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AN OBJECTIVE BAYESIAN ACCOUNT OF CONFIRMATION

ABSTRACT

This paper revisits Carnap’s theory of degree of confirmation, identifies
certain shortcomings, and argues that a new approach based on objective
Bayesian epistemology can overcome these shortcomings.

Rudolf Carnap can be thought of as one of the progenitors of Bayesian con-
firmation theory (§1). Bayesian confirmation theory is construed in §2 as a
four-step process, the third step of which results in the identification of the
degree to which e confirms h, c(h,e), with the probability of h conditional
on e in the total absence of further evidence, Py(h|e). The fourth step of
this process involves isolating an appropriate candidate for Fp; Carnap re-
jected the most natural construal of Py on the grounds that it leads to a
confirmation function ¢! that fails to adequately capture the phenomenon
of learning from experience (§3). This led him, and subsequent confirma-
tion theorists, to more elaborate interpretations of Py, resulting in certain
continua of confirmation functions (§§4, 5). I argue in §§5, 6 that this was
a wrong move: the original construal of P is in fact required in order that
degree of confirmation can capture the phenomenon of partial entailment.
There remains the problem of learning from experience. I argue that this
problem is best solved by revisiting the third—rather than the fourth—
step of the four-step Bayesian scheme (§7) and that objective Bayesianism,
which is outlined in §8, offers the crucial insight as to how this step can be
rectified. This leads to an objective Bayesian confirmation theory that can
capture both partial entailment and learning from experience (§9).

§1 CARNAPIAN CONFIRMATION

Our current understanding of confirmation owes much to Rudolf Carnap’s
pioneering work of the 1940s and beyond. Carnap (1950, §8) distinguishes
three concepts of confirmation: a classificatory concept which applies when
evidence e qualitatively confirms a hypothesis h, a comparative concept
which applies when A is confirmed by e at least as highly as h’ by €/, and
a quantitative concept according to which h is confirmed by e to degree
q, written c(h,e) = ¢. Carnap also distinguishes two principal notions
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of probability: probability;, or degree of confirmation, and probabilitys,
or relative frequency (Carnap, 1950, §9). Carnap was chiefly concerned
with the quantitative concept of confirmation (i.e., probability;) and we
will likewise restrict our attention here to this quantitative notion.

For Carnap, as for Keynes (1921) before him, this notion of probability
is fundamentally a logical relation between a body of evidence and a propo-
sition. It is clear that Carnap viewed this relation as objective, not as an
expression of subjective degree of belief. On the other hand, Keynes was em-
phatic that the logical concept of probability underwrites rational degrees
of belief; Carnap went along with this view but was more ambivalent:

Many logicians prefer formulations which may be regarded as a kind of qualified
psychologism. They admit that logic is not concerned with the actual processes of
believing, thinking, inferring, because then it would become a part of psychology.
But, still clinging to the belief that there must somehow be a close relations
between logic and thinking, they say that logic is concerned with correct or rational
thinking. Thus they might explain the relation of logical consequence as meaning:
‘if somebody has sufficient reasons to believe in the premise i, then the same
reasons justify likewise his belief in j.” It seems to me that psychologism thus
diluted has virtually lost its content; the word ‘thinking’ or ‘believing’ is still
there, but its use seems gratuitous. ... The characterization of logic in terms of
correct or rational or justified belief is just as right but not more enlightening
than to say that mineralogy tells us how to think correctly about minerals. The
reference to thinking may just as well be dropped in both cases. (Carnap, 1950,
pp. 41-42)

Some years later, however, Carnap came to be less ambivalent and took
the rational degree of belief approach more seriously (see, e.g., Carnap,
1971). It is fair to say, then, that while Carnap cannot be considered an
advocate of what is now called the Bayesian interpretation of probability,
which takes probability to be fundamentally interpretable in terms of ratio-
nal degree of belief, he can be considered to be a pioneer of what is now called
Bayesian confirmation theory, which typically admits an identity (whether
fundamental or not) between degree of confirmation and rational degree of
belief and which proceeds along the following lines.

§2 THE BAYESIAN APPROACH TO CONFIRMATION

The Bayesian approach to confirmation might broadly be characterised in
terms of the following four steps.

Step 1. Consider probability functions defined over a language £.

Step 2. Identify c(h, e) = Py (h) for some suitable probability function P
on £, where Py (h) is the probability of A on evidence e.
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Step 3. Identify P,y (h) = Py(hle).

Step 4. Find an appropriate Py that represents confirmation in the absence
of evidence.

Let us examine these four steps in turn.

Step 1. Consider probability functions defined over a language £.

Degree of confirmation is taken to be a relation between evidence and a
hypothesis and these are naturally construed as propositions (or sometimes,
in the case of evidence, sets of propositions). Hence the functions we need
to consider—confirmation functions and probability functions—should be
defined on propositions. But probability functions are normally defined on
events construed as sets of possible outcomes (Kolmogorov, 1933). One
of Carnap’s important contributions to this area was his work on defining
probability functions on logical languages as opposed to fields of sets. One
might, for example, consider a propositional language £ = {Ay,..., A,} on
elementary propositions A1, ..., A,, with compound propositions formed by
the usual connectives —, V, A, —, <>. The set of atomic states of £ is defined
as Q, = {£A; A -+ A +A,}, where +A4; is just A; and —A; is —~4;. A
probability function on £ is then a function P, from propositions of £ to
real numbers, that satisfies the properties:

P1. P(w)>0 for each w € Q,,
P2. P(r) =1 for some tautology 7, and

P3. P(0) =3_, ¢ P(w) for each proposition 6.

Alternatively one might consider a predicate language rather than a propo-
sitional language. There are various ways of proceeding here, but perhaps
the simplest goes as follows (see Williamson, 2010b, Chapter 5). Construe a
predicate language as £ = {A1, Ag, ...} where the A; enumerate the atomic
propositions of the form Ut for some predicate U and tuple ¢ of constant
symbols. (There is assumed to be a constant symbol for each domain indi-
vidual.) A finite sublanguage £, = {A1,..., A;} uses only constant sym-
bols t1,...,t,. The set of atomic states of £,, is 2, = {+A; A--- A+ A}
A probability function on a predicate language £ is then a function from
propositions of £ to real numbers that satisfies the properties:

PP1. P(w)>0 for each w € Q,, and each n,
PP2. P(1) =1 for some tautology T,

PP3. P(0) =3 ,cq, v P’(w) for each quantifier-free proposition 6, where
n is large enough that £,, contains all the atomic propositions occur-
ring in 0, and
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PP4. P(3a0(x)) = sup,, P (V7 0(t:)).

Note in particular that a probability function P on predicate language £ is
determined by its values on the w forn = 1,2, ... (see, e.g., Paris, 1994, The-
orem 11.2). PP4 is known as Gaifman’s condition, and PP1-4 imply that
P(326(x)) = limy, 00 P (Ve 0(t;)) and P(Vz0(2)) = limy, oo P (Air, 0(t:)).

Step 2. Identify c(h,e) = Picy(h) for some suitable probability function
P on £, where Py.y(h) is the probability of i on evidence e.

For Carnap, this step is just his explication of the quantitative concept
of confirmation in terms of probability;. One thing that makes Bayesian
confirmation theory Bayesian is that the probability of h on evidence e is,
in turn, interpretable as the degree to which one should believe h if one were
to grant just e. (Bayes (1764) wrote of ‘expectation’ for belief or credence.)
It should be reiterated that the proponent of a logical interpretation of
probability, such as Keynes or Carnap, would want to say that this Bayesian
construal of the probabilities is derivative rather than fundamental: that
Piey(h) =  means that there is a logical probability-relation between {e}
and h of degree z, and it is this fact that makes it rational to believe h to
degree x if one were to grant just e. Proponents of a Bayesian interpretation,
on the other hand, would take the rational degree of belief interpretation
as fundamental. According to subjective Bayesianism, x largely depends on
the whim of the agent in question, while according to objective Bayesianism,
the agent’s evidence plays the leading role in determining x.

Step 3. Identify Picy(h) = Py(hle).

It is usual for the Bayesian to identify a conditional belief with a condi-
tional probability: the degree to which one should believe h if one were to
grant just e is identified with the probability of A conditional on e (granting
nothing at all). As with other rules of Bayesian probability, the justification
for such a move normally proceeds via the betting interpretation of degrees
of belief. In this case, the degree to which one should believe h if one were
to grant just e is first interpreted in terms of a certain conditional bet and
then it is shown that under this interpretation the identity posited in Step
3 must hold.

The argument proceeds as follows. Interpret Py} (h) = ¢ as saying that
one is prepared to offer a betting quotient ¢ for h (i.e., one is prepared to
bet ¢S for a return of S if h is true), with the bet called off if e is false. (The
stake S depends on the betting quotient and may be positive or negative.)
The loss one incurs on such a bet is I.(¢ — I,)S, where Iy is the indicator
function for proposition 6, which takes the value 1 if 0 is true and 0 if 0 is
false. If one also offers betting quotient P(hAe) = ¢’ on hAe and P(e) = ¢”
on e then one’s total loss is

I.(q—Ip)S + (¢ — I.1p)S" + (¢" — I.)S".
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If ¢’ < qq” then the stake-maker can choose S’ = —S =1 and S” = ¢ to
ensure certain loss g¢” —¢’. Similarly if ¢' > ¢q” the stake-maker can choose
S'= -8 = —1and S” = —q to ensure certain loss ¢’ — q¢’’. Hence unless
Piey(h)P(e) = P(h A e) one can be made to lose money whatever happens.
But if Pgey(h)P(e) = P(h A e) then one avoids the possibility of sure loss,
for the following reason. The expected loss is

9q'S"+q"S" +¢' (=5 = 8)+4¢"(¢S - 5") = (¢"¢—¢)S

but this is zero if ¢ ¢—q' = 0; if the expected loss is zero then the loss cannot
be positive in every eventuality. So one avoids the possibility of sure loss if
and only if ¢"¢—¢ = 0. Granting that avoiding the possibility of sure loss is
a requirement of rationality, the identity P(.,(h) = P(hAe)/P(e) = P(hle)
must hold for rational degrees of belief (as long as P(e) # 0). Assuming
finally that e exhausts the available evidence, P(h A e) = Py(h A e) and
P(e) = Py(e), and Step 3 follows.

Step 3 proposes the use of conditional probabilities in the explication
of confirmation, and this yields another sense in which the approach can be
described as Bayesian. In fact it is often easier to determine the probability
of the evidence conditional on the hypothesis than the probability of the
hypothesis conditional on the evidence, so Step 3 provides an avenue for
Bayes’ theorem to enter the picture:

c(h,e) = Py(hle) = %zep)@(h).

Although Step 3 proposes the use of conditional probabilities, it should
not be confused with the principle of Bayesian conditionalisation, which
relates degrees of belief at different points in time, and which says: if you
adopt belief function P now and you come to learn just e, you should then
change your belief function to P(-|e). While someone who endorses Step 3
might well endorse Bayesian conditionalisation and vice versa, they are in
fact rather different principles, one dealing with conditional belief and the
other with changes of belief. Bayesian conditionalisation is advocated by
many proponents of a Bayesian interpretation of probability, but will not
be relevant in our context of Bayesian confirmation theory.

Note that Steps 2 and 3 are sometimes conflated. Carnap himself ran
the two steps together by making assumptions about ¢ that directly ensure
that c(h,e) = Py(h N e)/Py(e) (Carnap, 1950, §853,54B). This is perhaps a
mistake; as we shall see below, the key steps must be teased apart if we are
to make progress with confirmation theory.

Step 4. Find an appropriate Py that represents confirmation in the ab-
sence of evidence.

This step seems straightforward, although, as we shall see, Carnap had
reservations about the following proposal. The natural choice for Py is
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the equivocator, P—, on L, i.e., the probability function that equivocates
between the atomic states, giving each w € (2, the same probability:

Pufe) = P-() % o

for all w € Q,,. (The equivocator can alternatively be defined in terms of
models of £ rather than states of L—see Kemeny (1953).)

Putting the four steps together we then have the recommendation that
c(h,e) = P_(hle).

Carnap used the notation ¢! or co for this confirmation function.

Having characterised the two-place confirmation relation it is then usual
to define a three-place support relation in terms of the confirmation relation
(Jeffreys, 1936, p. 421; Good, 1960, pp. 146-147; Gillies, 1990, p. 144).1
Degree of support s(h, e, k) is supposed to capture the added confirmation
that e offers to h, over and above the confirmation provided by background
k. One possible measure of support is given by s(h,e, k) = c(h,e A k) —
c(h, k), but there are many others and little consensus as to which is the most
appropriate (see, e.g., Fitelson, 1999). Confusingly, the word ‘confirmation’
is often used to refer both to the two-place relation and to the three-place
support relation. In this paper we restrict our attention to the two-place
confirmation relation.

83 LEARNING FROM EXPERIENCE

There is a difficulty with the approach to the problem of confirmation out-
lined in §2, as Carnap realised very early on in his research (see, e.g., Carnap,
1945, p. 81; Carnap, 1952, p. 38). This is the problem that the resulting
choice of confirmation function, ¢, renders learning from experience impos-
sible. One can illustrate this general problem via the following example.

Suppose that ravens rq,...,r101 are being observed to see if they are black

(B). Then
1
' (Brio1,0) = P—(Brio) = ok
where () represents an empty evidential statement—a tautology, say. This
seems right—in the absence of any evidence it seems appropriate to say that
Brip1 and —Brg; are equally confirmed. However it is also the case that
1/2101 1

c"(Brio1, Bri A+--ABrigg) = P—(Brigy | BriA-+- A Brigy) = 1/2100 — 9

1 Carnap introduces the distinction between confirmation and support in §B.11
(p- xvi) of the Preface to the Second Edition of Carnap (1950).
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Hence, on evidence of the first 100 ravens being black, the degree of confir-
mation of Brig; remains stuck at % This inability of evidence to change
degree of confirmation is quite unacceptable and the confirmation function
c' should be rejected, Carnap argued.

This problem was in fact recognised by George Boole, who considered
drawing balls from an urn containing black and white balls:

It follows, therefore, that if the number of balls be infinite, and all constitutions
of the system be equally probable, the probability of drawing m white balls in
succession will be QLm, and the probability of drawing m+1 white balls in succession
Qm%; whence the probability that after m white balls have been drawn, the next
drawing will furnish a white one, will be % In other words, past experience does
not in this case affect future expectation. (Boole, 1854, pp. 371-2)

§4 CARNAP’S RESOLUTION

Carnap’s strategy for circumventing the problem of learning from experience
was to tinker with Step 4 of the four-step scheme of §2: by isolating desider-
ata that P ought to satisfy, one can narrow down the functional form of P,
without narrowing it down so much as to force the identity Py = P— (John-
son, 1932; Carnap, 1952; Paris, 1994, pp. 189-197). Consider the following
desiderata:

Constant Exchangeability. P should be invariant under permutations
of the constant symbols ;.

Johnson’s Sufficientness Postulate. Py(Utyyq|+UtiA- - -A+Uty) should
depend only on k£ and the number r; of positive observations.

It turns out that, for a predicate language with two or more predicates,
all unary, there is a continuum of probability functions satisfying Constant
Exchangeability and Johnson’s Sufficientness Postulate, characterised by:

T‘k+)\/2m

P@(Utk+1|iUtl/\"'/\iUtk): Y ,

where m is the number of predicates in the language and A € [0,00] is
an adjustable parameter, and where instances of different predicates are
probabilistically independent. This is known as Carnap’s continuum of in-
ductive methods; given \ € [0, o0], the corresponding confirmation function
is denoted by c.

Note that this characterisation is also supposed to apply to languages
with a single unary predicate. In that case, if A = 0 then Py(Uty1|+Ut; A
-+ AN +Uty) = & and ¢, sometimes called the straight rule, sets degrees of

k
confirmation to observed frequencies. If A = 1 then Py(Utgi1|+Uty A--- A
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Figure 1: Carnap’s inductive methods for A € [0,50], m = 1 and k& = 10.

+Ut) = %:1/2 and c; is called the Jeffreys-Perks’ rule of succession. If

A =2 then Py(Utgiq|+Uti A+ -AxULg) = Tgf; and ¢y is known as Laplace’s
rule of succession. If A = oo then Py(Utyy1|=Uty A--- A +Utg) = 1/2, and
we have ¢ = ¢!, the function that fails to admit learning from experience.
Py(Utg41|£Uty A -+ AN +Uty) is depicted in Fig. 1 for £ = 10 and a range of
A and 7.

§5 PROBLEMS WITH CARNAP’S RESOLUTION

There are several concerns one might have about Carnap’s resolution to the
problem of learning from experience; in this section we will consider three.

Determining A. One question that immediately arises is, how should A
be determined? Carnap himself suggested that the choice of A will depend
on empirical performance, simplicity and formal elegance of the resulting
inductive method (Carnap, 1952, §18), but he gave no clear indication as
to how this balance should be achieved. One might suggest that A should
be treated as a meta-inductive parameter: one should attach a prior proba-
bility distribution over A and update in the light of new evidence (see, e.g.,
Good, 1980). But then there is a danger of regress: if there is a contin-
uum, with parameter ), of suitable prior distributions over A, one needs
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to formulate a prior over X', and so on (Howson and Urbach, 1989, §4.c.2).
To get round this problem one might try taking an arbitrary initial value
of A\, and changing that as evidence e is gathered in order to minimise the
distance between the inductive probability function P, and the physical
probability function P* (Carnap, 1952, §§19-24; Kuipers, 1986). A choice
has to be made concerning the most appropriate distance function—mean
square error seems to be the usual choice in this context—and of course
since the physical probability function is unknown, one must estimate these
probabilities on the basis of available evidence. This leads to an iterative
approximation method for updating A that does not require a prior over
A and that consequently avoids the regress problem. The difficulty with
this line of attack is that, since \ varies, the resulting sequence of inductive
probabilities cannot be captured by a single member of the A-continuum—
the resulting inductive method is thus irrational according to the norms laid
down by Carnap himself. Hence this avenue undermines the whole basis of
Carnap’s resolution to the problem of learning from experience.

The d-continuum. A second worry about Carnap’s resolution is that
a very similar—and apparently equally justifiable—strategy leads to a to-
tally different continuum of inductive methods, namely the Nix-Paris 6-
continuum (Nix, 2005; Nix and Paris, 2006). This continuum takes param-
eter 6 € [0,1) and is the only set of probability functions satisfying:

Regularity. Py(0) =0 iff = 6.

Constant Exchangeability. P should be invariant under permutations
of the t;.

Predicate Exchangeability. P should be invariant under permutations
of the predicate symbols U.

Strong Negation. P should be invariant under negating each occurrence
of some predicate.

Generalised Principle of Instantial Relevance. If 6 = ¢ and ¢(t;11)A
1 is consistent then Py(0(ti12)|@(tit1) AY) > Py(0(tiv1)|v).

For a language with a single unary predicate we have that
L+0\™ (140 ko
1—-9 1—90

1456 5
P@(Utk—i-l':tUtl/\"'/\:l:Utk) = + — 7

Tk—Sk
2 (}—*2) +1

1/1-6\"
P(Z)(:I:Utl/\/\:l:Utk)=§ (T)

and
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Figure 2: The Nix-Paris inductive methods for § € [0,1), a single unary
predicate and k£ = 10.

where s, = k — r; is the number of observed negative instances of U. This
last function is depicted in Fig. 2.

In general the §-continuum only agrees with the A-continuum at point
¢ = 0, which corresponds to A = oo. This point is the equivocator function
of §2—the function that gave rise to the problematic c¢f. (Nix and Paris
stipulate that § = 1 should correspond to A = 0, but this stipulation is
rather counterintuitive when one compares the graph of the d-continuum,
given in Fig. 2, with that of the A-continuum given in Fig. 1.)

If one takes the principles characterising the d-continuum to be just as
plausible as those characterising the A-continuum, then Carnap’s resolution
to the problem of learning from experience faces an important problem:
underdetermination.

The pre-eminence of the equivocator. The last but most important
of the problems facing Carnap’s resolution is that—setting aside, for the
moment, the argument that it gives rise to ¢! and the problem of learning
from experience—the equivocator function P_ (i.e., A = 00,0 = 0) stands
out by a long shot as the only viable candidate for FP.

As noted above, if the Johnson-Carnap justification of the A-continuum
is convincing at all, then so is the Nix-Paris justification. And, putting
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all the desiderata together, we have that the point where the two continua
coincide—i.e., the equivocator P_—is the only function satisfying

Regularity. Py(0) = 0 iff = 6.

Constant Exchangeability. P should be invariant under permutations
of the t;.

Predicate Exchangeability. Fj should be invariant under permutations
of the predicate symbols U.

Strong Negation. P should be invariant under negating each occurrence
of some predicate.

Generalised Principle of Instantial Relevance. If 6 = ¢ and ¢(t;.1)A
1 is consistent then Py(0(t;12)|e(tit1) AY) > Py(0(tiy1)[).

Johnson’s Sufficientness Postulate. Py(Utyi1|+UtiA---A+Uty) should
depend only on k£ and the number 7 of positive observations.

Thus the equivocator stands out as the only viable candidate for .

One might respond to this line of argument that several of the above
desiderata are invariance conditions and can be thought of as applications of
the principle of indifference, which says that if one is indifferent concerning
which member of a partition will occur then all members of the partitions
should receive the same probability, and which is notorious principally for
the problems that arise when it is applied over different partitions. Perhaps,
then, the line of argument should not be trusted.

This response can lead in two directions. If one thinks that the prob-
lems generated by multiple applications of the principle of indifference are
reason enough to reject the principle straight off, then one will, indeed, re-
ject the above line of argument. But one will also reject the applications of
the principle of indifference that lead to the A-continuum and d-continuum
respectively. Hence Carnap’s resolution of §4 does not get off the ground
and there is no serious alternative to the claim at Step 4 of §2 that Py = P_.

But the response can go in another direction. The problems generated
by multiple applications of the principle of indifference are more plausibly
taken as reasons to restrict the principle of indifference rather than reject it
straight off. After Keynes (1921, §4.21) it is usual to restrict the principle of
indifference to the finest partition over which one is indifferent. In our case
there is no evidence at all (we are considering Pp) and the finest partition
over which there is indifference is the finest partition simpliciter—i.e., the
partition €2,, of the atomic states. This leads to the following desideratum:

State Exchangeability. Iy should be invariant under permutations of the
states w € €,,.
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But State Exchangeability clearly implies that Py(w) = P—(w) = 1/|€2,| for
all w € ,. And it is clear that taking different values of n will not lead
to inconsistent applications of the principle of indifference. Hence we have,
again, that Py = P_.

In sum, in either direction in which one takes concerns about applying
the principle of indifference, we are left with the equivocator as the only

viable candidate for Pp.

86 A ROCK AND A HARD PLACE

A theory of degree of confirmation needs to capture two concepts. On the
one hand, it should capture the ampliative concept of degree of inductive
plausibility, e.g., the degree to which an observed sample of ravens all being
black renders plausible the conclusion that the next observed raven will be
black. On the other hand, degree of confirmation should also capture the
non-ampliative concept of degree of partial entailment, e.g., the degree to
which AV B entails the conclusion 4.2 We apply the concept of confirmation
in both cases—a sample of ravens can confirm the conclusion that the next
raven will be black; AV B confirms A—so a theory of confirmation should
be able to cope with both kinds of case.

Carnap was rightly concerned that employing the equivocator as a ba-
sis for confirmation—Dby using c¢'—would mean that confirmation theory
would not be able to capture the concept of inductive plausibility. But by
rescinding Step 4 of §2—i.e., by rejecting the identification of Py with P_
and by developing his continuum of inductive methods—he threw the baby
out with the bath water, because the equivocator is the only function able
to capture partial entailment in the total absence of evidence. If there is no
evidence to distinguish interpretations of a logical language then the degree
to which premisses entail a conclusion can only viably be identified with
the proportion of models of the premisses that also satisfy the conclusion—
equivalently, with the proportion of those atomic states logically implying
the premisses that also logically imply the conclusion (Wittgenstein, 1922,
§5.1.5).

One way to argue for this claim is to appeal to the reasons given in §5
for the pre-eminence of the equivocator. In order to determine the degree
to which A V B entails A, consider the following.

P@(A|A\/B):P®(A/\(AVB)) _ Py(ANB)+ Py(AN—-B)

Py(AV B) Py(ANB)+ Py(AN—-B)+ Py(—mANB)

2 This concept is called structural confirmation by Kuipers (2001, pp. 208-9).
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but, as argued in §5, these atomic states should all have the same probability
in the absence of evidence, so

1/2 2
P@(A|AVB)=ﬁ:§.

Thus A V B partially entails A to degree 2/3. (A V B might be said to
support A to degree Py(A | AV B) — Py(A)=2/3—-1/2=1/6.)

Kemeny and Oppenheim (1952, p. 314) provide a rather different ar-
gument for the claim that the equivocator is required to capture partial
entailment (which they use to derive a measure of degree of factual sup-
port). First they point out that if A and B are logically independent
atomic propositions then it must be the case that they are probabilisti-
cally independent, Py(+A A +B) = Py(+A)Py(+B): ‘Two atomic state-
ments which are logically independent cannot support each other factually
since they express distinct facts’. Also, A and A < B must be proba-
bilistically independent since A <+ B is just as favourable to A as to —A.
But A A (A <> B) is logically equivalent to A A B. Hence, Py(A)Py(B) =
P@(A/\B) = P@(A/\ (A &~ B)) = P@(A)P@(A > B) In which case P@(B) =
Py(A <+ B). Moreover A A (A <+ B) is logically equivalent to =A A =B so
Py(~A)Py(—~B) = Py(wAN—-B) = Py(=AN(A ¢ B)) = Py(=A)Py(A < B)
and Py(-B) = Py(A < B). Hence Py(B) = Py(—B) = 1/2. Similarly
Py(A) = Py(—A) = 1/2 and, since A and B are probabilistically indepen-
dent, Py(+A A +B) = 1/4. Similarly the other atomic propositions are all
probabilistically independent and have probability 7, so Py(w) = 1/|Q,| for
w € Q,. Hence Py = P_, the equivocator.

We are thus stuck between a rock and a hard place: on the one hand, the
equivocator secems to preclude learning by experience, and so fails to capture
the concept of inductive plausibility, while on the other, the equivocator
seems to be required to capture the concept of partial entailment. Wesley
Salmon recognised this dilemma very clearly. He pointed out that if q entails
p then p partially entails ¢ because it entails a part of ¢, and he argued:

if degree of confirmation is to be identified with partial entailment, then ¢' is the
proper confirmation function after all, for it yields the result that p is probabilis-
tically irrelevant to ¢ whenever p and ¢ are completely independent and there is
no partial entailment between them. ... (Salmon, 1967, p. 731)

But Salmon despaired of finding a way out of this dilemma:

... Unfortunately for induction, statements strictly about the future (unobserved)
are completely independent of statements strictly about the past (observed). Not
only are they deductively independent of each other, but also they fail to exhibit
any partial entailment. The force of Hume’s insight that the future is logically
independent of the past is very great indeed. It rules out both full entailment and
partial entailment. If partial entailment were the fundamental concept of inductive
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logic, then it would in fact be impossible to learn from experience. (Salmon, 1967,
pp. 731-2)

While Carnap sacrificed partial entailment for inductive plausibility, Ke-
meny focussed on explicating partial entailment (Kemeny, 1953). For both
Carnap and Kemeny, the quest for a theory of confirmation that adequately
handles the two concepts at once is left empty-handed. Salmon thought that
there is no way of satisfying these apparently conflicting demands. But we
shall see that there is, by taking another look at the four-step Bayesian
approach to confirmation.

§7 THE BAYESIAN APPROACH REVISITED

Let us revisit the scheme of §2 in the light of our discussion so far.
Step 1. Consider probability functions defined over a language £.

Step 2. Identify c(h, e) = Py} (h) for some suitable probability function P
on L, where P,y (h) is the probability of A on evidence e.

Step 3. Identify Pg.y(h) = Py(hle).

Step 4. Find an appropriate Py that represents confirmation in the absence
df

of evidence. Here Pj(w) = P_(w) = 1/|Q,| for all w € Q,, the
equivocator on L.

We saw that together these steps have the unhappy consequence that c(h, e) =
cf(h,e) = P—(h|e), which precludes learning from experience.

Although the focus of the last 60 years of work on confirmation theory
and inductive logic has been on Step 4, we have seen that it is not Step 4
that is at fault: the equivocator does indeed stand out as the only viable
confirmation function in the total absence of evidence. If Step 4 is not at
fault then we must look elsewhere. Revising Steps 1 or 2 would take us away
from Bayesian confirmation theory and the remit of this paper;® instead we
will focus on Step 3:

Step 3. Identify Py (h) = Py(hle).

This says that the degree to which you should believe h if you were to grant
e is exactly the degree to which you should believe h A e were you to grant
nothing, divided by the degree to which you should believe e were you to
grant nothing.

This claim is far from obvious, and, given that one of the four steps must
be revised if confirmation theory is to capture learning from experience, Step
3 could do with closer scrutiny.

3 Popper (1934, Appendix *ix), for one, argued against Step 2.
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We saw in §2 that the standard justification of Step 3 is in terms of
conditional bets: if we interpret the degree to which one should believe
h, were one to grant only e, as a betting quotient for A where the bet is
called off if e is false, then Step 3 must hold to avoid the possibility of
sure loss. It looks at first sight like the case for Step 3 is as compelling as
that for the other axioms of probability, which rely on very similar betting
justifications. Accordingly, if one were to cast aspersions on this kind of
betting justification then one would seem to undermine the whole Bayesian
programme.

But this is too quick. It is clear that there is something special about
Step 3, for it is clear that there are at least two cases in which one cannot
explicate the relevant conditional degree of belief as a conditional proba-
bility. First, if e is not expressible in the relevant language £ then while
Pyey (h) may be well-defined, Py(hle) clearly is not. To take a trivial exam-
ple, if £ is a propositional language with a single propositional variable A,
and e says that A has probability 0.8 then P(.}(A) is arguably 0.8 although
Py(hle) is undefined because e is not a proposition of £. Second, if e is ex-
pressible in £ but has probability 0 then Py(hle) is undefined but Pg.,(A)
may be well-defined. For example, the probability that a dart will hit a
particular point of a dartboard may be 0, but on evidence e that the dart
hit that point, the hypothesis h that the resulting score increased by 20 has
a well-defined probability (Pycy(h) = 0 or 1); yet Py(hle) is undefined, so it
is not possible that Py.y(h) = Py(hle). In response to this second case, one
might point out that, as an alternative to taking conditional probability to
be undefined, one can construe the conditional probability as unconstrained
when the condition has zero probability: Py(h|e) can be any value in the
unit interval. But the main point goes through as before: P,y (h) is well-
defined and fully constrained by Py, h and e, yet Py(hle) is unconstrained,
so the two quantities cannot be identified.

In sum, it is apparent that it is not always appropriate to explicate
Pyey () in terms of a conditional probability. This conclusion leads naturally
to two questions. First, under what conditions, exactly, is this explication
(and hence Step 3) plausible? Second, if we articulate these conditions to
reformulate Step 3, will the problem of learning from experience remain?
In order to answer these questions we will need to invoke the machinery of
objective Bayesian epistemology.

68 OBJECTIVE BAYESIAN EPISTEMOLOGY

Bayesian epistemology addresses the following question: how strongly should
an agent believe the various propositions expressible in her language? There
are various kinds of Bayesian epistemology; in this section we will sketch 0b-
jective Bayesian epistemology. The reader is referred to Williamson (2010b)
for the details of this particular version of Bayesian epistemology.
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According to objective Bayesian epistemology, an agent with evidence
€ and language £ should apportion the strengths of her beliefs according to
three norms:

Probability. Her belief function Pe should be a probability function on £.

Calibration. Her belief function should be calibrated with her evidence.
For example, her degrees of belief should be set to frequencies where
known.

Equivocation. Her belief function should otherwise equivocate sufficiently
between basic possibilities expressible in £.

The Probability norm requires that rational degrees of belief satisfy the
axioms of probability given in §2. The norm says that Pe € P where P is
the set of probability functions on £. (We need not assume that € itself is
expressible as a set of sentences of £.) The usual justification of this norm is
in terms of betting behaviour: if degrees of belief are interpreted in terms of
betting quotients, then, in order to avoid the possibility of certain loss, they
must be probabilities. Note that this justification only needs to appeal to
an interpretation of unconditional degrees of belief as betting quotients—
conditional beliefs will be analysed separately below—and the problems
facing the interpretation of conditional beliefs in terms of conditional bets,
alluded to in §7, can be set aside for the moment.

The Calibration norm says that the agent’s beliet function should lie
within some subset of probability functions that are calibrated with her evi-
dence, Ps € [E C IP. This can be cashed out as follows. The agent’s evidence,
construed as everything she takes for granted in her current operating con-
text, may contain information about physical chances that constrains her
degree of belief, and it may contain information that constrains degrees of
belief in a way that is not mediated by facts about chances. To handle the
latter kind of constraint, we may suppose that & imposes a set of structural,
non-chance constraints which are satisfied by a subset S of all probability
functions, and we insist that Pe € S; since this kind of constraint is not
central to the points of this paper, there is no need to go into further detail
here. To handle the former kind of constraint, we may suppose that the
agent’s evidence narrows down the chance function P* on £ to a subset
P* of £. Now this information will typically be pertinent to the agent’s
degrees of belief, for if she neglects to bet according to the known chances
a shrewd stake-maker can force her to lose money in the long run. But it is
too simplistic to say that the agent’s belief function should itself be in P*:
she might, for instance, have evidence that 6 refers to an event in the past,
in which case its chance is 0 or 1 and P* C {P € P: P(f) =0 or 1}, but it
would be absurd to insist that Pe € P*, i.e., to insist that she should either
fully believe or fully disbelieve 6, because she might have no other evidence
bearing on the truth of §. For this reason Pg is only constrained to lie in the
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convex hull (P*) of P*. (The whole convex hull is admitted because, while
the agent can be made to lose money in the long run if she bets according
to degrees of belief outside the hull, as long as she stays within the hull then
she avoids this possibility of loss.) In sum, the Calibration norm says that
Ps € E = (P*)NS.

The Equivocation norm says that the agent’s belief function should
equivocate sufficiently between the basic possibilities expressible in £. The
basic possibilities expressible in £ are just the atomic states w; the prob-
ability function that is maximally equivocal is the equivocator P—, so the
Equivocation norm can be read as saying that the agent’s belief function
should be a function in E that is sufficiently close to P—. If we write | for
the subset of functions in E that are sufficiently close to the equivocator,
then the Equivocation norm says that Pe € |E. It is usual to measure
distance between probability functions by what has come to be known as
the Kullback-Leibler divergence, d,,(P,Q) = }_ ,cq P(w)log(P(w)/Q(w)).
(For a predicate language, one can deem P to be closer to R than @ if there
is some N such that for all n > N the divergence d,, (P, R) is strictly less
than the divergence d,,(Q, R).) Why should a belief function be equivocal?
Because the equivocal belief functions turn out to be those that, under the
betting interpretation, minimise worst-case expected loss, for a natural de-
fault loss function (Williamson, 2010a). Why should the belief function be
sufficiently equivocal rather than mazximally equivocal? Because in certain
cases there may not be a maximally equivocal belief function in E; in such
cases contextual considerations (such as the required numerical accuracy of
predictions) can be used to determine what is to count as close enough to the
equivocator. In general, if | is the set of maximally equivocal probability
functions in E then |[E C |JE C E. If there are maximally equivocal func-
tions and if /E = |E then one can derive the maximum entropy principle of
Jaynes (1957): Pg € J[E = {P € E : entropy H(P) = - ) P(w)log P(w) is
maximised}. We shall suppose, in this paper, that if [E is non-empty then
JE = |E, so that the maximum entropy principle is applicable in this case.

There are two important consequences of this framework that set objec-
tive Bayesianism apart from other versions of Bayesian epistemology. First,
no further rule of updating is required. If evidence & changes to &’ then Pg
changes to Pger accordingly, where the latter function is determined afresh
by the requirement that Pes € |JE’. Thus belief change is said to be foun-
dational, with beliefs constantly tracking their evidential grounds, rather
than conservative (independent rules for updating such as Bayesian con-
ditionalisation tend to conserve prior belief, keeping new beliefs as close
as possible to old beliefs). Having said all that, there are many natural
circumstances under which the objective Bayesian update will match an
update generated by Bayesian conditionalisation, and the cases in which
there is disagreement between the two forms of updating can be thought of
as pathological cases—cases in which it would be inappropriate to condi-
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tionalise (Williamson, 2009). So under objective Bayesianism one can often
think in terms of conditionalisation if one wishes, as long as one is aware of
the pathological cases.

The second important consequence concerns the treatment of condi-
tional belief. Conditional degrees of belief are already determined by the
above scheme: the degree to which one should believe h were one to grant
only e, Pg.y(h), is determined by the objective Bayesian protocol Py (h) =
Pe(h) where Pe € JE and €& = {e}. There is thus no need to resort
to conditional probabilities or conditional bets in order to handle con-
ditional beliefs. Under the objective Bayesian scheme, then, conditional
probabilities are much less central than under other versions of Bayesian
epistemology—they simply abbreviate quotients of unconditional probabil-
ities, P(]@) = P(6 A )/P(p), and are not to be interpreted in terms of
special, conditional betting quotients. Having said all that, there are nat-
ural circumstances under which the objective Bayesian view of conditional
beliefs will match the conditional bet view. Since these circumstances are
important from the point of view of the present paper, we shall dwell on
them.

We have supposed that evidence € imposes a set of constraints that
ought to be satisfied by an agent with that evidence. (There may be more
than one way to formulate this set of constraints, but this will not matter
for our purposes.) We will use xe to denote this set of constraints; hence
E = {P € P : P satisfies the constraints in xe}. Should evidence be
inconsistent, i.e., should it determine a set X% of prima facie constraints that
is unsatisfiable, one cannot identify E = {P € P : P satisfies the constraints
in x%} = () because in such a situation one can hardly preclude an agent from
holding any beliefs at all. Rather, some consistency maintenance procedure
needs to be invoked, to generate a set ye of constraints that are jointly
satisfiable. One might take xe to be a disjunction of maximal consistent
subsets of X%, for example, or one might use a consistency maintenance
procedure that retains the more entrenched evidence and revokes the less
entrenched evidence; we need not decide this question here.

Consider two sets of evidence, € and & = € U {e}, where e is some
sentence of £. We shall call e simple with respect to € iff ye/ is equivalent
to (isolates the same set of probability functions as) xe U {P(e) = 1}, i.e.,
iff the only constraint that e imposes in the context of € is P(e) = 1. Call e
consistent with respect to € iff x¢ U X({)e} is satisfiable by some probability

function (so that xg is equivalent to y e U X?e})' We then have the following
useful result (Seidenfeld, 1986, Result 1; Williamson, 2009):

Theorem 8.1 If

1. e is expressible in L,

2. e is simple with respect to &,
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3. e 1s consistent with respect to €, and

4. Pg(-|e) satisfies xe,
then Pg:(h) = Pe(hle).

We see, then, that if the above four conditions are satisfied, a conditional
degree of belief will match a corresponding conditional probability.

§9 OBJECTIVE BAYESIAN CONFIRMATION THEORY

Having taken a detour into objective Bayesian epistemology, we are now
in a position to return to the central concern of the paper—developing an
account of confirmation that can capture both inductive plausibility (in
particular, learning from experience) and partial entailment (in particular,
the fact that the equivocator function captures confirmation in the total
absence of evidence). In §7 we suggested that it is Step 3 of the Bayes-
ian scheme—rather than Step 4—that needs reformulating. Here we apply
objective Bayesian epistemology to see how Step 3 should be revised.*
The original Step 3 was,

Step 3. Identify Py (h) = Py(hle).

We have seen that objective Bayesianism has a rather different concep-
tion of conditional beliefs. Conditional beliefs are to be determined by the
norms of objective Bayesianism, rather than via an interpretation in terms
of conditional bets. This motivates a new version of Step 3:

Step 3'. Determine Py.y(h) using Pg.y € |E, where |E is the set of suffi-
ciently equivocal probability functions satisfying constraints imposed
by e.

According to this conception, the Bayesian scheme becomes:
Step 1. Consider probability functions defined over a language L.

Step 2. Identify c(h, e) = Py} (h) for some suitable probability function P
on L, where Py (h) is the probability of h on evidence e.

Step 3. Determine Py (h) using Py € |IE, where |JE is the set of suffi-
ciently equivocal probability functions satisfying constraints imposed
by e.

Step 4. Find an appropriate Py that represents confirmation in the absence
df

of evidence. Here Py(w) = P—_(w) = 1/|Qy| for all w € Q,, the
equivocator on L.

4 The approach of this section is a development of that taken in Williamson
(2010b) and supersedes that of Williamson (2007, 2008).
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Partial entailment and inductive plausibility

It is not hard to see that this revised scheme does what we need of confir-
mation.

For one thing, partial entailment is captured because confirmation in
the total absence of evidence is implemented using the equivocator. In
fact Step 4 is a consequence of Step 3’. According to Step 3', Py(h) is
determined by the function in P that is closest to the equivocator. But
this is just the equivocator itself (since there is no evidence here). Hence
Step 4 follows. Indeed we can calculate that c¢(A, AV B) = Piaypy(A) =
Py(AlJAV B) = P_(A|AV B) = 2/3, just as suggested in §6. Here the
identity Payvpy(A) = Pyp(A|AV B) follows by Theorem 8.1.

For another thing, inductive plausibility can also be captured by this
theory of confirmation: learning from experience is no longer impossible.
Suppose that an agent grants that a hundred ravens were sampled and
all found to be black and that all outcomes are independent and identically
distributed (iid) with respect to physical probability. This yields an evidence
base € and tells her something about the physical probabilities: there is high
probability that the probability of a raven being black is close to the sample
mean, i.e., to 1. Statistical theory can be used to quantify this probability
and to derive conclusions of the form P*(P*(Brip) >1—0) = 1 —¢€5
Now fix 1 — ¢p to be the minimum degree of belief to which the agent

5 Note that frequentist statistical theory only yields claims about repeatably
instantiatable events—mnot about single cases such as Brio1. Thus frequentist
statistics yields statements of the form freqq(|X — freqr(B)| < §) = 1 — ¢,
where here the reference class R of the innermost frequency statement is that
of all ravens, the reference class S of the outermost frequency statement is
that of all samples of a hundred ravens, and X is the sample mean, i.e., the
proportion of sampled ravens that are black (1 in the case of the agent’s par-
ticular sample). Such statements are read: if one were to repeatedly sample
a hundred ravens then the proportion of samples which have sample mean
within § of the proportion of ravens that are black, is 1 —e. While the normal
approximation to the binomial distribution might be applied to yield § or €
in many such cases, in the case of extreme sample frequencies, such as the
frequency 1 in our example, interval estimation is rather subtle—see, e.g.,
Brown et al. (2001). The frequencies in such statements are normally un-
derstood as counterfactual rather than actual frequencies—i.e., the reference
classes include possible ravens and possible samples other than those that are
actually appear (Venn, 1866, p. 18; Kolmogorov, 1933, §2).

Such a frequency statement must then be specialised to the single case before
the Calibration norm can be used to constrain the single-case belief function
P: by appealing to the single-case chance function P*. The specialisation
to the single case is itself a subtle question, not least because frequencies
involving different reference classes can yield conflicting information about
single-case probabilities (the so-called reference-class problem). The machin-
ery of evidential probability was developed for the task of specialising fre-
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would need to believe P*(Brig1) > « for her to grant it (i.e., for her to
add that proposition to her evidence base). Then apply statistical theory
to determine a §y such that P*(P*(Brig1) > 1 —3dp) = 1 — ¢. By the
Calibration norm of §8, the agent’s rational degrees of belief should be
calibrated to this physical probability and so she should strongly believe
that the chance is close to 1, Pe(P*(Brig1)>1—3dp) = 1 — €. Accordingly
the agent grants that the chance is close to 1, thereby increasing her evidence
base from € to & = & U {P*(Brio1) >1— do}. Applying the Calibration
norm again, the agent should strongly believe that the raven in question
will be black, Pe/(Brig1)>1— 9. The Equivocation norm will then incline
the agent to a sufficiently equivocal point in the interval [1 — dg, 1], e.g.,
Pg:/(Brig1) = 1—0g. We then have that ¢(Brip1, &) = Pe/(Brio1) = 1 — do.
Thus gaining evidence &’ does raise the degree of confirmation of the next
raven being black and we do have learning from experience.

Note that in this account of inductive plausibility, quite a lot is packed
into € and &’. In particular, the evidence base needs to include not only facts
about the observed sample but also facts about the sampling process in order
to derive useful consequences about the chances. However, as pointed out
in §8, we do not need to presume that & or £’ is expressible as a proposition
e of £. This is a decided advantage of the objective Bayesian approach over
other versions of Bayesian confirmation theory: while, when we are deciding
how strongly to believe a proposition h, it is important to be able to express
that proposition, the task of expressing everything we take for granted is a
hopeless, if not in principle impossible, task.°

Note too that statistical theory plays a leading role in implementing
the Calibration norm. Hence it is statistical theory that accounts for the
inductive plausibility component of confirmation. This contrasts with Car-
nap’s view that inductive plausibility is a question of logic rather than of
mathematical statistics. But it is surely partial entailment, rather than in-
ductive plausibility, that is the logical notion: partial entailment deals with
the extent to which premisses entail a conclusion—and entailment is clearly
a logical notion—while inductive plausibility deals with the extent to which
a hypothesis which goes well beyond the evidence (i.e., which may have lit-
tle or no deductive support from the evidence) is nevertheless warranted by
that evidence—and this goes beyond logic.

quentist statements to the single case (Kyburg Jr and Teng, 2001)—this kind
of machinery can integrate into the objective Bayesian framework to permit
calibration (Wheeler and Williamson, 2009).

6  On the other hand, in the above example £ is taken to be rich enough to
express claims, such as P*(Brio1), about physical probabilities. It is often
possible to draw useful consequences about chance on less expressive lan-
guages, but one should not expect conclusions drawn on a more impoverished

language to agree with those drawn on a richer language (Williamson, 2010b,
§9.2).
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Broadly speaking, then, the Equivocation norm of objective Bayesian
epistemology captures partial entailment and the Calibration norm captures
inductive plausibility.

Step 3 and Step 3’

To what extent does Step 3’ differ from Step 37 ILe., when will Pg.y(h) =
Py(hle) under an objective Bayesian construal? And should Step 3’ or Step
3 be preferred where they disagree? Theorem 8.1 can help us answer these
questions. Applying Theorem 8.1 in the context of Step 3 and Step 3/, & = (),
& = {e}, and the four conditions of Theorem 8.1 are the conditions under
which Pg.y(h) = Py(hle). Should Step 3 and Step 3" disagree, Py.y(h) #
Py(hle), and one or more of these four conditions must fail. Let us examine
such failures to see whether Step 3 or Step 3’ is to be preferred in each case.

Condition 1. Suppose e is not expressible in £. Then, as noted at the
end of §7, Py(hle) is undefined. Hence Pey(h) # Py(hle). Of course in
this case Step 3’ is more plausible than Step 3, because Step 3 cannot be
implemented.

Condition 2. Suppose then that e is expressible in £ but that e is not
simple with respect to & = (): i.e., e does not merely impose the constraint
P(e) = 1. To take a rather trivial example, suppose e says that P*(h) = 0.9.
This e clearly imposes at least two constraints: P(e) = 1 (i.e., P(P*(h) =
0.9) = 1) and, via the Calibration norm, P(h) = 0.9. Hence Step 3’ sets
Piey(h) = 0.9. Where there is disagreement between Step 3 and Step 3,
Py(hle) # 0.9. Clearly it is more appropriate to use Step 3’, which forces
c(h,e) = 0.9, rather than Step 3, which forces c¢(h, e) # 0.9: the conditional
probability simply gets it wrong.

The same point can be made in favour of Step 3’ even if the details of the
account of calibration of §8 are not adopted. Suppose e says that P(h) = 0.9
(so e talks of rational belief rather than chance). Again, e clearly imposes
at least two constraints: P(e) =1 (i.e., P(P(h) =0.9) = 1) and P(h) = 0.9.
Now there are two cases. If Py(hle) = 0.9 then Step 3’ will agree with Step
3 and the question of which is to be preferred does not arise. Otherwise
Py(hle) # 0.9, and Step 3’ is clearly more appropriate because Step 3 will
break one of the constraints imposed by e: Step 3’ forces ¢(h,e) = 0.9 but
Step 3 forces c(h,e) # 0.9. Again, the conditional probability simply gets
it wrong.

Condition 3. Suppose e is inconsistent with respect to €. Since & = ()
here, this means that ¢ imposes a set x9 1 of prima facie constraints that is
not satisfiable by any probability function on £. As mentioned in §8, the
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objective Bayesian strategy is to invoke some consistency maintenance pro-
cedure to generate a consistent set x¢/ of constraints, and to set E' = {P : P
satisfies xe/}. Step 3’ then selects some Pe € E' that is sufficiently equiv-
ocal. How does Step 3 proceed? There are two cases here. First, e may be
a logical contradiction. If so, e must have probability 0 and the conditional
probability Pp(h|e) must be undefined (or, just as bad, unconstrained). In
this case Step 3’ is more plausible than Step 3, because either Step 3 cannot
be implemented or it offers no constraint—i.e., e confirms h to no degree
at all, or e confirms h to any degree (admitting conclusions as bizarre as
c(e,e) =0).

The second possibility is that e is not a logical contradiction, but nev-
ertheless it imposes unsatisfiable constraints. For instance, e may say h A
P(h) = 0.9, i.e., that h is true but you ought to believe it only to degree
0.9. While e is not a logical contradiction there is nevertheless something
fishy about it, in the sense of Moore’s paradox, because it imposes a set
of prima facie constraints X?e} = {P(h) = 1, P(h) = 0.9} that is unsatis-
fiable. While there might be some question as to which consistency main-
tenance procedure to adopt in this situation—one might identify x (., with
{P(h) =1V P(h) =0.9} or {P(h) € [0.9,1]} or 0, for example—it is clearly
the right strategy to maintain consistency somechow, since an agent must
be entitled to some belief function or other in such a situation. So Step 3’
seems the right approach to take. Now if Py(e) = 0 then, as before, Py(hle)
is undefined or unconstrained and Step 3’ is clearly to be preferred over
Step 3. But if Py(e) > 0 and Pycy(h) # Py(hle), then intuitively one should
go with Py.y(h) rather than Py(hle) since only the former results from the
appropriate consistency maintenance procedure. Indeed, in our example if
Py(e) > 0 then Py(hle) = 1 since h A e is logically equivalent to e, but it
is clearly unacceptable to insist that c¢(h,e) = 1 when e is unsatisfiable, so
Step 3’ is to be preferred over Step 3.7

Condition 4. Suppose Pg(:|e) does not satisfy xe. Since in the current
context & = (), xe must also be empty. So the only way in which Pg(-|e)
can fail to satisfy xe is if Pe(+|e) is not a well-defined probability function.
This occurs if Pe(e) = 0 and conditional probability is taken as undefined

7 If Py(e) is understood as an objective Bayesian probability, this last situation
perhaps does not arise. Arguably it cannot be that Pj(e) > 0 because the
norms of objective Bayesianism should ensure that Pj(e) = 0 when e imposes
unsatisfiable constraints. The idea here is that any set of evidence & imposes
the constraint P(#) = 0 for each 0 inconsistent with respect to €. Such a
constraint is called a structural constraint (§8). If this policy is accepted
then indeed the aforementioned situation does not arise under an objective
Bayesian construal of Pj(e). Note too, though, that if this policy is accepted
then Py will not agree with the equivocator function P— on those unsatisfiable
propositions that are not logical contradictions.
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when the condition has probability zero. As we just saw in the discussion
of Condition 3, in this case Step 3 is not implementable and Step 3’ is to be
preferred.

At the end of §7 we encountered two situations in which Step 3 is inap-
propriate: the case in which e is not expressible in £ and the case in which
e has probability 0. These cases correspond to infringements of Conditions
1 and 4 of Theorem 8.1 and one kind of infringement of Condition 3. We
asked in §7 whether there are any other restrictions that need to be made
to Step 3. We now have our answer: Conditions 2 and 3 spell out the only
other restrictions that need to be made. Where these four conditions are
satisfied the objective Bayesian account will agree with the original Bayes-
ian scheme of §2. On the other hand, in each case in which these conditions
fail, the objective Bayesian account, which replaces Step 3 by Step 3’, is to
be preferred.

Note that with the problem of learning from experience, it is Condition
2 that is pertinent: new evidence e tends not to be simple with respect to
background €. If e says that a hundred ravens were observed and all found
to be black, and that the pertinent chances are iid, then, according to the
above account, e does not merely impose the constraint P(e) = 1 but also
constraints that imply P(P*(Brip1)>1—06) =1 —e. Consequently e is not
simple and Step 3', rather than Step 3, must be applied.

Since Step 3 is abandoned in favour of Step 3’, the question arises as to
whether the resulting account is prone to the Dutch book argument of §2.
Surely an agent who does not set Py (h) = Py(h|e) opens herself up to the
possibility of sure loss?

The natural response to this worry is just to point out that in the ob-
jective Bayesian framework conditional beliefs are not interpreted in terms
of conditional bets, so infringing Step 3 does not expose an agent to sure
loss. To put it another way, one would be advised not to place a conditional
bet, conditional on evidence that is not simple with respect to current evi-
dence, with a betting quotient matching one’s rational degree of belief (as
determined by Step 3'), for fear of sure loss as per the argument of §2. The
interpretation of conditional beliefs in terms of conditional bets is therefore
inappropriate in general.

Under the approach advocated here, conditional beliefs are explicated
by considering unconditional probabilities relative to an evidence base that
is expanded to include the conditioning proposition, rather than by consid-
ering conditional bets and conditional probabilities. Levi (2010, §4) also
favours an approach based on expanding evidence rather than conditional
bets. However, Levi imposes a principle—Confirmational Conditionalisa-
tion—that forces consistency between conditional beliefs and conditional
probabilities. This principle is arguably too strong: according to the argu-
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ment of this section, while one should expect considerable agreement be-
tween conditional degrees of belief and conditional probabilities, agreement
should not be universal. In particular, if the conditioning evidence is not
simple with respect to the rest of the evidence base then a conditional degree
of belief may well disagree with the corresponding conditional probability,
and for good reason. Hence Levi’s principle of Confirmational Condition-
alisation is arguably just as inappropriate as the Carnapian tradition of
confirmation theory upon which he is trying to improve.®

§10 CONCLUSION

Let us recap the main line of argument. Of the four-step Bayesian scheme
of §2, Step 4 has been the main locus of the debate concerning Bayesian
confirmation theory, largely because it is commonly thought that Step 4
must be revised if confirmation theory is to adequately capture the problem
of learning from experience. But revising Step 4 leads to another problem,
namely a failure of confirmation theory to capture the phenomenon of partial
entailment. In fact, learning from experience can be accounted for in a
different way: by reformulating Step 3 in accordance with the prescriptions
of objective Bayesian epistemology. This leads to an objective Bayesian
confirmation theory and a new four-step scheme that is broadly preferably
to the original scheme of §2.

During the course of this argument we have had to appeal to some
subtle distinctions—the distinction between Bayesian confirmation theory,
the Bayesian interpretation of probability and Bayesian epistemology, for

8  Proponents of an interpretation of conditional beliefs in terms of conditional
bets might wonder whether one can force consistency between conditional
beliefs and conditional probabilities on the objective Bayesian account. If
successful, such a move might salvage Step 3. Perhaps the most promising
suggestion in this regard is simply to impose a structural constraint of the form
Py(hle) = Py (h) for each pair of sentences e and h of £. If the resulting set
of constraints is satisfiable then it would appear that conditional beliefs can
be thought of as conditional probabilities after all.

However, it is doubtful that such a set of constraints is satisfiable. Note that
Pra,v-a,}(w) = 1/|Qy| for any w € Q. This is because a tautology fails to
provide substantive information about chances, so E = P and JE = {P-}.
But according to the above suggestion we have a structural constraint of the
form Ppa,v-a,}(w) = Py(w]A1V —A1). Now Py(w|A1V A1) = Py(wA (A1 V
—A1))/Pp(A1 V —A1) = Py(w). Therefore Py(w) = 1/|Qy| for all w € Oy, i.e.,
Py = P—. But then the problem of learning from experience reappears: under
the proposed structural constraints, Pg.y(h) = Py(hle) = P=(hle) = P=(h) =
Py(h) if h and e are logically independent. This contradicts the observation
above that it is possible to learn from experience on the objective Bayesian
account, i.e., that Pg.y(h) > Py(h) for some logically independent e and h.
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instance, as well as the distinction between conditional probabilities, con-
ditional bets and conditional beliefs, and the distinction between inductive
plausibility and partial entailment. But by teasing these concepts apart we
create the conceptual space for a new and promising theory of confirmation.

Further work needs to be done to flesh out the theory, of course. The
problem of reconciling learning from experience with partial entailment is
but one problem for confirmation theory—others include the question of
whether universal hypotheses can have positive confirmation and the ques-
tion of whether language relativity infects confirmation theory. It would
be interesting to see how an objective Bayesian confirmation theory might
answer these questions.

Concerning the first question, it is well known that the equivocator
awards zero probability to universally quantified statements. (Indeed, any
function satisfying Johnson’s Sufficientness Postulate, hence any function
in Carnap’s A-continuum, awards zero probability to universally quantified
statements—see, e.g., Hintikka and Niiniluoto (1980) and Paris (1994, The-
orem 12.10).) But under the objective Bayesian account the equivocator
only captures confirmation in very special cases (e.g., in the total absence
of evidence, or in the case of tautological evidence)—cases in which it is by
no means problematic that universal statements be given probability zero.
There is clearly nothing in objective Bayesian theory that precludes award-
ing positive probability to universally quantified statements in the presence
of less trivial evidence. Indeed it is clear that if evidence imposes constraints
that force a universal hypothesis to have positive probability then it will have
positive probability. Arguably an agent’s evidence includes everything she
takes for granted, including theory, assumptions and background knowl-
edge as well as the results of observations (Williamson, 2010b, §1.4). If
her theoretical evidence includes universal hypotheses, then those universal
hypotheses will have positive probability, as will universal hypotheses that
they partially entail or render inductively plausible. A detailed investigation
of this phenomenon remains a topic for further research.

Concerning the second question, it appears that objective Bayesian
probability does depend to some extent on the underlying language £, and
rightly so because an agent’s language can, independently of any expres-
sions formulated in that language, encapsulate factual information about
the world in which the agent dwells. To take a simple example, if the
agent’s language has 20 different words for snow, that says something about
her environment (Williamson, 2010b, §9.2). Under an objective Bayesian
confirmation theory, this would imply that the degree to which e confirms
h is relative to some extent on the perspective of the underlying language
L. As to whether this leads to any kind of problematic incommensurability
of confirmation is another topic for further research.
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