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Abstract Mechanistic philosophy of science views a large part of scientific activity as
engaged in modelling mechanisms. While science textbooks tend to offer qualitative
models of mechanisms, there is increasing demand for models from which one can
draw quantitative predictions and explanations. Casini et al. (Theoria 26(1):5–33,
2011) put forward the Recursive Bayesian Networks (RBN) formalism as well suited
to this end. The RBN formalism is an extension of the standard Bayesian net formalism,
an extension that allows for modelling the hierarchical nature of mechanisms. Like the
standard Bayesian net formalism, it models causal relationships using directed acyclic
graphs. Given this appeal to acyclicity, causal cycles pose a prima facie problem for
the RBN approach. This paper argues that the problem is a significant one given
the ubiquity of causal cycles in mechanisms, but that the problem can be solved by
combining two sorts of solution strategy in a judicious way.
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1 Introduction

The concept of ‘complex-system mechanism’, which is commonly defined such that a
mechanism’s behaviour is realized by the organized behaviour of its component parts,
plays an increasingly important role in philosophy of science. A natural question to
ask is how mechanisms can or should be modelled. Adequately modelling mech-
anisms is a precondition for successful mechanistic prediction, intervention and/or
explanation. Non-formal models of mechanisms have been discussed at length in phi-
losophy of science; see for example Glennan (2005), Bechtel and Abrahamsen (2005),
and Craver (2006). Some authors have posited the need, however, to develop formal
models of mechanisms that might be used to draw quantitative, as well as qualita-
tive, inferences from the model (Lazebnik 2002; Bechtel 2011). In this paper, we will
elaborate one possible formal approach: mechanisms can be modelled by means of
Recursive Bayesian Networks (RBNs). The RBN formalism is an extension of the
standard Bayesian net formalism. In contrast with standard Bayesian nets, RBNs can
be used to model the hierarchical nature of mechanisms. This approach to modelling
mechanisms was originally put forward by Casini et al. (2011). One limitation of
that work, however, was that it lacked a principled way of handling mechanisms that
involve causal cycles. The primary aim of this paper is to provide such an account.
Given the ubiquity of cycles in mechanisms (see Sect. 3), this is an important step
forward in the development of the RBN approach to mechanistic modelling.

The structure of the paper is as follows. Sections 2 and 3 together motivate our
project, in that they substantiate the need for an RBN account that can handle cycles.
As such, they make clear both why Casini et al. (2011) have provided an interesting
approach to mechanistic modelling, and in what ways their account should be modified
to be useful when modelling cases from scientific practice. In Sect. 2 we will highlight
three important features of mechanisms as they are discussed in recent philosophy of
science. It will emerge that the machinery of RBNs will be well suited to modelling
mechanisms—on the condition that the acyclicity assumption, inherited from standard
Bayesian networks, is dropped. In Sect. 3 we will argue that cycles are everywhere
in the sciences, in particular in the biomedical and the biological sciences. We also
offer a threefold classification of cycles. We then discuss three mereologically nested
examples of biomedical mechanisms with cycles, drawn from recent sleep research,
in some detail. In Sect. 4 we introduce the framework of RBNs and the ordinary causal
Bayesian networks to which they are related. We also show how they may be used
for inference (e.g., prediction). Finally, we show that the cycles discussed in Sect. 3
pose a conundrum for RBNs as defined in Casini et al. (2011), which are assumed to
be acyclic. In Sect. 5 we sketch two ways to handle causal cycles in ordinary causal
Bayesian nets. The first is a discussion of the extent to which well-known results
(relating to d-separation and the Causal Markov Condition) carry over from the acyclic
to the cyclic case. The second makes use of Dynamic Bayesian Nets (DBNs). Both
these solutions are then incorporated in the RBN framework in Sect. 6, thus allowing
for Recursive Bayesian Networks that contain cycles. Which solution to apply depends
on the type of problem that is studied, as well as on pragmatic considerations, such as
the granularity of analysis that is required. We distinguish between static and dynamic
problems, relate them to the three-fold classification of cycles offered in Sect. 3, and
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provide examples of how they can be handled. Finally, in Sect. 7, we summarize our
approach and make some concluding remarks.

Before we start, we would like to make two terminological and two substantive
remarks. The first remark concerns the notion ‘recursive’. In the older literature on
structural equation modelling and causal Bayesian nets, this was often used in the sense
of ‘acyclic’ (see, e.g., Spirtes 1995). Hence one may worry that ‘cyclic Recursive
Bayesian Net’ is a contradiction in terms. As RBNs use ‘recursive’ in a different
sense—the more standard sense of a recursive or inductive definition, which can appeal
to another instance of itself—this worry should not arise.

The second remark concerns the notion of ‘cyclicity’ itself. The topic of cyclic
causality is studied in diverse domains, ranging from AI and computer science, through
philosophy of science, to a wide range of empirical sciences. In these domains, several
synonyms (or close proxies) for ‘cyclicity’ are used, among which ‘bidirectionality’
and ‘feedback’ are the most common ones. Since ‘bidirectional arcs’ are often used in
the literature on causal discovery to denote the existence of (unobserved) confounding
factors instead of bidirectional causal influences, and since ‘bidirectional causality’
often refers to ‘atomic’ cycles of the form A � B (where A is a direct cause of B and
vice versa), we will avoid using the word ‘bidirectionality’. In Sect. 3, we will touch
on the notion of ‘feedback’ in more detail, distinguishing three types of feedback and
elucidating their links with ‘cyclicity’.

The third remark relates to the precise goal of our paper, which is modelling mech-
anisms. We do not intend to tackle issues of causal (or mechanism) discovery, such
as specifying algorithms for inferring RBNs from observational and/or experimen-
tal data. We presuppose the mechanism is known (be it completely or incompletely,
fallibly or infallibly) and ask how we can best model it so as to draw quantitative infer-
ences. This account may then serve as a basis for further research on formal methods
for mechanism discovery.1

The fourth remark concerns the interpretation of causality. In the mechanistic lit-
erature, Woodward’s interventionist account of causality is relatively widespread (see
Woodward 2003, for the interventionist account; see e.g., Glennan 2002; Woodward
2002,2 Craver 2007 and Leuridan 2010, for appeals to the interventionist account of
causality within a mechanistic framework). As is well known, Woodward’s account
nicely fits the causal Bayesian nets literature.3 Another interpretation that has been
proposed with an eye to causal Bayesian nets is the epistemic account, according to
which causation is a feature of the way we represent the world rather than the world
itself, yet it is objective in the sense that if two agents with the same evidence disagree

1 Note that, as with all models, a RBN model only models some aspects of a mechanism. The main goal is
to model the hierarchical structure of the mechanism together with the causal structure at each level of the
hierarchy, in such a way that the model can be used to draw quantitative inferences. See Casini et al. (2011)
for a fuller presentation of the motivation behind this sort of model, and Sect. 7 of this paper for pointers
to possible limitations of the RBN approach.
2 Woodward’s concept of ‘mechanism’, or more precisely: of ‘mechanistic model’, is not explicitly multi-
level or hierarchical, in contrast to those on which we focus in this paper. In the next section, the hierarchical
nature will serve as one of the main reasons to adopt the RBN approach to mechanistic modelling.
3 As such, his account of causality can also form the starting point for causal Bayes net accounts of the
structure of scientific theories (see Leuridan 2014).
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regarding a causal claim, one may be right and the other wrong; see Williamson (2005,
Chap. 9). In this paper, we will not adopt a specific account of causality. Any account
that suits the causal Bayesian nets framework, such as the two just mentioned, can be
chosen.

In the interest of readability, we aim to keep the paper as non-technical as possi-
ble. Further technical details concerning the frameworks we use can be found in the
references.

2 Importance for philosophy of science

The concept of ‘complex-system mechanism’ plays an increasingly important role in
philosophy of science. In this paper, we will not survey the overwhelming literature
on mechanisms (see for example Machamer et al. 2000; Glennan 1996, 2002; Bechtel
and Abrahamsen 2005). Rather, we will focus on two recent works in the mechanistic
tradition, one by Carl Craver and one by William Bechtel, and on three key features
of mechanisms and mechanistic models they discuss. These three features will set the
agenda for our paper.

In his book Explaining the Brain, Craver (2007) gives a very detailed account of
mechanisms. A first feature that emerges from his work, is that mechanisms are hier-
archically organized. As we wrote above, mechanisms are commonly defined such
that their higher-level behaviour is realized by the organized lower-level behaviours of
their component parts. This hierarchical structure need not be confined to two levels.
The behaviours of a mechanism’s components may themselves be mechanistically
explicable as well. In fact, there may be a whole series of nested mechanisms (see
Craver 2007, pp. 188–195). In a recent paper, “Mechanism and Biological Explana-
tion,” William Bechtel expresses a similar view: mechanistic explanations are always
multilevel accounts, focusing on the mechanism’s parts, operations and organisation,
on the phenomenon exhibited by the whole mechanism, and on the mechanism’s envi-
ronment (Bechtel 2011, p. 538).

This hierarchical structure of mechanisms does not require, however, that our
descriptions of such hierarchies be open-ended in the downwards direction. Mod-
els typically bottom-out in lowest-level mechanisms which are accepted as relatively
fundamental or unproblematic (in a given context); see Machamer et al. (2000, p. 13)
and Craver (2007, p. 193).

The hierarchical structure of mechanisms is illustrated in Fig. 1 (which is adapted
from Craver 2007, p. 7). The X ’s are components in the mechanism for S’sψ-ing. The
φ’s are their respective behaviours. Solid arrows represent intra-level causal relations.
The dotted lines denote inter-level constitutive relevance.

Figure 1 brings us to a second important feature of mechanisms: their possibly
cyclic causal organization. X2 and X3 are cyclically causally connected: X2 is a cause
of X3, and vice versa (strictly speaking, X2’s φ2-ing is a cause of X3’s φ3-ing and vice
versa, but let us omit such circumlocutions). This is not a mere coincidence or a slip of
the pen on Craver’s behalf. Elsewhere, he writes that symmetric causal relations exist,
although he sometimes seems to underrate their incidence (e.g. Craver 2007, p. 153).
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Fig. 1 A phenomenon (top) and its mechanism (bottom)

He also mentions cases of causal feedback in the neurosciences (the discipline of
interest in his book) on several occasions.4

Bechtel attaches great importance to cyclicity. A crucial feature of biological organ-
isms is ‘their autonomy—their ability to maintain themselves as systems distinct from
their environment by directing the flow of matter and energy so as to build and repair
themselves’ (Bechtel 2011, p. 535). For this autonomy, cyclic organization is piv-
otal: ‘Autonomous systems must employ a nonsequential or cyclic organization such
as negative feedback …’ (Bechtel 2011, p. 544). Mechanisms cannot be modelled
merely sequentially without loss of crucial information.

A third important feature, which is heavily stressed by Bechtel (2011, pp. 536–537),
is that to adequately model a mechanism, one has to model not only its qualitative
aspects, but also its quantitative aspects. Bechtel proposes computational modelling
and dynamic systems analysis as methods to account for the non-qualitative aspects of
mechanisms. We will propose a different approach here: an approach based on causal
Bayesian nets.

As we shall see in Sect. 4, causal Bayesian nets can model both the qualitative
aspects of causal structures by means of a causal graph and their quantitative aspects
by means of the associated probability distribution. Hence this approach would auto-
matically meet Bechtel’s call for a quantitative account of mechanisms. Following
Casini et al. (2011), we use RBNs instead of standard causal Bayesian nets so as to
account for the mechanisms’ hierarchical organization (Sect. 4). In order to account for
the mechanisms’ possibly cyclic causal organisation, we will explore existing solu-
tions to the problem of cyclicity in causal Bayesian nets (Sect. 5) and incorporate
these in the RBN framework (Sect. 6). As a result, we provide a formal account of
mechanisms that combines all three features discussed above.

But first we shall explore the abundance of cyclic mechanisms in the sciences and
distinguish between several types of causal cycles, as this will influence the choice of
technical solution in each context (Sect. 3).
4 For mentions of causal feedback in Explaining the Brain, see e.g. pp. 81 and 178–180. Several of Craver’s
figures also contain cycles: see Fig. 4.1 (p. 115) and Fig. 4.6 (p. 121) and relatedly 5.7 (p. 189) and 5.8
(p. 194). Moreover, Fig. 3.2 (p. 71) and relatedly 4.1 (p. 166), leave open the possibility of causal feedback.
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3 Importance for the sciences

Although not every causal relationship of interest to the sciences exhibits cyclicity,
very many causes of practical importance do. A bibliographic search in the ISI Web of
Science for “topic=(causal feedback)” on the 4th of November 2011 yielded 1,161 hits
in disciplines as diverse as cell biology, biochemistry, molecular biology, neuroscience,
environmental studies, psychology and social psychology, while a wider search in all of
the ISI’s databases yielded a total of 1,603 hits. Cycles are everywhere in the sciences.

They are particularly prevalent in the biomedical and biological sciences. Examples
include metabolic cycles (such as Krebs’ cycle), organismal life cycles (such as the
malaria-causing organisms of the genus Plasmodium), homeostatic pathways (such
as blood glucose regulation) and pathological processes. A survey of the 790 images
contained in a recent medical textbook, Davidson’s Principles & Practice of Medicine,
20th edition (Boon et al. 2006), revealed a total of 154 images that contained some
graphical representation of causal processes. 51 of these figures (33 %) were at least
partially cyclic, conveying knowledge about the regulation of the cell cycle, the life-
cycles of various pathogenic organisms, the homeostasis of fat, fluids and ions, the
arrangement of hormone systems and the development of disease.

A simple example of this kind of cycle is post-traumatic raised intracranial pressure.
Here, trauma to the head may cause swelling of the brain. This swelling increases the
pressure within the fixed volume of the skull. The consequence of this increased
intracranial pressure is to reduce cerebral perfusion, which in turn causes cerebral
hypoxia. This hypoxic insult causes damage to the brain cells, which leads to further
swelling.

One interesting feature of these causal cycles concerns the way that the organisa-
tion of parts and operations governs the type of feedback seen in that cycle. Three
arrangements are possible. Negative-feedback cycles are those in which the properties
of the parts in the cycle tend to maintain the status quo by virtue of the organisation
of their operations. Thus, the higher level phenomena produced by negative-feedback
cycles tend to be stable, as in the case of many metabolic and homeostatic processes.5

With respect to medicine, this means that negative-feedback cycles are typically phys-
iological, rather than disease-producing. Second are positive-feedback cycles. Here,
the organisation of parts and operations tends to produce divergence from equilibrium
of one or more parts over time. These kinds of cycles are typically associated with
the production of identifiable disease states, such as the head trauma example given
above.6 In this case, the degrees of swelling, intracranial pressure, and cellular damage
will tend to increase, while cerebral perfusion and oxygenation will tend to decrease.
The higher level phenomena produced by positive-feedback cycles thus demonstrate
exponential growth over time—at least until restrained by external factors. Finally, a
third kind of cycle exists in which the organisation of the cycle neither tends to produce

5 This property of negative feedback systems to tend toward equilibrium is the case when there is no
significant delay in the system. When delay is present, as it is in many biological systems, oscillations will
tend to arise. We would like to thank Mike Joffe for pressing us on this issue.
6 However, this is not always the case. For instance, various positive feedback loops in pregnancy serve to
appropriately maintain hormone levels.
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Fig. 2 Thyroxine example.
TRH thyrotropin-releasing
hormone, TSH
thyroid-stimulating hormone

movement towards, or away from, equilibrium. In these kinds of contingent-feedback
cycles, the actual direction of change is predominantly governed by factors extrinsic
to the cycle. For example, the parts of a parasitic life-cycle are largely governed by
factors external to that cycle, meaning that either positive or negative feedback may
occur in different instantiations.7

The type of feedback seen in a particular cycle partly depends on the manner in
which we investigate that cycle. For example, an oscillating system studied over dura-
tions much shorter than its period may appear to demonstrate positive feedback, yet
will appear to show negative feedback if studied at much longer durations. An exam-
ple of this granularity in the description of feedback can be seen in the pathway by
which the concentration of thyroid hormones is maintained (see Fig. 2). The secre-
tion of thyrotropin-releasing hormone (TRH) from the hypothalamus stimulates the
pituitary gland to secrete thyroid-stimulating hormone (TSH). In turn, this causes the
thyroid to secrete the hormone thyroxine.8 The resultant increase in circulating thy-
roxine levels inhibits the secretion of TRH by the hypothalamus, which has the effect,
via reduced TSH secretion, of reducing the concentration of thyroxine. When viewed
over the long-term, this is a negative-feedback cycle, as the concentrations of each of
the hormones involved tend towards equilibrium. However, at very short durations,
individual parts of the mechanism may undergo changes away from their equilibrium
point. Thus, the type of feedback modelled depends on the granularity with which
we investigate a phenomenon of interest. Modelling feedback, as with many other
considerations in mechanistic modelling, also depends on pragmatic factors such as
the required level of detail.

7 These kinds of contingent-feedback cycles are, in other words, more sensitive to background conditions
than the other two kinds. This makes them unstable, in Mitchell’s sense of stability as describing the
sensitivity of relations to their background conditions (Mitchell 2009, p. 56). This should be discriminated
from robustness, which describes the degree to which a function is maintained when one or more constitutive
elements are disrupted (Mitchell 2009, pp. 69–73).
8 This cycle is more complicated than suggested above. For example, the thyroid secretes two hormones—
T3 and T4—which can be interconverted, and feedback occurs at various intermediate points in the cycle.
But this simple version is adequate for our discussion.
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Fig. 3 Figure showing cyclical interactions between sleep and health outcomes (Grandner et al. 2010,
p. 200). Reprinted from Sleep Medicine Reviews, 14(3), Michael A. Grandner, Lauren Hale, Melisa Moore
and Nirav P. Patel, Mortality associated with short sleep duration: The evidence, the possible mechanisms,
and the future, pp. 191–203. Copyright 2010, with permission from Elsevier

Given this brief introduction to cycles in practice, the remainder of this section will
discuss three mereologically nested examples of biomedical mechanisms with cycles,
drawn from recent work in sleep research.

3.1 Public health example

Insufficient sleep is correlated with mortality (Grandner et al. 2010). However, the
mechanism underlying this association is highly complex and poorly understood.
As Fig. 3 suggests, an extensive network of social, psychological and pathological
states causally interact with both sleep and mortality. The duration and quality of
sleep interact cyclically with a range of mortality-associated physiological and social
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Fig. 4 Diagram showing the cyclical relationship between sleep apnoea and heart failure. NRFM nocturnal
rostral fluid movement, OSA obstructive sleep apnoea (Gottlieb et al. 2010; Yumino et al. 2010)

outcomes including obesity, cardiovascular disease, stress and metabolic dysfunction
(indicated by edges C and E, Fig. 3). To illustrate this, consider the relationship
between insufficient sleep and cardiovascular disease. Broadly, while cardiovascular
disease causes impaired sleep (perhaps by causing chest pain or shortness of breath
while lying down), impaired sleep may also cause cardiovascular disease (perhaps by
increasing blood pressure).

3.2 Clinical example

One way in which sleep and cardiovascular disease interact is by the clinical syndrome
known as obstructive sleep apnoea (OSA). This is a condition where excessive relax-
ation of the tissues of the throat leads to occlusion of the upper airway, temporarily but
completely interrupting breathing during sleep. This transient suffocation then leads to
an arousal event, where the individual experiences a complex set of cardiorespiratory
responses, terminated in wakefulness and the re-establishment of normal breathing.
These stressful arousal events may occur on dozens of occasions during each period
of sleep.

Many diseases are correlated with OSA. One example is heart failure. Here, the
heart is unable to pump sufficient blood to keep pace with normal circulatory demands.
While the aetiology of heart failure is complex, one known cause of it is OSA (Got-
tlieb et al. 2010), which acts by a combination of short- and long-term mechanisms.
For instance, in the short term, arousal events dramatically increase both blood pres-
sure and cardiac oxygen demands. This may produce gradual cardiac remodelling,
and excessive sympathetic nervous system activity, leading to an increased chance of
developing heart failure (McNicholas and Bonsignore 2007, p. 161).

However, as Fig. 4 suggests, not only is OSA a cause of heart failure, but it may
also result from it. First, heart failure—in common with many chronic diseases—often
causes sufferers to be very tired, leading to the adoption of a highly sedentary life-style.
Fairly intuitively, being sedentary tends to cause weight gain, which can predispose
to OSA by increasing the size of the neck. Second, heart failure can cause OSA via a
pathological process known as nocturnal rostral fluid movement (NRFM). The basic
idea is this. One of the consequences of heart failure is a condition known as dependent
oedema, which is characterised by the abnormal accumulation of extracellular fluid in
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the lower parts of the body (the ankles, for instance). In NRFM, lying down (while,
for instance, sleeping) causes this fluid to migrate up from the lower part of the body
towards the head and neck. Here, the fluid accumulates in the soft tissues of the throat,
producing an enlargement of the soft tissues in an analogous way to obesity, and
similarly increasing the chances of airway obstruction (Yumino et al. 2010). Heart
failure, via both weight gain and NRFM, causes OSA, while OSA, via a series of
complex processes associated with arousal events, causes heart failure.

3.3 Neuroscience example

A neurologically important feature of normal NREM sleep is the slow wave-like
rhythm in which neurones across the cortex ‘beat’ at a frequency of about 1 Hz.9 This
slow wave sleep is thought to be causally significant in consolidating new memories
(marshall et al. 2006). This oscillation comes about from a cycle that obtains between
three populations of neurones (Crunelli and Hughes 2010), as described in Fig. 5.
First, two populations of neocortical neurones—‘a subset of pyramidal neurons in
layers 2/3 and 5 and a group of Martinotti cells that is exclusively located in layer 5’
(Crunelli and Hughes 2010, p. 11)—and a group of thalamic cells, known as cortically
projecting thalamic (CT) neurones, act as intrinsic pacemakers, spontaneously gener-
ating a slow oscillation. Together, the effect of these pacing cells is to stimulate two
populations of nerves in the thalamus—the CT and nucleus reticularis thalami (NRT)
neurones. In turn, these thalamic cells, once stimulated in this way, evoke a strong
oscillatory response from the thalamus more broadly. This has the effect of stimu-
lating ‘virtually all cortical neurones’ (Crunelli and Hughes 2010, p. 10) to produce
the <1 Hz oscillation seen on EEG. This waveform therefore arises by virtue of the
cyclical interactions between three different populations of neurones, as Crunelli and
Hughes suggest: ‘the full EEG manifestation of the slow rhythm requires the essen-
tial dynamic tuning provided by their complex synaptic interactions’ (Crunelli and
Hughes 2010, p. 14).

4 Recursive Bayesian Networks

In this section we will introduce RBNs and see that causal cycles present a prima facie
problem for this formalism.

4.1 Origins

Bayesian networks were developed in the 1980s in order to facilitate, among other
things, quantitative reasoning about causal relationships (Pearl 1988).10 A causally-

9 Similar examples of neurological oscillators are also discussed by Bechtel (2011, pp. 548–549).
10 Structural equation modelling had previously been put forward for this purpose. But structural equation
models attempt to model deterministic relationships between cause and effect (with error terms which are
usually assumed to be independent and normally distributed), while Bayesian networks seek to represent
the probability distribution of the variables in question. In general it is harder to devise an accurate model
of deterministic relationships than it is to determine probabilistic relationships between cause and effect.
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Fig. 5 Figure showing cyclical interactions between cortical and thalamic oscillators in the production of
the slow (<1 Hz) rhythm (Crunelli and Hughes 2010, p. 14). Reprinted by permission from Macmillan
Publishers Ltd: Nature Neuroscience, 13(1), Vincenzo Crunelli and Stuart W. Hughes, copyright 2010

interpreted Bayesian net uses a directed acyclic graph (DAG) to represent qualitative
causal relationships and the probability distribution of each variable conditional on
its parents to represent quantitative relationships amongst the variables. The RBN
formalism was developed to model nested causal relationships such as [smoking caus-
ing cancer] causes tobacco advertising restrictions which prevent smoking which is
a cause of cancer (Williamson 2005, Chap. 10). Standard Bayesian nets cannot be
applied to this task because they cannot model causal relationships acting as causes,
and they do not allow variables such as smoking to occur at more than one place in
the network. Casini et al. (2011) then went on to apply the RBN formalism to the
modelling of mechanisms, which are often thought of as composed of nested levels
of causal relationships.11

11 Note that RBNs are not the only hierarchical extension of Bayesian nets. See Williamson (2005, §10.2)
for a comparison between RBNs and other related formalisms.
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Fig. 6 A DAG

4.2 Bayesian nets

A Bayesian net consists of a finite set V = {V1, . . . , Vn} of variables, each of which
takes finitely many possible values, together with a DAG whose nodes are the vari-
ables in V , and the probability distribution P(Vi |Pari ) of each variable Vi conditional
on its parents Pari in the DAG.12 Figure 6 gives an example of a DAG; to form a
Bayesian net the probability distributions P(V1), P(V2|V1), P(V3|V2), P(V4|V2V3)

and P(V5|V3) need to be provided. The graph and the probability function are linked
by the Markov Condition which says that each variable is probabilistically indepen-
dent of its non-descendants, conditional on its parents, written Vi ⊥⊥ N Di | Pari .
Figure 6 implies for instance that V4 is independent of V1 and V5 conditional on V2
and V3. A Bayesian net determines a joint probability distribution over its nodes via
P(v1 · · · vn) = ∏n

i=1 P(vi |pari ) where vi is an assignment Vi = x of a value to
Vi and pari is the assignment of values to its parents induced by the assignment
v = v1 · · · vn . In a causally-interpreted Bayesian net or causal net, the arrows in the
DAG are interpreted as direct causal relations (Williamson 2005) and the net can be
used to infer the effects of interventions as well as to make probabilistic predictions
(Pearl 2000; Spirtes et al. 2000); in this case the Markov Condition is called the Causal
Markov Condition.

4.3 Recursive Bayesian Nets

A RBN is a Bayesian net defined over a finite set V of variables whose values may
themselves be RBNs. A variable is called a network variable if one or more of its
possible values is an RBN and a simple variable otherwise. A standard Bayesian net
is an RBN whose variables are all simple.

An RBN x that occurs as the value of a network variable in RBN y is said to be
at a lower level than y; the network variable in question is a direct superior of the
variables in x , which are called its direct inferiors. Variables in the same net (i.e.,
at the same level) are peers. If an RBN contains no infinite descending chains—i.e.,
if each descending chain of nets terminates in a standard Bayesian net—then it is
well-founded.13 We restrict our attention to well-founded RBNs here.

For simplicity of exposition, we shall also restrict our attention to the case in which
each variable only occurs once in the RBN—in which case each variable has at most
one direct superior. This will allow us to state our main points without having to
digress by discussing questions to do with the consistency of an RBN and other

12 Although Bayesian nets have been extended to handle certain continuous cases, we restrict attention to
discrete variables in this paper.
13 This corresponds to the notion of ‘bottoming-out’ in the mechanistic literature (see Sect. 2).
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technicalities (Williamson 2005, §§10.4–10.5). Although this restriction is expedient,
it is not essential: the theory of RBNs does admit variables with multiple occurrences.

4.4 Example

To take a very simple example, consider an RBN on V = {M, S}, where M is the
DNA damage response mechanism which takes two possible values, 0 and 1, while S
is survival after 5 years which takes two possible values yes and no. The corresponding
Bayesian net is:

Suppose S is a simple variable but that M is a network variable, with each of its two
values denoting a lower-level (standard) Bayesian network that represents a state of
the DNA damage response mechanism. When M is assigned value 1 we have a net m1
representing a functioning damage response mechanism, with a probabilistic depen-
dence (and a causal connection) between damage D and response R:

On the other hand, when M is assigned value 0 we have a net m0 representing a
malfunction of the damage response mechanism, with no dependence (and no causal
connection) between damage D and response R:

Since these two lower-level nets are standard Bayesian nets the RBN is well-founded
and fully described by the three nets.

Note that, as this example shows, an RBN can be used to represent mechanisms in
various states—in this case, the RBN represents a malfunctioning damage response
mechanism as well as a functioning damage response mechanism.14 It is possible to
build an RBN representing just one of these mechanism states by taking the network

14 The malfunctioning of mechanisms is of particular interest to, e.g., neuroscience (Craver 2007,
pp. 124–125) and medicine (Nervi 2010).
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variable to have a single possible value. Even if an RBN represents just one of a
mechanism’s states, it still models its hierarchical architecture.

4.5 Recursive causal Markov condition

If an RBN is to be used to model a mechanism, it is natural to interpret the arrows
at the various levels of the RBN as signifying causal connections. Just as standard
causally-interpreted Bayesian nets are subject to the Causal Markov Condition, a
similar condition applies to causally-interpreted RBNs. This is called the Recursive
Causal Markov Condition.

Let V = {V1, . . . , Vm} (m≥n) be the set of variables of an RBN closed under the
inferiority relation: i.e., V contains the variables in V , their direct inferiors, their direct
inferiors, and so on. Then:

RCMC. Each variable in V is independent of those variables that are neither its effects
(i.e., descendants) nor its inferiors, conditional on its direct causes (i.e., par-
ents) and its direct superiors: Vi ⊥⊥ N I Di | DSupi ∪ Pari for each variable
Vi , where N I Di is the set of non-inferiors-or-descendants of Vi and DSupi

is the set of direct superiors of Vi .

Note that, while some authors treat the Causal Markov Condition as a necessary truth,
others argue against its universal validity see, e.g., Williamson (2005). We treat the
Causal Markov Condition and RCMC as modelling assumptions, in need of testing or
justification, rather than necessary truths.

4.6 Inference

Inference in RBNs proceeds via a formal device called a flattening. Let N =
{Vj1, . . . , Vjk } ⊆ V be the network variables in V . For each assignment n =
v j1, . . . , v jk of values to the network variables we can construct a standard Bayesian
net, the flattening of the RBN with respect to n, denoted by n↓, by taking as
nodes the simple variables in V plus the assignments v j1 , . . . , v jk to the net-
work variables, and including an arrow from one variable to another if the for-
mer is a parent or direct superior of the latter in the original RBN. The con-
ditional probability distributions are constrained by those in the original RBN:
P(Vi |Pari ∪ DSupi ) = Pv ji

(Vi |Pari ) given in the RBN, where Vji is the
direct superior of Vi . The Markov Condition holds in the flattening because the
Recursive Causal Markov Condition holds in the RBN. (In the flattening, those
arrows linking variables to their direct inferiors in the RBN would not nor-
mally be interpretable causally, so the Causal Markov Condition is not satis-
fied).15

15 While these arrows would not normally be interpreted causally, the question arises as to whether they
might be if Craver’s views of mutual manipulability and causality are endorsed. See footnote 25.
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In our example, for assignment m1 of network variable M we have the flattening m↓1 :

with probability distributions P(m1) = 1 and P(S|m1) determined by the top level of
the RBN, and with P(r1|d1m1) = Pm1(r1|d1) determined by the lower level (similarly
for d0 and r0). The flattening with respect to assignment m0 is m↓0 :

Again P(r1|m0) = Pm0(r1), etc. In each case the required conditional distributions
are determined by the distributions given in the original RBN.

The flattenings suffice to determine a joint probability distribution over the variables
in V via P(v1 · · · vm) =∏m

i=1 P(vi |pari dsupi ) where the probabilities on the right-
hand side are determined by a flattening induced by v1 · · · vm . Having determined
a joint distribution, the causally-interpreted RBN can be used to draw quantitative
inferences in just the same way as can a standard causal net (Casini et al. 2011, §2).

Note that RBNs are more expressive than standard Bayesian nets. What can be
encapsulated in a single RBN corresponds to the information in several standard
Bayesian nets (the flattenings). In many cases the flattenings are mutually inconsistent,
so cannot themselves be combined into a single standard Bayesian net.

4.7 Causal cycles

We are now in a position to see why causal cycles pose a conundrum for RBNs
when used to model mechanisms. As we have seen, mechanisms with causal cycles
are ubiquitous. Now, an RBN models causality at each level using directed acyclic
graphs. It is important that the graph be acyclic because of the connection between
RBNs and standard Bayesian nets: an RBN with a cyclic causal graph would lead
to flattenings that themselves have cycles; these flattenings would fail to qualify as
standard Bayesian nets and hence it would not be possible to define a joint distribution
in the way described; therefore one would not be able to use the RBN for inference.
Because causal cycles cannot be modelled directly in RBNs, it seems that RBNs cannot
be suitable for modelling mechanisms after all.

Consider an example. Head injuries are often characterised by the following causal
cycle (see Sect. 3): trauma causes swelling (oedema) which causes increased pressure
on the brain (raised intracranial pressure) which causes oxygen deprivation (hypoxia)
which in turn causes further trauma, and so on. Medical interventions to break this
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vicious circle include the use of the drug mannitol, which osmotically reduces swelling,
and controlled hyperventilation, which reduces the partial pressure of carbon dioxide
in the blood, which in turn produces cerebral vasoconstriction, reducing oedema. The
important thing to note is that these interventions sever the connection between trauma
and swelling.

One might want to use an RBN to model this as follows. At the top level of the
mechanism we might have two variables: action A taking possible values a0 (no treat-
ment), a1 (treatment); and survival after 1 day D taking values d0 (no), d1 (yes). A is
a cause of D at this level:

D might be considered a simple variable while A is modelled as a network variable.
Value a1 has causal graph:

where binary variables T, S, P, H stand for trauma, swelling, increased pressure and
hypoxia respectively. a0 has causal graph:

Clearly this last graph is not acyclic and hence the resulting hierarchical structure
cannot be used as a basis for an RBN as standardly defined.

The question arises, then, whether the RBN formalism can be further developed in
order to model mechanisms containing causal cycles.

5 Current approaches

The best way to find an answer to this question is to look at past attempts to handle
causal cycles in ordinary, i.e. non-recursive, causal Bayesian nets. Two main types of
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solution can be distinguished, each of which may be used within the RBN framework,
as we will show in Sect. 6.

5.1 d-separation in directed cyclic graphs

In the case of DAGs, there is an intuitive graphical criterion, called d-separation, that
can be used to check which conditional independence relations are satisfied by any
probability distribution that satisfies the Causal Markov Condition relative to a given
graph G.

Definition 1 (d-separation) Let G be a D AG defined over the set of variables V . If
Q ⊂ V and A, B ∈ V \ Q, then A and B are d-separated given Q in G, in short
A ⊥⊥G B | Q, iff there is no path U between A and B, such that

1. for every collider · · · → C ← · · · on U , Descendants(C) ∩ Q �= ∅,16

2. and no other vertex on U is in Q.

If X �= ∅,Y �= ∅ and Z are three disjoint sets, then X is d-separated from Y given Z
iff every member of X is d-separated from every member of Y given Z (cf. Spirtes et
al. 2000, p. 44).

In the acyclic case, d-separation is equivalent to the Causal Markov Condition
(Spirtes 1995; Spirtes et al. 2000, p. 44): X ⊥⊥G Y | Z iff X ⊥⊥P Y | Z , where
X,Y, Z ⊂ V and where the latter expression stands for ‘X is probabilistically inde-
pendent of Y given Z ’ for any probability distribution P that satisfies the Causal
Markov Condition with respect to G.

This equivalence fails in directed cyclic graphs (DCGs), yet the following weaker
implication holds as was shown by Pearl and Dechter (1996, p. 422, Theorem 2).17

Given a (possibly cyclic) graph and associated probability distribution, if X ⊥⊥G Y | Z ,
then X ⊥⊥P Y | Z , provided that (i) the variables in V all have a discrete and finite
domain, (ii) the values of the variables of the system are uniquely determined by the
disturbances, and (iii) the disturbances are uncorrelated.18 In other words, even in the
cyclic case the independencies induced by G can be read off directly by means of the
d-separation criterion.19

16 In this definition, C ∈ Descendants(C) by convention.
17 The paper by Pearl and Dechter (1996) extends previous results by Spirtes (1995) and Koster (1996) who
have shown that the d-separation test is valid for cyclic graphs with linear equations and normal distributions
over the error terms. Given that we restrict attention to discrete variables in this paper (see Sect. 4), we will
only discuss Pearl and Dechter.
18 Disturbances are not explicitly mentioned in Sect. 4, but they can easily be introduced. Disturbances are
variables that represent errors due to omitted factors (see Pearl 2000, p. 27). The assumption of uncorrelated
disturbances is not a severe restriction. Given a graph G and associated probability distribution P , such that
not all disturbances are independent, one may construct an augmented graph G′ in which all disturbances
are independent. The augmented graph G′ is obtained by adding, for each pair of dependent disturbances,
a dummy root node as a common cause of the disturbances (Pearl and Dechter 1996, p. 422).
19 Unlike in the acyclic case, however, ‘the joint distribution of feedback systems cannot be written as a
product of the conditional distributions of each child variable, given its parents’ (Pearl and Dechter 1996,
p. 420). Hence factorization, on which we relied in Sect. 4, cannot be applied to DCGs. This can be shown
by means of a simple example by Spirtes et al. (2000, §12.1.2). Applying the factorization to the graph

123



1668 Synthese (2014) 191:1651–1681

Pearl and Dechter implicitly assume that the causal structure in question ‘is stable’
(1996, p. 421) and has reached ‘equilibrium’ (1996, p. 423)—cf. condition (ii) above:
once the values of the disturbances are given, the values of all variables are uniquely
determined. Their approach to the problem of cyclicity in ordinary Bayesian nets has
a problem, however. As Neal (2000) has shown, their theorem is not true in general.
He gives an example of a graph and an associated set of equations that satisfy the three
conditions specified above, yet in which there are two variables that are d-separated by
a third variable without being probabilistically independent conditional on that third
variable. One possible way to salvage Pearl and Dechter’s theorem is to require ‘not
only that [the disturbances] U1, . . . ,Un uniquely determine [the endogenous variables]
X1, . . . , Xn , but also that this unique solution for X1, . . . , Xn can be obtained by a
procedure in which the Xi are updated in accordance with the causal structure of the
network. In such a casual [sic] dynamical procedure, each Xi is repeatedly replaced
by the value computed for it from the corresponding Ui and the current values of its
parents, according to the equation for that Xi , until a stable state is reached’ (Neal
2000, p. 90).

One way to do this, is by making use of Dynamic Causal Bayesian nets.

5.2 Dynamic Bayesian Nets

DBNs were developed in the late 1980s to model the change in a probability distribution
over time (Dean and Kanazawa 1989, §5). More recent developments can be found in
Friedman et al. (1998), Ghahramani (1998), Murphy (2002), Bouchaffra (2010) and
Doshi-Velez et al. (2011) for instance.

A DBN consists of two components. First, a prior network needs to be specified.
This is a Bayesian network that is used to represent the probability distribution of the
variables at the initial time 0. As an example, consider the probability distributions
P(A0), P(B0|A0), P(C0|B0) together with the following graph:

The second component of a DBN is a transition network, that can be used to represent
the distribution of the variables at time 1 conditional on that at time 0. For example,
we might have a transition network based on the following graph:

Footnote 19 continued
X � Y , would lead to P(X, Y ) = P(X | Y )×P(Y | X), which would mean that X and Y are independent,
contrary to what the graph suggests.
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Here each variable at time 1 is directly influenced by its prior state as well as by its
causes.

Note that the Markov Condition is an assumption underlying both these networks.
It is also normally assumed that the process is Markovian, i.e., the variables at time
t + 1 are probabilistically independent of those at times 0, . . . , t − 1 conditional on
those at times t , and that the process is stationary, i.e., the distribution of variables
at one time conditional on those at the previous time does not vary over time, so that
the transition network remains valid for the transition from any time n to n + 1, not
just for the transition from time 0 to time 1. (These assumptions can be relaxed, but
obviously at a penalty of added computational complexity.)

For any particular time of interest, the DBN is unrolled by combining the prior
network with sufficiently many copies of the transition network. For instance at time
t = 4 we would need a network based on the following graph:

This unrolled network then determines a joint distribution over the variables from
times 0 to 4.

The use of DBNs has been put forward as a way to handle causal cycles see, e.g.,
Bernard and Hartemink (2005). When there is a cycle linking two variables X and Y ,
that tends to be because X initially changes Y which later changes X , which in turn later
changes Y and so on.20 By time-indexing the variables in the cycle, one can unwind
the cycle into a potentially infinite chain of the form X0 −→ Y0 −→ X1 −→ Y1 −→
· · · . In general, a causal cycle can be unwound by time-indexing the variables and
generating an acyclic DBN. This DBN can then be unrolled in the way described above.

20 Simultaneous causation and backwards causation do not fit this picture. However, such cases rarely if
ever occur in models of mechanisms, so we set them aside in this paper.
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6 Proposed solution

In this section we shall put forward a strategy for extending the RBN formalism to
cope with causal cycles. This is a mixed strategy: some situations are handled one
way, while other situations are handled another way. We distinguish between static
problems and dynamic problems. A static problem is a situation in which a specific
cycle reaches equilibrium—either due to negative feedback in the cycle or due to
external factors—and where the equilibrium itself is of interest, rather than the process
of reaching equilibrium. On the other hand a dynamic problem is a situation in which
it is the change in the values of variables over time that is of interest: perhaps there is
positive feedback, leading to a drift in the probability distribution of the variables in the
cycle over time; perhaps there is negative feedback towards an equilibrium solution,
but it is the progress of the cycle towards equilibrium that is of interest; perhaps the
cycle variables oscillate between two or more distributions. Note that as to whether a
problem is static or dynamic depends not only on the cycle in question but also on the
interests of the modeller, as we suggested in Sect. 3. Our mixed strategy is then this:
each static problem is tackled by appealing to the d-separation discussion of Sect. 5.1,
while each dynamic problem is tackled by invoking the DBN machinery introduced
in Sect. 5.2.

6.1 Static problems

In this case it is the equilibrium distribution itself that is of interest, rather than the
values the variables take while reaching equilibrium. For each static problem within
an RBN, we can attempt to model the probability distribution of the equilibrium
solution. Our approach here will appeal to the use of d-separation in cyclic graphs,
described in Sect. 5.1, to transform the cycle in question in the RBN into a Bayesian
net that represents the corresponding equilibrium distribution, which we will call an
equilibrium network.

Let us return to an earlier example of a stable cycle: the homeostatic thyroid cycle
introduced in Sect. 3. This cycle, depicted in Fig. 2, might well appear as a graph at
some level in an RBN, perhaps with various malfunctioning variants appearing as other
values of its direct superior. (Subclinical hypothyroidism, for example, involves an
increase in TSH but normal levels of thyroxine, while primary hypothyroidism involves
high levels of TSH and low levels of thyroxine). We will consider a slightly augmented
example, consisting of the thyroid cycle together with the following process. Amio-
darone is a drug, commonly used to treat cardiac arrhythmias, that contains lots of
iodine (37 % by weight). One common adverse effect of this drug is hypothyroidism,
which is an abnormal reduction in the concentration of thyroxine in the blood. This
occurs because the iodine contained in amiodarone causes a reduction in the rate of
iodide oxidation by the thyroid by a mechanism known as the Wolff-Chaikoff effect.
The following should be interpreted as a DCG with Amiodarone, Iodide, etc. as ver-
tices representing random variables, and not just as a schematic picture as was the
case in Sect. 3):
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The procedure is first to transform this graph into an undirected moral graph, which
is formed by ‘marrying’ the parents of each variable in the previous cyclic graph by
adding an edge between them, and then adding an edge between each pair of variables
that are connected by an arrow in the cyclic graph21:

21 This procedure is outlined by Lauritzen.et.al (1990). Their alternative test for d-separation is equivalent
to the one specified in Sect. 5.1 and is used by Pearl and Dechter (1996) in their discussion of d-separation
for DCGs.
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The key point here is that separation in the moral graph is equivalent to d-separation
in the DCG, which, as we saw in Sect. 5.1, implies conditional probabilistic depen-
dence.22 Thus for example amiodarone is probabilistically independent of thyroxine
conditional on iodide level.

This undirected graph can then be transformed into a directed acyclic graph that
satisfies the Markov Condition with respect to the underlying probability distribution
(see the Appendix for an algorithm):

Note that the arrows in this graph are not to be interpreted causally. This equilibrium
network is merely a formal device for representing a joint distribution.

Finally, the resulting graph can be substituted for the corresponding cyclic graph
in the original RBN, and, by specifying the probability distribution of each variable
conditional on its parents, the network can be used for inference as detailed in Sect. 4.

6.2 Dynamic problems

In this situation it is the change in the values of variables over time that is of interest.
The approach we take in this dynamic case is to unwind the cycles by time-indexing
the variables, and apply the DBN formalism to represent the probability distribution
of the variables in the cycle as it evolves over time.23

Let us return to our head trauma example. We gave an RBN representation of the
relevant mechanisms including a0 which has the causal graph depicted in Fig. 7.

22 Separation in undirected graphs (such as moral graphs) is defined as follows: let G be an undirected
graph with vertex set V , then two sets of vertices X, Y ⊆ V are separated by Z ⊆ V if and only if every
path (sequence of undirected edges) from each vertex in X to each vertex in Y contains some vertex in Z .
23 Prima facie, this approach runs counter to Bechtel’s appeal not to model mechanisms sequentially (see
Sect. 2). By means of the transition network, however, the cyclic organization is captured as well. We would
like to thank Michael Wilde for pointing out this seeming incongruity.
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Fig. 7 Cyclic graph

Fig. 8 Complete graph for prior
network

Fig. 9 Sparse graph for prior
network

This is a cyclic graph and needs to be transformed into a directed acyclic graph if
we are to apply the RBN inference machinery. The key point to note is that the causal
cycle is not instantaneous. A change in H changes T slightly later, which changes S
slightly later, changing P later still, followed by a subsequent change in H , and so
on. The point is that it is not the initial change in H that leads via a causal cycle to
a change in itself, but rather that the initial change in H leads via a causal cycle to
a change in a later value of H . Indexing the variables by time makes this temporal
aspect explicit.

Recall that a DBN consists of two components. First, a prior network needs to
be specified. This is a Bayesian network that is used to represent the probability
distribution of the variables at time 0. The graph of Fig. 8, for instance, can be used
in the prior network (though computationally it may not be the most convenient one,
see below).

This is a complete graph (there is an arrow between each pair of nodes) so the
Markov Condition is trivially satisfied. But a complete graph can be computationally
demanding: as the number of nodes in a complete graph increases, there is an expo-
nential increase in both the number of probabilities that need to be specified in the
corresponding Bayesian net and in the time it takes to perform inferences using the
Bayesian net. Thus it is desirable to use a sparser graph if possible. In the static case,
a sparser graph was obtained by generating a DAG via the moral graph. This method
is not recommended in the dynamic case because, as we saw in Sect. 5.1, it only
appears to be guaranteed to work in equilibrium situations. Instead we recommend a
hypothesise and test methodology for obtaining a sparser graph. First, a DAG can be
hypothesised by unwinding the cycle in Fig. 7 and considering the causal connections
between the variables at the initial time 0 (see Fig. 9).
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Fig. 10 Graph for transition
network

In general, the Markov condition may fail in a causal graph that has been constructed
in this way from a cyclic causal graph.24 Second, therefore, one needs to test whether
the Markov Condition is satisfied to within some specified tolerance level. If not, one
should add further arrows until the Markov Condition is satisfied. See Williamson
(2005, §3.6) for an algorithm for prioritising which arrows to add in order to more
closely satisfy the Markov Condition. As in the static case, the resulting DAG is not
to be causally interpreted: it is merely a formal device for representing a probability
distribution. The form of the resulting DAG depends on the underlying probability
distribution, but it will contain the initial causal DAG as a subgraph. We shall suppose
for simplicity of exposition that in our example the prior network is based on the causal
DAG depicted in Fig. 9—i.e., that no further arrows need to be added to satisfy the
Markov condition.

Having specified a prior network, we need to specify a transition network that can
be used to represent the distribution of the variables at time 1 conditional on that at
time 0, such as that based on the following graph.

This graph is produced by taking as nodes the variables at times 0 and 1, and adding
arrows to each variable at time 1 from its prior state and its causes.

One can then unroll the network by combining the prior network (Fig. 9) with
sufficiently many copies of the transition network (Fig. 10). For instance at time t = 4
we would need a network based on the graph of Fig. 11.

This network can then be substituted for the corresponding causal cycle in an RBN.
The joint distribution over all the variables in the RBN can be calculated by forming
the flattenings as usual.

Thus in the dynamic case we have a two-step process: the cycle is first unwound
(and, if necessary, further arrows are added to ensure that the Markov condition holds)
to form a DBN, which in turn is unrolled into a standard Bayesian net representing
the distribution of the variables up to a certain time.

6.3 Specifying the probability distribution of an RBN with cycles

To sum up, our approach involves replacing causal cycles by directed acyclic graphs in
the RBN. The kind of replacement depends on whether or not the temporal dimension

24 To take a concrete example, suppose that variables A and B directly cause C which directly causes D
which in turn directly causes each of A and B. A causal DAG at time 0 obtained by unwinding this cycle
might have arrows from A0 and B0 to C0 and an arrow from C0 to D0. The Markov condition requires that
A0 and B0 be probabilistically independent. But these two variables have a common cause not represented
in the graph—the previous instance of D—which can render them probabilistically dependent. Thus the
Markov condition can fail in this causal graph.
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Fig. 11 Graph for unrolled
network

is of interest or is required: if so, we apply the DBN formalism, if not, we apply the
extension of d-separation methods to cyclic graphs.

In Sect. 4 an RBN was characterised as a Bayesian net defined over a finite set V
of variables whose values may themselves be RBNs. We saw that this characterisation
is inadequate, given the use of RBNs to model mechanisms, because causal cycles
are pervasive in mechanisms, while the graph of a Bayesian net must be acyclic. We
therefore need to generalise the notion of an RBN so that the RBN itself is permitted
to contain cycles. This allows one to retain a causal interpretation of an RBN: in a
causally interpreted RBN, each arrow in the RBN is interpreted as a direct causal
connection. For each cycle in the RBN we also need to provide further information,
in order that the RBN can determine a joint probability distribution and thereby be
used for quantitative inference. If there is no equilibrium state of the variables in the
cycle then we have a dynamic problem, so we must specify a prior Bayesian network
and transition network involving the peers of the variables in the cycle. If there is an
equilibrium state, then the particular application will determine whether a dynamic
approach or a static approach is required. In this case one may need to specify an
equilibrium network, i.e., a Bayesian network representing the equilibrium state of
the variables in and around the cycle, instead of, or as well as, a prior network and a
transition network.

In Williamson (2005, Chap. 10) it was suggested that, in cases where a probability
distribution is constrained—rather than uniquely determined—by available quantita-
tive information, one should use maximum entropy methods to determine a partic-
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ular probability distribution that satisfies those constraints. Of course there is some
controversy concerning maximum entropy methods see, e.g., Seidenfeld (1987) and
Williamson (2010). But if this route is accepted, then the prior, transition and equilib-
rium networks can be generated as needed, on the fly, from the constraints imposed
by the probability distribution of each variable conditional on its parents given in
the (possibly cyclic) RBN: the graphs in the networks can be constructed as outlined
above, while the probability distribution of each variable conditional on its parents in
the graph can be chosen to be the distribution, from all those that satisfy constraints
specified in the RBN, that has maximum entropy.

We should note that it is common to distinguish single-case models from generic
models. The former kind of model represents a particular case while the latter is
repeatedly instantiatable. An RBN is a generic model of a mechanism: it can be
instantiated in a variety of single cases. But often it is only in the context of a particular
instantiation that one can determine whether one is tackling a static or a dynamic
problem. This is because, at least in contingent cycles, as to whether there is an
equilibrium state or not can depend on the particular case. Moreover, the particular
problem can influence whether one is concerned with the progress towards equilibrium
or the equilibrium itself. Hence an RBN can be viewed as a schematic representation
of a mechanism, with the details to be filled in according to the application in question.

Note too that arrows in the RBN model of a mechanism are all causally interpreted,
but when the above strategy for handling cycles is executed, arrows in the resulting
network may no longer all be causal. Thus when using a cyclic RBN to predict the
effects of an intervention, for instance, one must first perform the intervention on the
cyclic RBN (deleting arrows into the node which is set by the intervention; Pearl 2000,
pp. 22–23), and only then apply the strategy for handling cycles. Finally, the inference
methods of Sect. 4.6 may be applied, requiring further transformations in order to
produce the flattenings.

These two points reinforce the claim that it is the (possibly cyclic) RBN that is
the fundamental model of the mechanism, with transformations of this section and
Sect. 4.6 to be applied only when required for inference in particular applications.

6.4 Related work

As far as we are aware, there is only one other attempt to use hierarchical versions
of Bayesian nets to model mechanisms for the purpose of quantitative inference.
Gebharter and Kaiser (2012) do not adopt the RBN framework but rather represent
mechanisms by a hierarchy of disjoint causal Bayesian networks. This has its advan-
tages and its disadvantages over our RBN approach. On the one hand they do not need
a modelling assumption such as RCMC to tie the levels of the mechanism together, so
their assumptions are weaker. On the other hand, it is not possible under their approach
to represent the joint distribution over all the variables in the hierarchy; this results
in a narrower range of inferences that can be drawn from their representation. For
instance, one cannot use the value of a variable at one level of the hierarchy to help
predict the value of a variable at another level, in the absence of a single causal network
that includes both variables. The authors recognise the importance of handling cycles
appropriately in order to model mechanisms, and they recommend a time-indexing
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approach similar to that which we advocate in the case of dynamic problems. We
would argue that this is not the appropriate strategy in the case of static problems,
because it introduces irrelevant details into the representation and because it can lead
to unnecessary computational cost.

7 Summary and concluding remarks

In this paper, we have presented one possible quantitative approach to modelling
mechanisms, which makes use of RBNs. Causal cycles, if present in the RBN, are
replaced by directed acyclic graphs in order to perform inference using inference
techniques for standard Bayesian nets. The kind of replacement depends on whether
or not the temporal dimension is of interest or is required: if so, we apply the DBN
formalism, if not, we apply the extension of d-separation methods to cyclic graphs.

To end this paper, we would like to suggest some questions for further research.
First, it would be interesting to further explore the consequences of our approach for
philosophy of science. For instance, we hypothesise that the RBN framework may shed
further light on Craver’s mutual manipulability account of constitutive relevance (and
vice versa). Interventions on causal Bayesian nets have been discussed extensively
(see Pearl 2000; Spirtes et al. 2000). These notions carry over, mutatis mutandis, to
RBNs, and may help to analyse Craver’s notion of ‘interlevel intervention’ and the
interlevel experiments on which it is based.25

Second, the merits and disadvantages of our approach as compared to other quan-
titative accounts of mechanistic modelling should be further explored. In Sect. 6.4 we
briefly discussed the work of Gebharter and Kaiser (2012). Yet the precise relation
between our account and, for example, Bechtel’s dynamic systems analysis (mentioned
in Sect. 2) remains an open question.

Third, RBNs open up the possibility of algorithms for mechanism discovery. The
advent of causal Bayesian nets led to a range of algorithms for causal discovery (see,
e.g., Spirtes et al. 2000, 2010). Because of the close relation between RBNs and
Bayesian nets, it is plausible that algorithms for learning causal structure might be
extended to algorithms for learning causal and mechanistic structure simultaneously.
The main task would be to distinguish between causal and superiority (i.e., mecha-
nistic hierarchy) relations. The difference between causal manipulation and mutual
manipulability might offer a starting point in this respect. If progress can be made
here, it could have enormous payoffs for those—such as bioinformatics researchers
and pharmaceutical companies—who are engaged in ‘closing the inductive loop’ by
automating both scientific experimentation and scientific discovery.

Finally, the limits of our approach should be further explored. On the non-formal
side, we fully acknowledge that our framework leaves out some interesting features of
mechanisms that are captured by alternative ways of representing them. For example,
a large part of the functioning of a mechanism depends on the spatial organization
of its lower-level components, yet neither causal Bayesian nets nor RBNs offer a

25 For a detailed account of mutual manipulability, see Craver (2007, pp. 152–160). For a recent critical
discussion of Craver’s claim that interlevel constitutive relations cannot be causal, and whether this claim
is compatible with his mutual manipulability account of constitutive relevance, see Leuridan (2012).
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natural way of representing this spatial organization. Likewise, mechanistic diagrams
such as those presented in Sect. 3 are often easier to grasp and to (humanly) reason
with than ordinary or Recursive Bayesian Nets. [See Perini (2005a,b,c) for interesting
discussions of the role of diagrams and visual representations in scientific reasoning;
see also, among many others, Craver (2006) and Bechtel and Abrahamsen (2005) for
a discussion of diagrams in mechanistic contexts].

On the formal side, we treat the Causal Markov Condition and the Recursive Causal
Markov Condition as modelling assumptions rather than necessary truths. Whereas
the limits of the former have been discussed extensively in the literature,26 those of
the latter remain to be inspected in detail.

Also on the formal side, the question arises as to how the framework presented here
can be extended to handle certain continuous cases. Modelling continuous cases with
cyclic causality by means of discrete variables may lead to problems; for example,
spurious instabilities may arise in the model even when the original system itself is
stable (see Pearl and Dechter 1996, p. 425). Yet we do not expect any major difficul-
ties here. Causal Bayesian nets can easily be defined over continuous variables (see
footnote 12) and in fact, the problem of automated causal discovery is often easier in
the continuous case (e.g., assuming normally distributed variables) than in the discrete
case. Likewise, RBNs can easily be defined over continuous variables as well. Our
choice to restrict ourselves to the discrete case was motivated by our endeavour to
limit technicalities as far as possible.
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Appendix: Transforming a moral graph into a DAG

Here we present the algorithm of Williamson (2005, §5.7) for transforming an undi-
rected graph G into a directed acyclic graph H which preserves the required indepen-
dencies (Williamson 2005, Theorem 5.3): if Z d-separates X from Y in the DAG H
then X and Y are separated by Z in the undirected graph G; this separation in G implies
that X and Y are probabilistically independent conditional on Z ; hence, d-separation
in H implies that X and Y are probabilistically independent conditional on Z . Thus
H can be used as the graph of a Bayesian network.

An undirected graph is triangulated if for every cycle involving four or more vertices
there is an edge in the graph between two vertices that are non-adjacent in the cycle. The
first step of the procedure is to construct a triangulated graph GT from the undirected
graph G. One of a number of standard triangulation algorithms can be applied to
construct GT (see, e.g., Neapolitan 1990, §3.2.3; Cowell et al. 1999, §4.4.1).

Next, re-order the variables in V according to maximum cardinality search with
respect to GT : choose an arbitrary vertex as V1; at each step select the vertex which is

26 See, among others, Hausman and Woodward (1999, 2004a,b), Cartwright (2001, 2002), Williamson
(2005) and Steel (2006).
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adjacent to the largest number of previously numbered vertices, breaking ties arbitrar-
ily. Let D1, . . . , Dl be the cliques (i.e., maximal complete subgraphs) of GT , ordered
according to highest labelled vertex. Let E j = D j ∩ (⋃ j−1

i=1 Di ) and Fj = D j\E j ,
for j = 1, . . . , l.

Finally, construct a DAG H as follows. Take variables in V as vertices. Step 1:
add an arrow from each vertex in E j to each vertex in Fj , for j = 1, . . . , l. Step
2: add further arrows to ensure that there is an arrow between each pair of vertices
in D j , j = 1, . . . , l, taking care that no cycles are introduced (there is always some
orientation of an added arrow which will not yield a cycle).
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