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CAUSALITY

1 INTRODUCTION

Perhaps the key philosophical questions concerning causality are the follow-
ing:

• what are causal relationships?

• how can one discover causal relationships?

• how should one reason with causal relationships?

This chapter will focus on the first two questions. The last question is
equally important — of course we need to know the best way to make
predictions, perform diagnoses and make strategic decisions — but in the
absence of a well-entrenched mathematical calculus of causality, the answers
given to the last question tend to depend on the answers provided to the
first two questions.

Standard responses to the first, ontological question are surveyed in §2,
while the second, epistemological question is dealt with in §3. I advocate
a position I call epistemic causality which is sketched in §4, and which is
compared to the positions of Judea Pearl in §5 and Huw Price in §6.1

2 THE NATURE OF CAUSALITY

There are three varieties of position on causality. One can argue that
the concept of causality is of heuristic use only and should be eliminated
from scientific discourse: this was the tack pursued by Bertrand Russell,
who maintained that science appeals to functional relationships rather than
causal laws.2 Alternatively one can argue that causality is a fundamen-
tal feature of the world and should be treated as a scientific primitive —
this claim is usually the result of disillusionment with purported philosoph-
ical analyses, several of which appeal to the asymmetry of time in order
to explain the asymmetry of causation, a strategy that is unattractive to
those who want to analyse time in terms of causality. Or one can maintain

1Epistemic causality motivates an answer to the last question, how should one reason

with causal relationships? The ensuing formalism is presented in detail in [Williamson,

2004].
2[Russell, 1913]. Russell later modified his views on causality, becoming more tolerant

of the notion.
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that causal relations can be reduced to other concepts not involving causal
notions. This latter position is dominant in the philosophical literature,
and there are four main approaches which can be described roughly as fol-
lows. The mechanistic theory, discussed in §2.1, reduces causal relations
to physical processes. The probabilistic account (§2.2) reduces causal rela-
tions to probabilistic relations. The counterfactual account (§2.3) reduces
causal relations to counterfactual conditionals. The agent-oriented account
(§2.4) reduces causal relations to the ability of agents to achieve goals by
manipulating their causes.3

2.1 Mechanisms

The mechanistic account of causality aims to understand the physical pro-
cesses that link cause and effect, interpreting causal statements as saying
something about such processes. Proponents of this type of position include
Wesley Salmon4 and Phil Dowe.5 They argue that a causal process is one
that transmits6 or possesses7 a conserved physical quantity, such as energy-
mass, linear momentum or charge, from start (cause) to finish (effect).

The mechanistic account is clearly a physical interpretation of causality,
since it identifies causal relationships with physical processes. Such a notion
of cause relates single cases, since only they are linked by physical processes,
although causal regularities or laws may be induced from single-case causal
connections.

The main limitation of this approach is its rather narrow applicability:
most of our causal assertions are apparently unrelated to the physics of
conserved quantities. While it may be possible that physical processes
such as those along which quantities are conserved could suggest causal
links to physicists, such processes are altogether too low-level to suggest
causal relationships in economics, for instance. One could maintain that
the economists’ concept of causality is the same as that of physics and is
reducible to physical processes,8 but one would be forced to accept that the
epistemology of such a concept is totally unrelated to its metaphysics. This
is undesirable: if the grounds for knowledge of a causal connection have lit-
tle to do with the nature of the causal connection as it is analysed then one
can argue that it cannot be the causal connection that we have knowledge

3See the introduction to [Sosa and Tooley, 1993] for more discussion on the variety of

interpretations of causality.
4[Salmon, 1980], [Salmon, 1984], [Salmon, 1997], [Salmon, 1998].
5[Dowe, 1993], [Dowe, 1996], [Dowe, 1999], [Dowe, 2000], [Dowe, 2000b].
6[Salmon, 1997] §2.
7[Dowe, 2000b] §V.1.
8This was the tack Salmon took in connection with his earlier theory that conceived of

causal processes as involving the transmission of marks rather than conserved quantities.

See [Salmon, 1998], page 206.
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of, but something else.9 On the other hand one could keep the physical ac-
count and accept that the economists’ causality differs from the physicists’
causality. But this position faces the further questions of what economists’
causality is, and why we think that cause is a single concept when in fact it
isn’t. These problems clearly motivate a more unified account of causality.

2.2 Probabilistic Causality

Probabilistic causality has a wider scope than the mechanistic approach:
here the idea is to understand causal connections in terms of probabilistic
relationships between variables, be they variables in physics, economics or
wherever. There is no firm consensus among proponents of probabilistic
causality as to what probabilistic relationships among variables constitute
causal relationships, but typically they appeal to the intuitions behind the
Principle of the Common Cause: if two variables are probabilistically de-
pendent then one causes the other or they are effects of common causes
which screen off the dependence (i.e. the two variables are probabilistically
independent conditional on the common causes). Indeed Hans Reichenbach
applied the Principle of the Common Cause to an analysis of causality, as
a step on the way to a probabilistic analysis of the direction of time.10

Similarly Patrick Suppes argued that causal relations induce probabilistic
dependencies and that screening off can be used to differentiate between
variables that are common effects and variables that are cause and effect.11

However, both these analyses fell foul of a number of criticisms,12 and more
recent probabilistic approaches adopt Causal Dependence (cause and direct
effect are probabilistically dependent conditional on the effect’s other direct
causes) and the Causal Markov Condition (each variable is probabilistically
independent of its non-effects, conditional on its direct causes) as necessary
conditions for causality, together with other less central conditions which are
sketched in §3.13 Sometimes Causal Dependence is only implicitly adopted:
the causal relation may be defined as the smallest relation that satisfies the
Causal Markov Condition, in which case Causal Dependence must hold.

Probabilistic causality is normally applied to repeatably-instantiatable
rather than single-case variables — in principle either is possible, as long as
the chosen interpretation of probability handles the same kind of variables.
Invariably causality is interpreted as a physical, mind-independent concept.

9See [Benacerraf, 1973] for a parallel argument in mathematics.
10[Reichenbach, 1956].
11[Suppes, 1970].
12See [Salmon, 1980b], §§2-3
13See [Pearl, 1988], [Pearl, 2000], [Spirtes et al., 1993], [McKim and Turner, 1997] and

[Korb, 1999]. Note that the concept of direct cause does not require that causal chains be

discrete. It is merely presumed that Causal Dependence or the Causal Markov Condition

will hold where the direct causes are taken to be a set of causes that are sufficiently close

to the effect, with one direct cause per causal chain that leads to the effect.
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The chief problem that besets probabilistic causality is the dubious sta-
tus of the probabilistic conditions to which the account appeals. While
the conditions seem intuitive and might be expected to hold much of the
time there are clear cases where they fail. The Principle of the Common
Cause and the Causal Markov Condition are widely acknowledged to fail in
certain cases that crop up in quantum mechanics, but they also fail more
generally wherever probabilistic dependencies are induced by non-causal re-
lationships: where variables are semantically, logically or mathematically
related, or they are related by non-causal physical laws (as in the quan-
tum mechanics case) or boundary conditions.14 Causal Dependence fails
for instance where an event must be caused by one of two equally effica-
cious physical processes: if a machine can be activated by precisely one of
two fully reliable power supplies, then the choice of power supply will not
change the probability of its direct effect, the machine being activated.15 Of
course it is not good enough for a probabilistic analysis of causality if the
defining connection between probability and causality admits exceptions —
we are left with the question as to how causality is to be analysed in the
exceptional cases.

2.3 Counterfactuals

The counterfactual account, developed in detail by David Lewis,16 reduces
causal relations to subjunctive conditionals: C is a direct cause of E if
and only if (i) if C were to occur then E would occur (or its chance of
occurring would be significantly raised) and (ii) if C were not to occur
then E would not occur (or its chance of occurring would be significantly
lowered). The subjunctive conditionals (called counterfactual conditionals
if the antecedent is false) are in turn given a semantics in terms of possible
worlds: ‘if C were to occur then E would occur’ is true if and only if (i)
there are no possible worlds in which C is true or (ii) E holds at all the
possible worlds in which C holds that our closest to our own world. So
causal claims are claims about what goes on in possible worlds that are
close to our own.17

Lewis’s counterfactual theory was developed to account for causal rela-
tionships between single-case events (which can be thought of as single-case
variables which take the values ‘occurs’ or ‘does not occur’), and the causal
relation is intended to be mind-independent and objective.

Many of the difficulties with this view stem from Lewis’ reliance on pos-
sible worlds. Possible worlds are not just a dispensable façon de parler for

14These counterexamples are explained in detail in [Williamson, 2004], §4.2.
15[Williamson, 2004] §7.3.
16[Lewis, 1973].
17Lewis modified his account in [Lewis, 2000], but the changes made have little bearing

on our discussion. See [Lewis, 1986b] for Lewis’ account of causal explanation.
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Lewis, they are assumed to exist in just the way our world exists. But we
have no physical contact with these other worlds, which makes it hard to see
how their goings-on can be the object of our causal claims and hard to see
how we discover causal relationships. Moreover it is doubtful whether there
is an objective way to determine which worlds are closest to our own if we
follow Lewis’ suggestion of measuring closeness by similarity — two worlds
are similar in some respects and different in others and choice or weighting
of these respects is a subjective matter. Causal relations, on the other hand,
do not seem to be subjective. Instead of analysing causal relations, of which
we have at least an intuitive grasp, in terms of subjunctive conditionals and
ultimately possible worlds, which many find mysterious, it would be more
natural to proceed in the opposite direction. Thus we might be better-off
appealing to causality to decide whether E would (be more likely to) occur
were C to occur,18 and depending on the answer we could then say whether
a world in which C and E occurs is closer to our own than one in which C
occurs but E does not.

2.4 Agency

The agency account, whose chief recent proponents are perhaps Huw Price
and Peter Menzies,19 analyses causal relations in terms of the ability of
agents to achieve goals by manipulating their causes. According to this
account, C causes E if and only if bringing about C would be an effective
way for an agent to bring about E. Here the strategy of bringing about C
is deemed effective if a rational decision theory would prescribe it as a way
of bringing about E. Menzies and Price argue that the strategy would be
prescribed if and only if it raises the ‘agent probability’ of the occurrence
of E.20 (The events they consider are single-case.)

Menzies and Price do not agree as to the interpretation of these proba-
bilities: Menzies maintains that they are chances, while Price seems to have
a Bayesian conception.21 Consequently it is not entirely clear whether they
view causality as a physical or mental notion. On the one hand they claim
that there would be causal relations without agents,22 while on the other
they say, ‘we would argue that when an agent can bring about one event
as a means to bringing about another, this is true in virtue of certain basic
intrinsic features of the situation involved, these features being essentially

18See [Pearl, 2000], chapter 7, for an analysis of counterfactuals in terms of causal

relations. [Dawid, 2001] argues that counterfactuals are irrelevant and misleading for an

analysis of causality.
19[Price, 1991], [Price, 1992], [Price, 1992b], [Menzies and Price, 1993].
20[Menzies and Price, 1993].
21[Menzies and Price, 1993] pg. 190.
22[Menzies and Price, 1993] §6.
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non-causal though not necessarily physical in character’,23 and maintain
that the concept of cause is a ‘secondary quality’, relative to human re-
sponses or capacities.24 From this relativity one might expect cause to be
subjective, but they say that causation is significantly more objective than
other secondary quantities like colour or taste.25 We shall examine Price’s
views on these matters in more detail in §6.

The main problems that beset the agency approach are inherited from
those faced by the probabilistic and counterfactual approaches. First, the
agency approach assumes a version of Causal Dependence for agent prob-
abilities — we saw in §2.2 that this condition does not always hold.26 Of
course, where a causal connection is not accompanied by probabilistic de-
pendence, such as in the power supply example of §2.2, bringing about a
cause is not a good strategy for bringing about its effects. Second, the
agency account appeals to subjunctive conditionals27 (C causes E if and
only if, were an agent to bring about C, that would be a good strategy
for bringing about E) and so qualms about the utility of a counterfactual
account can equally be applied to the agency approach.

3 DISCOVERING CAUSAL RELATIONSHIPS

Different views on the nature of causality lead to different suggestions for
discovering causal relationships. The mechanistic view of causality, for ex-
ample, leads naturally to a quest for physical processes, while proponents
of probabilistic causality prescribe searching for probabilistic dependencies
and independencies.

However there are two very general strategies for causal discovery which
cut across the ontological positions. Whatever view one holds on the na-
ture of causality, one can advocate either hypothetico-deductive or inductive
discovery of causal relationships. Under a hypothetico-deductive account
(§3.1) one hypothesises causal relationships, deduces predictions from the
hypothesis, and then tests the hypothesis by seeing how well the predictions
accord with what actually happens. Under an inductive account (§3.2), one
makes a large number of observations and induces causal relationships di-
rectly from this mass of data. We shall discuss each of these approaches

23[Menzies and Price, 1993] pg. 197.
24[Menzies and Price, 1993] pp. 188,199.
25[Menzies and Price, 1993] pg. 200.
26In fact the version assumed by the agency approach does not restrict attention to

direct causes and does not demand that dependence be conditional on the effect’s other

causes. This type of dependence condition is rarely advocated since it faces a wider range

of counterexamples than Causal Dependence in the form used here — see the references

given in §2.2.
27[Menzies and Price, 1993] §5.
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in turn in this chapter, and give an overview of some recent proposals for
discovering causal relationships.

3.1 Hypothetico-Deductive Discovery

According to the hypothetico-deductive account, a scientist first hypothe-
sises causal relationships and then tests this hypothesis by seeing whether
predictions drawn from it are borne out. The testing phase may be influ-
enced by views on the nature of causality: a causal hypothesis can be sup-
ported or refuted according to whether physical processes are found that
underlie the hypothesised causal relationships, whether probabilistic conse-
quences of the hypothesis are verified, and whether experiments show that
by manipulating the hypothesised causes one can achieve their effects.

Karl Popper was an exponent of the hypothetico-deductive approach.
For Popper a causal explanation of an event consists of natural laws (which
are universal statements) together with initial conditions (which are single-
case statements) from which one can predict by deduction the event to be
explained. The initial conditions are called the ‘cause’ of the event to be
explained, which is in turn called the ‘effect’.28 Causal laws, then, are just
universal laws, and are to be discovered via Popper’s general scheme for
scientific discovery: (i) hypothesise the laws; (ii) deduce their consequences,
rejecting the laws and returning to step (i) if these consequences are fal-
sified by evidence. Popper thus combines what is known as the covering-
law account of causal explanation with a hypothetico-deductive account of
learning causal relationships.

The covering-law model of explanation was developed by Hempel and
Oppenheim29 and also Railton,30 and criticised by Lewis.31 While such a
model fits well with Popper’s general account of scientific discovery, neither
the details nor the viability of the covering-law model are relevant to the
issue at stake: a Popperian hypothetico-deductive account of causal discov-
ery can be combined with practically any account of causality and causal
explanation.32 Neither does one have to be a strict falsificationist to adopt
a hypothetico-deductive account. Popper argued that the testing of a law
only proceeds by falsification: a law should be rejected if contradicted by
observed evidence (i.e. if falsified), but should never be accepted or regarded
as confirmed in the absence of a falsification. This second claim of Popper’s

28[Popper, 1934] §12.
29[Hempel and Oppenheim, 1948].
30[Railton, 1978].
31[Lewis, 1986b] §VII.
32Even Russell’s eliminativist position of [Russell, 1913], in which he argued that talk

of causal laws should be eradicated in favour of talk of functional relationships, ties in

well with Popper’s logic of scientific discovery. Both Popper and Russell, after all, drew

no sharp distinction between causal laws and the other universal laws that feature in

science.
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has often been disputed, and many argue that a hypothesis is confirmed
by evidence in proportion to the probability of the hypothesis conditional
on the evidence.33 Given this probabilistic measure of confirmation — or
indeed any other measure — one can accept the hypothesised causal rela-
tionships according to the extent to which evidence confirms the hypothesis.
Thus the hypothetico-deductive strategy for learning causal relationships is
very general: it does not require any particular metaphysics of causality,
nor a covering-law model of causal explanation, nor a strict falsificationist
account of testing.

Besides providing some criterion for accepting or rejecting hypothesised
causal relationships, the proponent of a hypothetico-deductive account must
do two things: (i) say how causal relationships are to be hypothesised; (ii)
say how predictions are to be deduced from the causal relationships.

Popper fulfilled the latter task straightforwardly: effects are predicted as
logical consequences of laws given causes (initial conditions). The viability
of this response hinges very closely on Popper’s account of causal explana-
tion, and the response is ultimately inadequate for the simple reason that
no one accepts the covering-law model as Popper formulated it: more re-
cent covering-law models are significantly more complex, coping with chance
explanations.34

Popper’s response to the former task was equally straightforward, but
perhaps even less satisfying:

my view of the matter, for what it is worth, is that there is no
such thing as a logical method of having new ideas, or a logical
reconstruction of this process. My view may be expressed by
saying that every discovery contains ‘an irrational element’, or
‘a creative intuition’35

Popper accordingly placed the question of discovery firmly in the hands of
psychologists, and concentrated solely on the question of the justification of
a hypothesis.

The difficulty here is that while hypothesising may contain an irrational
element, Popper has failed to shed any light on the rational element which
must surely play a significant role in discovery. Popper’s scepticism about
the existence of a logic need not have precluded any discussion of the act of
hypothesising from a normative point of view: both Popper in science and
Pólya in mathematics remained pessimistic about the existence of a precise
logic for hypothesising, yet Pólya managed to identify several imprecise
but important heuristics.36 One particular problem is this: a theory may
be refuted by one experiment but perform well in many others; in such

33See [Howson and Urbach, 1989], [Earman, 1992].
34[Railton, 1978] for example.
35[Popper, 1934] pg. 32.
36[Polya, 1945], [Polya, 1954], [Polya, 1954b].
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a case it may need only some local revision, to deal with the domain of
application on which it is refuted, rather than wholesale rehypothesising.
Popper’s account says nothing of this, giving the impression that with each
refutation one must return to a blank sheet and hypothesise afresh. The
hypothetico-deductive method as stated neither gives an account of the
progress of scientific theories in general, nor of causal theories in particular.

Any hypothetico-deductive account of causal discovery which fails to
probe either the hypothetico or the deductive aspects of the process is
clearly lacking. These are, in my view, the key shortcomings of Popper’s
position. I shall try to shed some light on these aspects when I present a
new type of hypothetico-deductive account in §4.5. For now, we shall turn
to a competing account of causal discovery, inductivism.

3.2 Inductive Learning

Francis Bacon developed a rather different account of scientific learning.
First one makes a large amount of careful observations of the phenomenon
to be explained, by performing experiments if need be. One compiles a table
of positive instances (cases in which the phenomenon occurs),37 a table of
negative instances (cases in which the phenomenon does not occur)38 and
a table of partial instances (cases in which the phenomenon occurs to a
certain degree).39

We have chosen to call the task and function of these three
tables the Presentation of instances to the intellect. After the
presentation has been made, induction itself has to be put to
work. For in addition to the presentation of each and every
instance, we have to discover which nature appears constantly
with a given nature or not, which grows with it or decreases with
it; and which is a limitation (as we said above) of a more general
nature. If the mind attempts to do this affirmatively from the
beginning (as it always does if left to itself), fancies will arise and
conjectures and poorly defined notions and axioms needing daily
correction, unless one chooses (in the manner of the Schoolmen)
to defend the indefensible.40

Thus Bacon’s method consists of presentation followed by induction of
a theory from the observations. It is to be preferred over a hypothetico-
deductive approach because it avoids the construction of poor hypotheses
in the absence of observations, and it avoids the tendency to defend the
indefensible:

37[Bacon, 1620] §II.XI.
38[Bacon, 1620] §II.XII.
39[Bacon, 1620] §II.XIII.
40[Bacon, 1620] §II.XV.
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Once a man’s understanding has settled on something (either
because it is an accepted belief or because it pleases him), it
draws everything else also to support and agree with it. And if
it encounters a larger number of more powerful countervailing
examples, it either fails to notice them, or disregards them, or
makes fine distinctions to dismiss and reject them, and all this
with much dangerous prejudice, to preserve the authority of its
first conceptions.41

Note that while Bacon’s position is antithetical to Popper’s hypothetico-
deductive approach, it is compatible with Popper’s falsificationism — indeed
Bacon claims that ‘every contradictory instance destroys a conjecture’.42

The first step of the inductive process, exclusion, involves ruling out a se-
lection of simple and often rather vaguely formulated conjectures by means
of providing contradictory instances.43 The next step is a first harvest ,
which is a preliminary interpretation of the phenomenon of interest.44 Ba-
con then produces a seven-stage process of elucidating, refining and testing
this interpretation — only the first stage of which was worked out in any
detail.45

Present-day inductivists claim that causal relationships can be inferred
algorithmically from experimental and observational data, and that suit-
able data would yield the correct causal relationships. Usually, but not
necessarily, the data takes the form of a database of past cases: a set V of
repeatably instantiatable variables are measured, each entry of the database
D = (u1, . . . , uk) consists of an observed assignment of values to some subset
Ui of V . Such an account of learning is occasionally alluded to in connection
with probabilistic analyses of causality and has been systematically inves-
tigated by researchers in the field of artificial intelligence, including groups
in Pittsburgh,46 Los Angeles47 and Monash,48 proponents of a Bayesian
learning approach,49 and computationally-minded psychologists.50

These approaches seek to learn various types of causal model. The sim-
plest type of causal model is just a causal graph (i.e. a directed acyclic graph
in which nodes correspond to variables and there is an arrow from one node

41[Bacon, 1620] §I.XLVI.
42[Bacon, 1620] §II.XVIII.
43[Bacon, 1620] §§II.XVIII-XIX.
44[Bacon, 1620] §II.XX.
45[Bacon, 1620] §§II.XXI-LII.
46[Spirtes et al., 1993], [Scheines, 1997], [Glymour, 1997], [Mani and Cooper, 1999],

[Mani and Cooper, 2000], [Mani and Cooper, 2001].
47[Pearl, 2000], [Pearl, 1999].
48[Dai et al., 1997], [Wallace and Korb, 1999], [Korb and Nicholson, 2003].
49[Heckerman et al., 1999], [Cooper, 1999], [Cooper, 2000], [Tong and Koller, 2001],

[Yoo et al., 2002].
50[Waldmann and Martignon, 1998], [Waldmann, 2001], [Tenenbaum and Griffiths,

2001], [Glymour, 2001], [Hagmayer and Waldmann, 2002].
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to another if the former directly causes the latter) which shows only qualita-
tive causal relationships. A causal net is slightly more complex, containing
not only a qualitative causal graph but also quantitative information, the
probability distribution p(ai|par i) of each variable Ai conditional on its
parents Par i, the direct causes of Ai in the graph. A structural equation
model is a third type of causal model — this can be thought of as a causal
graph together with an equation for each variable in terms of its direct cause
variables, Ai = fi(Par i, Ei), where fi is some function and Ei is an error
variable.

The mainstream of these inductivist AI approaches have the following
feature in common. In order that causal relationships can be gleaned from
statistical relationships, the approaches assume the Causal Markov Condi-
tion.51 A causal net contains the Causal Markov Condition as an inbuilt
assumption; in the case of structural equation models the Causal Markov
Condition is a consequence of the representation of each variable as a func-
tion just of its direct causes and an error variable, given the further assump-
tion that all error variables are probabilistically independent.

The inductive procedure then consists in finding the class of causal mod-
els — or under some approaches a single ‘best’ causal model — whose
probabilistic independencies implied via the Causal Markov Condition are
consistent with independencies inferred from the data. Other assumptions
are often also made, such as minimality (no submodel of the causal model
also satisfies the Causal Markov Condition), faithfulness (all independen-
cies in the data are implied via the Causal Markov Condition), linearity (all
variables are linear functions of their direct causes and uncorrelated error
variables), causal sufficiency (all common causes of measured variables are
measured), context generality (every individual possesses the causal rela-
tions of the population), no side effects (one can intervene to fix the value
of a variable without changing the value of any non-effects of the variable)
and determinism. However these extra assumptions are less central than
the Causal Markov Condition: approaches differ as to which of these ex-
tra assumptions they adopt and the assumptions tend to be used just to
facilitate the inductive procedure based on the Causal Markov Condition,
either by helping to provide some justification of the inductive procedure
or by increasing the purported efficiency or efficacy of algorithms for causal
induction.52

The brunt of criticism of the inductive approach tends to focus on the
Causal Markov Condition and the ancillary assumptions outlined above. I

51There are inductive AI methods that take a totally different approach to causal

learning, such as that in [Karimi and Hamilton, 2000] and [Karimi and Hamilton, 2001],

and [Wendelken and Shastri, 2000]. However, non-Causal-Markov approaches are well in

the minority.
52See Chapter 8 of [Williamson, 2004] for a more detailed overview of inductive algo-

rithms for causal discovery.
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have already mentioned the difficulties that beset the Causal Markov Con-
dition; in cases where this condition fails the inductive approach will simply
posit the wrong causal relationships. It is plain to see that the ancillary
conditions are also very strong and these face numerous counterexamples
themselves. The proof, inductivists claim, will be in the pudding. However,
the reported successes of inductive methods have been questioned,53 and
these criticisms lend further doubt to the inductive approach as a whole
and the Causal Markov Condition in particular as its central assumption.54

Unfortunately neither Popper’s hypothetico-deductive approach nor the
recent inductivist proposals from AI offer a viable account of the discovery
of causal relationships. Popper’s hypothetico-deductive approach suffers
from underspecification: the hypothesis of causal relationships remains a
mystery and Popper’s proposals for deducing predictions from hypotheses
were woefully simplistic. On the other hand, the key shortcoming of the
inductive approach is this: given the counterexamples to the Causal Markov
Condition the inductive approach cannot guarantee that the induced causal
model or class of causal models will tally with causality as we understand it
— the causal models that result from the inductive approach will satisfy the
Causal Markov Condition, but the true causal picture may not. While this
objection may put paid to the dream of using Causal Markov formalisms for
learning causal relationships, an alternative formalism may yet ground the
inductive approach. In §4.5 we shall see that the inductive and hypothetico-
deductive approaches can be reconciled by using new inductive methods as
a way of hypothesising a causal model, then deducing its consequences and
restructuring the model if these are not borne out.

4 EPISTEMIC CAUSALITY

In this section I shall sketch my own view of causality, epistemic causality .
A more detailed exposition can be found in [Williamson, 2004].

As I see it, current theories of causality suffer from over-compartmental-
isation. Current theories analyse causality in terms of just one of the indi-
cators of causal relationships — mechanisms, probabilistic dependencies or
independencies, counterfactuals or agency considerations — to the expense
of the others. While one indicator may be more closely connected with
causality than the others, our causal beliefs are clearly based on several
indicators, not exclusively on one. It seems that if we are to understand

53[Humphreys and Freedman, 1996], [Humphreys, 1997], [Freedman and Humphreys,

1999], [Woodward, 1997].
54See [Dash and Druzdzel, 1999], [Hausman, 1999], [Hausman and Woodward, 1999],

Part Three of [Glymour and Cooper, 1999], [Lemmer, 1996], [Lad, 1999], [Cartwright,

1997], [Cartwright, 1999] and [Cartwright, 2001] for further discussion of the inductive

approach.
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the complexity of causality we must focus on our causal beliefs and the role
these indicators have in forming them.

Epistemic causality focusses on causal beliefs. It provides an account of
causal beliefs in informal causal reasoning (§4.1), as well as a more formal
account of how we ought to determine causal beliefs (§4.2). It takes causality
to be an objective notion (§4.3) yet primarily a mental construct (§4.4). And
it provides an account of the discovery of causal relationships (§4.5).

4.1 Informal Causal Reasoning

Why do we have causal beliefs? The answer to this fundamental question,
according to the epistemic view, is based on the following doctrines:

Convenience It is convenient to represent the world in terms of cause and
effect.

Explanation Humans think in terms of cause and effect because of this
convenience, not because there is something physical corresponding to
cause which humans experience.

It is convenient to represent the world in terms of cause and effect be-
cause a causal representation, if correct, enables us to make successful causal
inferences: it allows us to make correct predictions, correct diagnoses and
successful strategic decisions. Correct predictions and diagnoses are possi-
ble since, typically, cause and direct effect are probabilistically dependent.
Successful strategic decisions are possible since, typically, manipulating a
cause is a good way of changing its direct effects. (Note that here it is
enough that these associations are typical ; on the other hand an analysis of
causality in terms of these associations would be flummoxed by the existence
of counterexamples.)

It is clear why the convenience of causality explains our having causal
beliefs: successful causal reasoning has survival value. It doesn’t take us
long as babies to learn that crying brings us food. The value of correctly
predicting the effect of a fault in a power plant, correctly diagnosing an
ulcer, or successfully manipulating the economy is equally apparent.

The Explanation thesis divorces causal beliefs from any physical, mind-
independent notion of causality. While one might remain agnostic as to
whether there are physical causal relationships, one might instead adopt
an anti-physical position, claiming that in the interests of ontological par-
simony one should reject physical causality. I leave the selection of an
appropriate stance here entirely open.

4.2 Formal Causal Reasoning

The starting-point of a more formal account of causal beliefs is to ask how
one might determine a directed acyclic causal graph Cβ that depicts the
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causal beliefs that an agent ought to adopt on the basis of her background
knowledge β.

Arguably Cβ should be compatible with background knowledge β, but
should otherwise be as non-committal as possible. The agent’s causal beliefs
should include those causal claims warranted by her background knowledge
but no unwarranted causal claims. Since each arrow in a causal graph makes
a causal claim, Cβ should be a graph that contains fewest arrows, from all
those graphs that are compatible with β.

Thus we need to determine which graphs are compatible with background
knowledge β. Given the above discussion of informal causal reasoning it
seems natural to suppose that a causal graph that is compatible with β
should be a good causal representation of β, in the sense that its causal
claims should represent any predictive, diagnostic and strategic relationships
that can be gleaned from β. We can explicate this thought by insisting that
the causal graph include an arrow from A to B if:

• A and B represent non-overlapping physical events (so A and B are
the kinds of things that might be causally related, rather than seman-
tically, logically or mathematically related),55

• B is strategically dependent on A: intervening to change A can change
the probability of B, when B’s other direct causes are controlled for,

• this dependence is not otherwise accounted for by the agent’s back-
ground knowledge or other beliefs, and

• the inclusion of this arrow is not inconsistent with other background
knowledge. It is here that the other various indicators of causality get
taken into account: for instance if it is known that there is no physical
mechanism linking A with B, or if it is known that A only occurs after
B, then the agent should not deem A to be a direct cause of B.

In sum then, the agent’s causal belief graph Cβ should be a graph, from
all those that are compatible with β in the sense outlined above, that has
fewest arrows.

Given this concept of a causal causal belief graph, it is not hard to see
that the Causal Markov Condition and the Principle of the Common Cause
will hold when Cβ contains an arrow for each strategic dependency, and that
Causal Dependence will hold if furthermore each arrow in Cβ corresponds to
a strategic dependency. In this latter case Cβ will be a minimal graph satis-
fying the Causal Markov Condition. We thus have a qualified justification
of the three controversial principles that connect causality and probability,
and a qualified justification of inductive methods for causal learning that
infer a minimal graph satisfying the Causal Markov Condition.

55In fact this is too strict. A causal graph can also feature as a cause or effect — see
[Williamson, 2004], Chapter 10.
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4.3 The Objectivity of Causality

Clearly a primary desideratum of any theory of causality is that it account
for the apparent objectivity of causal notions: causal claims do not appear
to be arbitrary, a matter of personal opinion. It might be thought that
epistemic causality, focussing as it does on causal beliefs, suffers in this
respect. On the contrary, epistemic causality leads to an objective concept
of cause as we shall see now.

The word ‘objectivity’ is routinely used to mean many different things,
but the meaning most relevant to discussions of causality is lack of arbitrari-
ness. It is important that causal claims are not arbitrary in a pathological
way. Note that objectivity in this sense is a matter of degree: if any set of
causal claims is correct then causality is fully subjective; at the other end
of the scale if only one set of causal claims is correct then causality is fully
objective; degree of objectivity increases as arbitrariness, i.e. the proportion
of causal claims that are correct, decreases. We shall be interested in two
points on this scale:

Epistemic Objectivity If two agents with the same background knowl-
edge disagree as to causal relationships then at least one of them must
be wrong.

Full Objectivity If two agents disagree as to causal relationships then at
least one of them must be wrong.

The causal belief graph Cβ that an agent ought to adopt on the basis
of background knowledge β is epistemically objective (rather, close to epis-
temically objective: there may be more than one minimal graph compatible
with β, but there tends to be little room for subjectivity).

Note that epistemic objectivity is enough for the requirements of sci-
ence. Sciences demand that disagreements should be resolvable on the basis
of current background knowledge in the scientific literature: if there is a
disagreement as to whether or not the claim that smoking causes cancer
is warranted by current evidence, at least one party should be wrong, for
otherwise arbitrariness would render such debates pointless.

Philosophical preconceptions require more though — something close to
full objectivity. Intuitively there is a fact of the matter as to what causes
what, and if indeed causality is fully objective, a theory of causality should
be able to capture this characteristic. The standard way of explaining full
objectivity of a scientific concept is to suppose that the concept refers to
something physical and mind-independent. Then if there is disagreement
as to claims about the concept, the correctness of these claims are decided
on the basis of their truth when taken as claims about physical reality.

But projecting a concept onto the physical world is not the only way
to account for its full objectivity. Full objectivity can also be generated
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from epistemic objectivity. A (close to) fully objective causal graph C∗ can
be interpreted as Cβ∗ , the causal belief graph one ought to adopt on the
basis of some ultimate background knowledge β∗. This is the ultimate belief
interpretation of causality.

What constitutes ultimate background knowledge? There are two possi-
ble approaches here.

One might choose β∗ to be limiting background knowledge, to which
an agent’s background knowledge tends as time progresses. Now different
agents’ knowledge might be expected to tend to different limits, so one
needs to distinguish a special agent. When C.S. Peirce wanted to analyse
truth as the limit of belief, he chose science as the agent whose beliefs are
privileged.56 In our context we might take β∗ to be the limit of scientific
inquiry. The difficulties with this suggestion are (i) that science is not unan-
imous: different scientific parties and different scientific theories contradict
each other, making it difficult to extract a consistent body of knowledge
from science at any particular time, and (ii) that scientific knowledge is
no longer considered to be accumulative: science undergoes revolutions,
radical changes in scientific knowledge, and thus it is by no means clear
that scientific knowledge will tend to a fixed limit. A further problem with
this general strategy stems from the way it ties causality very closely to
a particular agent (science or whomsoever): if the agent had been differ-
ent, her background knowledge may have been very different, in which case
her limiting beliefs and thus causality itself would be very different. This
seems counter-intuitive. Under the epistemic account, a causal model is a
convenient way of representing the world. While causal relations might be
expected to depend on the contingencies of the world, they should not be
expected to depend on non-epistemic contingencies of a particular agent.

A natural alternative strategy is to consider the characterising feature of
causality, its convenience, and choose β∗ that optimises the convenience of
C∗ = Cβ∗ . (This approach corresponds to William James’ analysis of truth:
‘The true is the name of whatever proves itself to be good in the way of be-
lief.’57) Now causal beliefs will provide the most convenient representation
of the world if they are based on the fullest knowledge of the world, i.e. if β∗

contains knowledge of all the indicators of causality. Thus we can take β∗

to consist of knowledge of all probabilities, physical mechanisms, temporal
relations, non-causal inducers of probabilistic dependencies (semantic, logi-
cal and mathematical relationships, non-causal physical laws and boundary
conditions) and so on. This strategy has the advantages that β∗ is well
defined (as long as the indicators of causality can be delimited) and that
causality is not tied to a particular agent — indeed causality is not tied
even to there being any agents.

56[Peirce, 1877].
57[James, 1907] 30.
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We see then how epistemic causality can provide the (close to epistemic)
objectivity required for science and the (close to full) objectivity required
to satisfy our intuitions about causality.

4.4 What Causality Is

To summarise, epistemic causality provides both an account of causal beliefs
and of a fully objective notion of causality. It deals with the causal beliefs
an agent ought to adopt on the basis of her background knowledge, and
considers causality itself to be the causal beliefs that an agent ought to
adopt on the basis of full knowledge of the indicators of causality.

In that sense causality is a mental notion, not a physical notion. This
mental metaphysics for causality stands shoulder to shoulder with causal
epistemology: the causal relation is just an ultimate set of causal beliefs.
Moreover the anti-physical version of epistemic causality makes the further
claim that this is the only notion of cause — there is no such thing as
physical causality.

But causality is not mental in any degenerate psychologistic sense. Causal-
ity does not depend on the mind of any particular agent — it is a normative
notion and causal relations are as mind-independent as the laws of logic.
Causality is not subject to the whim of an agent: a rational agent can ex-
ercise little or no choice when she forms her causal beliefs; there is little or
no arbitrariness as what the correct causal relationships are. Causality is
objective.

Note that although epistemic causality can be construed as a subjunc-
tive theory, claiming that were an agent to know β and were she rational
then she would believe Cβ , it does not suffer from the problems that beset a
counterfactual analysis of causality. This is because its subjunctive condi-
tional claims are not given a semantics in terms of possible worlds — instead
a theory of rational causal belief is developed to explicate their meaning.
Thus worries about possible worlds do not translate into worries about the
claims of epistemic causality.

4.5 Discovery of Causal Relationships

Epistemic causality breaks the barriers between the hypothetico-deductive
and inductive accounts of discovering causal relationships.

On the one hand epistemic causality advocates an inductive approach to
causal discovery. Given observations β, epistemic causality prescribes an
algorithmic way of generating a causal theory Cβ . This is a different induc-
tive approach to the causal-Markov methods most widely advocated today,
but as I have argued in §3.2, those methods are based on questionable as-
sumptions, and (§4.2) the epistemic causality approach explains the special
cases where causal-Markov methods work.
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On the other hand epistemic causality is hypothetico-deductive: a causal
theory Cβ is at best a tentative hypothesis, a set of beliefs, and needs testing
before it can become entrenched as causal knowledge. Moreover epistemic
causality provides a way of filling in the gaps of a hypothetico-deductive
approach. The hypothetico phase is no mystery — we have an account of
how a hypothesis Cβ can be determined by knowledge of the indicators of
causality.58 The deductive phase is no mystery either: we test a causal hy-
pothesis by the inverse mapping from causality to indicators. ¿From a causal
relation we can predict a strategic dependency, the existence of a physical
mechanism, a temporal relation, and so on, and the causal hypothesis is
confirmed to the extent that those predictions are borne out.

5 PEARL’S DETERMINISM

In this section I shall compare epistemic causality with the position recently
advocated by Judea Pearl, a pioneer of one of the inductive approaches for
discovering causal relationships discussed in §3.2.

It is important to note that Pearl’s recent views (as of 2000) differ sig-
nificantly from his original conception of causality (of 1988).

Pearl’s original position stressed the convenience of causality and had
much in common with epistemic causality:59

We take the position that human obsession with causation, like
many other psychological compulsions, is computationally moti-
vated. Causal models are attractive mainly because they provide
effective data structures for representing empirical knowledge —
they can be queried and updated at high speed with minimal ex-
ternal supervision.60

However, Pearl then changed his mind about causality altogether:

Ten years ago, when I began working on Probabilistic Reasoning
in Intelligent Systems (1988), I was working within the empiri-
cist tradition. In this tradition, probabilistic relationships con-
stitute the foundations of human knowledge, whereas causality
simply provides useful ways of abbreviating and organizing in-
tricate patterns of probabilistic relationships. Today, my view
is quite different. I now take causal relationships to be the fun-
damental building blocks both of physical reality and of human

58Machine learning techniques can be used here to automate the generation of a hypoth-

esis from a database of observations in conjunction with other background knowledge.

See [Stankovski et al., 2001] for an analogous proposal.
59Epistemic causality is compared to Pearl’s early views in [Williamson, 2004], §9.4.
60[Pearl, 1988] 383.
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understanding of that reality, and I regard probabilistic relation-
ships as but the surface phenomena of the causal machinery that
underlies and propels our understanding of the world.61

Thus Pearl’s new view is that causality is mind-independent and physical,
not to be understood in terms of convenience of belief after all:

. . . causal relationships are more “stable” than probabilistic rela-
tionships. We expect such difference in stability because causal
relationships are ontological, describing objective physical con-
straints in our world, whereas probabilistic relationships are
epistemic, reflecting what we know or believe about the world.
Therefore, causal relationships should remain unaltered as long
as no change has taken place in the environment, even when our
knowledge about the environment undergoes changes.62

Interestingly, here Pearl appears to be invoking a physical notion of cause
in order to account for the objectivity of causality. As I have pointed out
in §4.3, this move is by no means necessary — equally one can account for
objectivity by taking an epistemic approach. While for epistemic causality
causal beliefs may change as knowledge changes, the induced fully objective
notion of cause is independent of any particular agent’s knowledge.

Pearl’s recent view is that causal models are structural equation models
(introduced in §3.2). Pearl’s new account thus not only embraces physical
causality, but also universal determinism:

causal relationships are expressed in the form of deterministic,
functional equations, and probabilities are introduced through
the assumption that certain variables in the equations are un-
observed. This reflects Laplace’s (1814) conception of natural
phenomena, according to which nature’s laws are deterministic
and randomness surfaces owing merely to our ignorance of the
underlying boundary conditions.63

Pearl subsequently describes his reasons for preferring a deterministic ap-
proach to his more stochastic 1988 approach which took causal models to
be causal nets rather than structural equation models:64

First, the Laplacian conception is more general. Every stochas-
tic model can be emulated by many functional relationships
(with stochastic inputs), but not the other way around; func-
tional relationships can only be approximated, as a limiting case,

61[Pearl, 2000] xiii-xiv.
62[Pearl, 2000] 25.
63[Pearl, 2000] 26.
64See also [Pearl, 2000], 31.
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using stochastic models. Second, the Laplacian conception is
more in tune with human intuition. The few esoteric quantum
mechanical experiments that conflict with the predictions of the
Laplacian conception evoke surprise and disbelief, and they de-
mand that physicists give up deeply entrenched intuitions about
locality and causality. Our objective is to preserve, explicate,
and satisfy — not destroy — those intuitions.

Finally, certain concepts that are ubiquitous in human discourse
can be defined only in the Laplacian framework. We shall see,
for example, that such simple concepts as “the probability that
event B occurred because of event A” and “the probability that
event B would have been different if it were not for event A” can-
not be defined in terms of purely stochastic models. These so-
called counterfactual concepts will require a synthesis of the de-
terministic and probabilistic components embodied in the Lapla-
cian model.65

While functional models may be desirable and appropriate in many cir-
cumstances, it seems perverse to develop a theory of causality that is incon-
sistent with indeterminism when indeterminism is advocated by our best
scientific theories. Far better, in my view, to develop an account of causal-
ity that is consistent with indeterminism but to use deterministic functional
models where possible. This is one of the advantages of epistemic causality
over Pearl’s later position: it leaves open the choice of model. According
to epistemic causality, an agent’s causal belief graph is purely qualitative,
involving neither probabilistic relationships nor deterministic functional re-
lationships. But this does not stop one from quantifying the causally con-
nections using either type of relationship if it is appropriate to do so. Clearly
an account that does not restrict one to appealing to just probabilistic rela-
tionships or to just deterministic relationships (i) is more general than either
the purely stochastic or the purely deterministic approach, (ii) satisfies the
demands of science as well as intuition, and (iii) can support Pearl’s seman-
tics for counterfactuals wherever deterministic models are appropriate.

Pearl’s advocacy of the Causal Markov Condition is another point that
sets it apart from epistemic causality. Because Pearl uses only structural
equation models and assumes that the error variables are probabilistically
independent, the Causal Markov Condition follows.66 There are three diffi-
culties with this justification. First it depends on the acceptance of universal
determinism which, as we have seen, is problematic. Second, no independent
argument is given for the assumption that error variables are independent.
Pearl merely points out the utility of this assumption: it yields the Causal

65[Pearl, 2000] 26-27.
66[Pearl, 2000] Theorem 1.4.1.
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Markov Condition and thereby agrees with the Principle of the Common
Cause and the properties that ensue.67

Third, there are the counterexamples to the Causal Markov Condition
referred to in §2.2. Pearl attempts to salvage the condition by arguing that
counterexamples either belong to quantum mechanics (in which case they
are ignorable for practical purposes) or they can be explained away by in-
voking latent variables (dummy variables that act as common causes).68

However, the first response is undesirable both because the quantum do-
main is becoming increasingly important for technology (there is already
considerable interest in applications of quantum computation and quantum
cryptography), and because as yet it is just a matter of conjecture that
quantum indeterminacy fails to infect the macroscopic world. The second
response fails because while introducing latent variables can salvage the in-
dependencies posited by the Causal Markov Condition, the condition itself
often still fails since it is often the case that a causal interpretation of a
latent variable remains implausible (analogously if A and B are probabilis-
tically dependent but neither causes the other, then the Principle of the
Common Cause requires both that there be variables that render A and B
independent, and that these variables are interpretable as common causes of
A and B, not just dummy variables).69 Pearl also claims that the continuing
interest in probabilistic analyses of causality, which often invoke the Causal
Markov Condition or an equivalent, lends weight to the condition: ‘The
intellectual survival of probabilistic causality as an active philosophical pro-
gram for the past 30 years attests to the fact that counterexamples to the
Markov condition are relatively rare and can be explained away through
latent variables.’70 This is rather flimsy evidence though: the history of
philosophy is littered with failed attempts (lasting longer than 30 years) to
produce a viable version of an initially attractive analysis.

Epistemic causality takes a different view. It accepts that counterexam-
ples to the Causal Markov Condition do arise, but as we saw in §4.2, the
condition demonstrably holds in certain special cases. This justifies a qual-
ified use of Pearl’s methods for causal reasoning and causal discovery (but
not his ontology).

I have argued, then, that Pearl need not have changed his mind about
the nature of causality in order to produce an objective notion of cause:
epistemic causality, which does yield objectivity, can be viewed as close to
Pearl’s early approach. Moreover the unqualified adoption of deterministic
causal models and the Causal Markov Condition leads to a formalism that
is at best a first approximation to the complexity of causality. Epistemic
causality aims to capture that complexity.

67[Pearl, 2000] 61.
68[Pearl, 2000] 62.
69[Williamson, 2004] §4.2.
70[Pearl, 2000] 62-63.
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6 PRICE’S PRAGMATISM

Huw Price, a proponent of the agency theory discussed in §2.4, has devel-
oped an interesting ‘perspectival’ conception of causality that is based on
pragmatism.

While pragmatism is normally associated with Peirce’s and James’ at-
tempts to analyse truth in terms of belief (alluded to in §4.3), Price delin-
eates his pragmatism as follows:71

A third form of pragmatism, and the one that interests me here,
is the view that a philosophical account of a problematic no-
tion — that of causation itself, for example — needs to begin
by playing close attention to the role of the concept concerned
in the practice of the creatures who use it. Indeed, the need
to explain the use of a notion in the lives of ordinary speak-
ers is often the original motivation for an account of this kind.
Causal notions and their kin are ubiquitous in the everyday talk
of ordinary people. Pragmatists argue that we cannot hope to
explain this anthropological fact if we begin where metaphysics
traditionally begins, at the level of the objects themselves — if
we ask what causation is, if we begin by looking for something
for causation to be, which will explain all these uses. Instead,
pragmatists think, we need to start with the practise of using
such notions, and to ask what role such notions play in the lives
of the creatures concerned — why creatures like us should have
come to describe the world in these causal terms.72

The last sentence portrays pragmatism as the rather uncontroversial method-
ological claim that philosophical investigation of a problematic notion should
start with an investigation of its use. Indeed epistemic causality takes prac-
tice (the convenience of causal representations) as a starting point and only
then develops a more formal account of causality and of what causality
is. However, there is more to Price’s pragmatic account of causality than
this advice as to where to begin. Price maintains that not only should one
not start by asking what causality is, one should not ask what causality is
at all — this is the wrong question and one should instead focus on how
causal notions are used. (Epistemic causality, in contrast, makes no such
claim; indeed it provides an account of what causality is.) On the other
hand Price does narrow down what causality is. For Price causality is per-
spectival : causal models are viewed from an agent’s standpoint,73 but are
projected onto the world,74 and like fictions the perspectival aspect may not

71[Price, 2003] describes the relationship between his form of pragmatism and truth.
72[Price, 2001] 105.
73[Price, 2004] §3.1.
74[Price, 2004] §3.2.
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be obvious to the agent:75

Perhaps causal asymmetry isn’t really in the world at all, but
the appearance that it is is a product of our own standpoint.
Perhaps it is like the warmth that we see when we look at the
world through rose-tinted spectacles.76

Yet Price’s notion of causality is not mental:

let me emphasise that pragmatism about causation is not the
view that when we talk of causation we are talking about our-
selves, in whole or in part.77

I simply want to emphasise that the view is not . . . that talk of
causation is talk about agents or agency, but rather the . . . doctrine
that we don’t understand the notion of causation — as philoso-
phers, as it were — until we understand its origins in the lives
and practice of agents such as ourselves.78

This is another point of difference between Price’s pragmatism and epis-
temic causality. Epistemic causality is a mental notion, in the sense that
talk about causality is talk about what agents ought to believe. Since
Price’s conception of causality is not mental, his view is not analogous to
the Bayesian view that probability is rational degree of belief.79 In con-
trast, epistemic causality is analogous to this view: just as an agent ought
to adopt a certain probability function as a representation of her degrees
of belief, she ought to adopt a certain directed acyclic graph as a represen-
tation of her causal beliefs.80 Moreover just as David Lewis viewed fully
objective probabilities as those degrees of belief an agent ought to adopt
were she to know everything relevant,81 so too epistemic causality views
a fully objective notion of cause as those causal beliefs an agent ought to
adopt were she to know everything relevant.82

Note though that epistemic causality does not imply that if there were
no agents there would be no causation — for epistemic causality causal
beliefs are idealised, the beliefs that an agent ought to adopt, which remain
well-defined in the absence of agents. Price concurs on this point:

If the concept of causation is essentially tied to our experience as
agents, as my kind of . . . pragmatism maintains, then of course

75[Price, 2004] §3.3.
76[Price, 1996] 153.
77[Price, 2001] 107.
78[Price, 2001] 107.
79[Price, 2001] 107.
80[Williamson, 2004] §9.10.
81[Lewis, 1980].
82[Williamson, 2004] §9.9.
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the concept would not arise in a world without agents. But this
does not make it appropriate to say that if there had been no
agents there would have been no causation. Pragmatism does
not conflict with realism in that sense.83

On the other hand Price goes on to argue that only an extremely weak form
of realism remains tenable:

This view simply takes the existence claims of science at face
value, and rejects any ‘additional’ metaphysical or philosophical
viewpoint from which it would really make sense to ask ‘Do these
things (electrons, for example) really exist?’ The key to weak
realism is a rejection of a standpoint for ontology beyond that
of science.84

As Price acknowledges this is not much of a realist position:

I am following convention in calling this view a species of realism.
However, it is also instructive to see the view as rejecting the
traditional realist-antirealist debate altogether, at least as that
debate arises within the empiricist tradition.85

Epistemic causality is less radical. For epistemic causality the question
of whether causal relations exist in the physical world does make sense;
different varieties of epistemic causality (agnosticism and anti-physicalism)
give different answers to this question.

Price advocates his ‘weak realism’ on the basis of the following problem
with the more usual ‘strong realism’:

the main argument for strong realism about theoretical entities
goes in terms of inference to explanatory causes. But this reason
simply takes the notion of causation for granted, and therefore
can’t be applied in support of realism about causation. In this
context, the supposed role of inference to the best explanation
is epistemological — it is supposed to justify a belief in the
reality of entities of a certain kind. My point is that such an
attempt at justification would be viciously circular in the case
of causation itself, in virtue of the fact by the realist’s own lights,
the inference presupposes realism about explanatory causes.86

Note though that while Price does identify a potential problem for the view
that causality is a physical relation, a dismissal of strong realism leaves

83[Price, 2001] 108.
84[Price, 2001] 112.
85[Price, 2001] 112.
86[Price, 2001] 113-114.
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several tenable views — Price’s own weak realism (a rejection of the realism-
antirealism question) but also the anti-physical and agnostic varieties of
epistemic causality — none of which appeal to inference to the best causal
explanation. So Price’s argument does not on its own decide between weak
realism and epistemic causality.

A rather counter-intuitive relativity of the agency notion of causality
might provide one deciding factor:

Suppose that the world had developed in such a way that we
had fewer manipulative abilities and skills than we actually pos-
sess but that we still applied our concept of causation roughly
in conformity with the agency approach. In this case the ref-
erence of the expression ‘relation between events such that an
actual agent could manipulate one event as a means to bringing
about the other’ would have been fixed on different relations,
even though our way of fixing the reference would have been the
same.87

Thus the agency theory possesses a form of subjectivity: agents with dif-
ferent capacities may rationally disagree about causal relationships. This
looks to be a problem not just across possible worlds but across agents in
this world. Just as the capacities of a human, a robot and a Venus fly
trap differ, so too would causality-for-a-human, causality-for-a-robot and
causality-for-a-Venus-fly-trap. Such subjectivity is attributable to Price’s
view of causality as a secondary quality, like colour:

we shall take as our reference point a simple version of the or-
thodox dispositional theory, namely the view that to be red is
to be disposed to look red to a normal observer under standard
conditions. This embodies the insight that colour is a secondary
quality, defining the colour concept in terms of human capacities
and responses. . . . Our claim is simply that the agency theory
correctly portrays causation as something analogous to a sec-
ondary quality — as a secondary quality, in fact, on a suitably
extended understanding of that notion.88

However, while the subjectivity of colour does not clash strongly with in-
tuition, causality does intuitively seem to be objective. Menzies and Price
reply to this objection as follows:

Our response is to accept that this kind of relativity is a con-
sequence of the theories concerned, but to deny that it is unto-
ward. We make two main points in support of this conclusion.

87[Menzies and Price, 1993] 199.
88[Menzies and Price, 1993] 188-189.
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The first, as usual, is that the characteristic of causation thus
identified is already a non-problematic feature of colour and the
other classical secondary qualities. It is something we live with
in those cases, and may be expected to accommodate ourselves
to in the case of causation. Secondly, however, we want to point
out that there is an important difference of degree between the
two cases. As we shall explain in a moment, it turns out that
causality is very much less sensitive than colour, say, to the ac-
cidents of the human situation. In this we find a basis for the
intuition that causation is significantly more ‘objective’ than
the usual secondary qualities — an intuition with which we thus
concur.89

Although the subjectivity of the agency theory of causality may be more
limited than that of the dispositional theory of colour, and although some
philosophers may be able to bite the bullet and live with the subjectivity,
one can avoid the subjectivity altogether. Epistemic causality does not
define causality in terms of agents’ capacities and is not subjective in this
problematic respect. Thus the objectivity of causality provides a reason to
prefer epistemic causality over the agency account.

In sum, Price’s objection to strong realism about causality need not force
one to adopt his rather radical rejection of the realism-antirealism debate.
Epistemic causality, which views causality as mental rather than physical,
remains a contender. Moreover epistemic causality might be preferred over
Price’s agency theory, since the latter notion of causality suffers from rela-
tivity to the capacity of agents.

7 CONCLUDING REMARKS

We have seen that contemporary theories tend to explain causality in terms
of just one of its indicators, in particular physical mechanisms, probabilis-
tic relationships, functional relationships, counterfactual relationships or
agency considerations. These approaches then find it hard to explain how all
the other indicators can have a bearing on our causal judgements. However,
by looking first at causal beliefs and the ways in which they are constrained
by knowledge of these indicators, one can account for the complexity of
causality. Moreover the ensuing approach, epistemic causality, provides an
account of the objectivity of causality and an answer to fundamental ques-
tions about what causality is and how we can discover causal relationships.

There are a couple of philosophical concerns one might have with epis-
temic causality, to do with circularity.

89[Menzies and Price, 1993] 199-200.
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The first concern is that the characterisation of epistemic causality might
be circular. Epistemic causality provides an ultimate belief interpretation
of a fully objective notion of cause. Thus causality is characterised in terms
of causal beliefs. But if causal beliefs are beliefs about causality then the
relationship between causality and causal beliefs is circular.

While this argument is valid, it does not tell against epistemic causal-
ity, for two reasons. First and foremost, epistemic causality provides an
independent route to causal beliefs: in §4.1 causal beliefs are characterised
independently of ultimate belief causality, in terms of knowledge of strategic
dependencies, mechanisms, temporal relations, and so on.90 Second, epis-
temic causality does not claim that causal beliefs are beliefs about causality.
For epistemic causality, causal beliefs are a type of belief, not necessarily
beliefs about anything in particular: ‘causal’ modifies ‘beliefs’ and does not
specify an object of the beliefs. The claim that causal beliefs are beliefs
about ultimate belief causality is in any case implausible: it is simply im-
plausible to suggest that when Audrey believes that smoking causes cancer,
she believes that were she to know about all the relevant indicators she
ought to believe that smoking causes cancer. This latter point is perhaps
more obvious when made regarding the Bayesian view of probability that
is analogous to epistemic causality. Here the terminology ‘degrees of be-
lief’ is used for ‘probabilistic beliefs’ while ‘chance’ is used for ‘probability’:
degrees of belief are a type of belief and are not beliefs about chances. If
they were beliefs about chances, then an ultimate belief characterisation of
chance in terms of degrees of belief (such as that of Lewis) would be cir-
cular. But in any case it is implausible to suggest that when Bill believes
that England will win the cricket to degree 0.8, he believes that were he to
know the entire history of the world and all history-to-chance conditionals
he would believe that England will win the cricket to degree 0.8.

The second worry is that the relationship between epistemic causality and
its indicators might be circular. According to epistemic causality, causal
beliefs depend on knowledge of the multifarious indicators of causality. If
these indicators are themselves reducible to causal notions then it is natural
to suspect circularity. For example, we might want to understand temporal
direction in terms of causality — but how can this be possible if temporal
knowledge helps delimit the causal relation? In contrast, if we simply reduce
causality to counterfactuals then an account of temporal direction in terms
of causality is more obviously non-circular.

In fact though, epistemic causality leaves open the question of which

90[Williamson, 2004] §9.8 deals with the case in which positive causal knowledge can

constrain causal beliefs. In that case causal beliefs can depend upon ultimate belief

causality. But there is no circularity there either, because ultimate belief causality is

characterised in terms of causal beliefs relative to background knowledge that includes

all knowledge of strategic dependencies, mechanisms and so on, but that does not include

knowledge of ultimate causal relations.
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reductive relationships obtain amongst its indicators. Epistemic causality
offers a functional explanation of causality in terms of its convenience, and a
characterisation of the causal relation in terms of rational beliefs, but not a
reductive analysis of causality in terms of its indicators. Consider an analogy
in medicine. When a condition is poorly understood, one may posit a syn-
drome and characterise it in terms of its indicators. For example, Tourette’s
syndrome is characterised (implicitly defined) in terms of involuntary tics
and uncontrollable verbalisation, in particular the use of obscene language
and the tendency to repeat uttered words. No commitment is made as to
what actually causes what — indeed the causal picture regarding Tourette’s
syndrome is still unclear. As long as the characterisation of the syndrome
latches onto something objective, it will suffice for diagnosis and treatment.
Similarly, a characterisation of causality that latches onto something objec-
tive can offer a way of handling causality without presupposing relationships
amongst its indicators: temporal direction can be a good indicator of causal
direction whether or not the former is reducible to the latter.91

Thus epistemic causality offers a powerful alternative to the standard
accounts of causality, yet one that is compatible with a range of philosophical
agendas.92

Jon Williamson
University of Kent
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