate the above

relation to get I(Ci; Di) = I(Ci; D1) + I(Ci; D2jD1)+I(Ci; D3jfD1; D2g) + : : :+ I(Ci; DkjfD1; : : : ; Dk�1g):
Therefore, NXi=1 I(Ci; Di) = NXi=1Xj I(Ci; Dj jfD1; : : : ; Dj�1g);
and the cross entropy distance between the network distribution and the target
distribution is minimised just when the sum of the arrow weights is maximised.�

Note that this result is independent of choice of enumeration of the variables,
as can be seen from the proof.

There are various ways one might try to find a constrained network with max-
imum or close to maximum weight, but perhaps the simplest is agreedy adding-
arrows strategy: start off with the discrete graph and at each stage find and weigh
the arrows whose addition would ensure that the dag structure and constraintsC
remain satisfied, and add one with maximum weight. If more than one best arrow
exists we can spawn several new graphs by adding each best arrow to the previous
graph, and we can constantly prune the number of graphs by eliminating those
which no longer have maximum weight. We stop the algorithm when no more
arrows can be added.45

Given this algorithm and its justification, we now have answers to our two ques-
tions of this section. We seek out a good arrow to add by findingthe arrow with

44This much is a straightforward generalisation of the proof of [Chow & Liu 1968] that the best
tree-based approximation is the maximum weight spanning tree.

45See[Williamson 2000b] and[Williamson 2000] for analyses of the performance of this algorithm,
which turns out to be remarkably effective for a greedy approach.
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maximum conditional mutual information weight. We limit the complexity of the
network by imposing constraints on the network.

Thus in stage two of the two-stage methodology we can improvethe causal
network obtained in stage one by adding arrows — these arrowslink causally
related variables or more generally probabilistically dependent variables, and a
good strategy is to add the weightiest arrow which does not violate constraints
on the complexity of the network. The conditional mutual information weighting
is a measure of conditional dependence and so in effect the strategy is to add an
arrow between two nodes that are most (conditionally) dependent. The resulting
graph will not necessarily reflect the true causal relationsamongst the variables,
and so stage two corresponds more closely to the abstract foundations for Bayesian
networks than any causal interpretation.

7 CONCLUSION

While the independence assumption poses significant problems for a straightfor-
ward objective or subjective interpretation of Bayesian networks, independence
can be though of as a means of determining a rational belief function from an
agent’s background knowledge. Thus Bayesian networks can be given firm foun-
dations by adopting a two-stage approach, whereby one first adopts a subjective
causal interpretation which may then be dropped as the network is refined in order
to better approximate a target objective probability function. These foundations
appeal to information-theoretic notions and assumptions about causality which are
somewhat less contentious than the independence assumption. Stage one is jus-
tified by maximum entropy considerations while an adding-arrows strategy for
stage two can be justified by minimising cross entropy relative to the objective
distribution. This approach is not subject to many of the problems that beset the
objective or subjective interpretations considered inx2 andx3: we do not need to
worry about individuation of variables, and stage two can beused to compensate
for the presence of accidental and extra-causal dependencies and any discrepan-
cies between the subjective network and an objective causalnetwork. The advan-
tage over the abstract approach is that we don’t require a database of past case
data to determine a network — stage one makes use of causal andprobabilistic
background knowledge. The two-stage methodology can be viewed as a way of
integrating background knowledge (including qualitativecausal knowledge) with
machine learning techniques (of which the adding-arrows strategy is one exam-
ple).46

Department of Philosophy, King’s College, London.

46Thanks to David Corfield, Donald Gillies and Jeff Paris for helpful comments, and the UK Arts
and Humanities Research Board for funding this research.
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