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Causality and probability in the sciences

Towards the end of the nineteenth century Karl Pearson noted that a prob-
abilistic dependence between two variables does not necessarily imply that
the two variables are causally connected (Pearson, 1897). This led Pearson,
in the third (1911) edition of his book Pearson (1892), to argue that talk of
cause and effect should be eradicated from science in favour of talk of prob-
abilistic dependence (in the form of contingency tables). Around the same
time, Bertrand Russell threw his intellectual weight behind this purge of
causality (Russell, 1913). In the same vein, Ernst Mach (1905) argued that
causality, understood as a way to explain phenomena, should be replaced
by the concept of relation, which is a way to merely describe phenomena.
These attacks had a profound influence on much of twentieth century sci-
ence. Although scientists continued to reason causally—e.g., to find causes
of phenomena, to devise experiments to measure interventions, to inform
policy decisions—explicit mention of causality met with disapproval.

Then came the 1980s. As explained below, causal methods developed in
Artificial Intelligence (AI) in the 1980s helped to rehabilitate the concept
of cause. While causality was no less controversial from a philosophical
perspective, new formalisms for handling causality and probability together
helped mathematise the notion of cause. Fig. 1 and Fig. 2 show the resulting
transformation. A search of the Web of Science databases for papers whose
titles include a word beginning with ‘caus-’ (e.g., ‘causality’, ‘causation’,
‘causal’) revealed a stark increase in the numbers of such papers after about
1990. This was so for the Science Citation Index Expanded (SCIE) database,
which deals mainly with physical, biological and computational sciences,
and for the Social Sciences Citation Index (SSCI) database. The growth
in papers on causality in the Arts and Humanities Citation Index (AHCI),
which covers philosophy, is rather more gradual. (Of course, the volume
of all academic papers increased markedly in this period. In an effort to
compensate for this general growth, for each of the three databases Fig. 2
portrays the yearly number of papers involving causal terms divided by
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the yearly number of papers with an author whose name begins with the
letter ‘J’, a rather arbitrary indicator of the general volume of papers in the
database in question.)

Figure 1. Total yearly numbers of papers involving causal terms.

Given this rehabilitation of causal talk it is all the more important to
further our understanding of the notion of cause. As a step in this di-
rection, the papers in this volume seek to shed light on the relationship
between causality and probability. Methodologically, the work presented
here is science-driven: the papers seek to learn lessons about causality and
probability motivated by actual scientific practice.

This volume

Causality and probability in AI

Researchers in AI have been responsible for many of the key developments in
causal modelling since the early 1980s. Broadly speaking this line of research
is motivated by the following question: given a dataset containing a series of
past observations, what is the most appropriate causal model of the domain
in question? This question led to the development of causal nets , also called
causally interpreted Bayesian nets (Pearl, 1988; Williamson, 2005), which
represent qualitative causal connections by means of a directed acyclic graph
(DAG) and which represent a joint probability distribution by means of the
probability distribution of each variable conditional on its direct causes to-
gether with an independence assumption, the Causal Markov Condition,
which says that each variable is probabilistically independent of its non-
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Figure 2. Papers involving causal terms, according to citation database and
adjusted by overall volume.

effects conditional on its direct causes. Closely related are structural equa-

tion models , which can be thought of as causal nets with functional equa-
tions instead of conditional probability distributions (Spirtes et al., 1993;
Pearl, 2000). Causal nets and structural equation models are often called
graphical causal models.

In ‘An integral approach to causal inference with latent variables’, Sam
Maes, Stijn Meganck and Philippe Leray contribute to the development of
the causal net framework. As originally devised, causal net learning algo-
rithms produce the causal net on the variables of the given dataset that best
fits the dataset. Now it may be that a probabilistic dependence amongst two
variables in the dataset is induced, not by causal relationships amongst the
variables in the dataset, but because the two variables are effects of a com-
mon cause that is not measured in the dataset. Such an unmeasured com-
mon cause is called a latent variable. The question thus arises as to which
causal net, involving latent variables as well as variables in the dataset, best
fits the dataset. Causal nets have been extended in various ways in order to
try to answer this question, and this chapter develops the semi-Markovian

causal model approach. It also extends the causal net framework in another
direction, by allowing experimental as well as observational data to help
determine the appropriate causal model.

Alex Freitas, Ken McGarry and Elon Correa forge an interesting connec-
tion between causal nets and knowledge discovery in ‘Integrating Bayesian
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networks and Simpson’s paradox in data mining’. In AI, knowledge discov-
ery has two types of application. It may be that an artificial agent needs to
extract generalities from data that will be useful to it in its activities: an
automated system for drug synthesis may need to determine laws about the
structure of molecules from experimental and observation data, for exam-
ple, in order to synthesise molecules of the appropriate shape. By and large,
although useful to the machine in question, these laws are of less interest to
human chemists (though as Gillies (1996) points out, this is not always the
case). On the other hand, artificial agents often work less autonomously, li-
aising with humans: for instance a financial system may need to sift through
past data to offer general investment advice to human investors. In this sec-
ond type of application it is important that the knowledge gleaned from the
data be of interest to the humans. This chapter exploits Simpson’s paradox,
a conundrum that often crops up in the literature on probabilistic causality,
to help isolate interesting pieces of knowledge. The authors also argue that
Simpson’s paradox can be exploited to help learn causal nets from data.

Causality and probability in the physical sciences

Bertrand Russell (1913) maintained that the physical sciences do not appeal
to the concept of cause, but instead deal with functional equations. These
days, causal claims are not considered to be a world apart from functional
equations; a structural equation model, for example, is a type of causal
model. The question then arises as to how the functional equations of
physics might be given a causal interpretation. Thus the ideal gas law,
PV = nRT (where P is pressure, V is volume, n is the number of moles
of gas, R is the universal gas constant, and T is temperature), is typically
taken to encapsulate a number of causal relationships, with each of P , V

and T causally dependent on the other two.

The functional equations of quantum mechanics are often thought to
pose a special problem for causality, with several philosophers arguing that
the Einstein-Podolsky-Rosen thought experiment can not be interpreted
causally. Mauricio Suárez, in ‘Causal inference in quantum mechanics: a
reassessment’, takes these philosophers to task. Suárez puts forward five dif-
ferent causal models that could be taken to underlie this experiment. The
problem isn’t so much that quantum mechanics is incompatible with causal-
ity, but rather that the most plausible model (model II in this chapter) forces
a reassessment of the relationship between causality and probability. Under
this model, the Causal Markov Condition, often taken to be an invariant or
even defining feature of causality, fails. If so, the Causal Markov Condition
may have to be relegated to the status of a default rule (Williamson, 2005).
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Causality and probability in the social sciences

Karl Popper (1934) put forward a hypothetico-deductive account of how
one should discover causal relationships: first hypothesise a causal law,
then deduce its consequences, rejecting the law if these predictions are not
borne out. In economics, the Cowles Commission, founded by Alfred Cowles
in 1932 with the aim of promoting a mathematical approach to economic
theory, suggested that economic theory be used to provide the hypothesis
and statistics be used to determine the parameters of a causal model and
to derive predictions.

In contrast, the approaches to causal modelling developed in AI open
up the possibility of an inductivist approach to discovery: from a dataset
of past observations, directly induce causal laws (Spirtes et al., 1993). In
‘Mediating between causes and probabilities: the use of graphical models
in econometrics’, Alessio Moneta argues that the graphical models of AI
are better seen as involving aspects of both hypothetico-deductivism and
inductivism. Moneta takes seriously the idea that the assumptions behind
causal models—such as the Causal Markov Condition—need not hold in-
variably and should be treated as default working assumptions. In which
case, the models yielded by inductive methods can at best be viewed as
tentative hypotheses, in need of further testing.

Stephen LeRoy compares the approach of the Cowles Commission with
more recent developments in ‘Causality in economics’. LeRoy argues that
graphical causal models are a point of departure from the more traditional
approach in economics due to Herbert Simon, who began his economic career
in the Cowles Commission. This is because the functional equations of the
traditional approach do not admit a straightforward causal interpretation
by treating a variable on the left-hand side of the equation as the effect and
those variables on the right-hand side as its direct causes, while structural
equation models as defined by Pearl (2000) do admit such an interpretation.
LeRoy favours the traditional Cowles approach.

Damien Fennell, in ‘Causality, mechanisms and modularity: structural
models in econometrics’, takes this comparison a step further. Fennell ar-
gues that the graphical model approach differs from Simon’s analysis in
another respect: advocates of the graphical model approach tend to assume
modularity, i.e., that one can intervene to fix the value of any variable with-
out changing the values of its causes in the model and without changing
the nature of the causal relationships in the model (a so-called divine in-

tervention or perfect intervention), while Simon makes no such assumption.
Modularity does not always hold—Fennell argues that this gives another
reason to prefer the traditional Cowles approach over the graphical causal
model approach.



6 Federica Russo and Jon Williamson

In ‘Time series, nonsense correlations and the principle of the common
cause’, Julian Reiss discusses a further way in which the Causal Markov
Condition can fail. The Causal Markov Condition implies the Principle of

the Common Cause, which says that if two variables are probabilistically
dependent then either one causes the other or they are effects of a common
cause. But it is well known that time series give rise to correlations that
admit no such causal explanation. Yule (1926), for instance, cited a cor-
relation between the proportion of Church of England marriages and the
mortality rate, in the years 1866-1911; both are decreasing but for different
reasons, not because one causes the other or because they are effects of
a common cause. Advocates of graphical causal models often try to hold
out against such counterexamples to the Causal Markov Condition, either
by maintaining that these counterexamples dissolve under closer scrutiny,
or by claiming that they do not make a practical difference on the use of
graphical models. Reiss argues against both these moves and concludes that
the Principle of the Common Cause is a fallible assumption.

The previous papers focus on methodological aspects in the fields of eco-
nomics and econometrics. In ‘Conceptual tools for causal analysis in the
social sciences’, Erik Weber attempts to provide social scientists with use-
ful tools for causal analysis. Weber distinguishes two different tasks of a
philosophical investigation into causality. On the one hand, a conceptual
analysis develops a definition of causality to adequately represent our ev-
eryday causal talk. On the other, we can develop a set of concepts that
are supposed to help scientists. Weber confines his discussion to the sec-
ond task. As a conceptual pluralist, Weber puts forward three concepts for
social scientists. The first is the causal relation at the population level, as
defined by standard average effect theories; the second is the causal interac-
tion at the individual level, and the third is the specification of spontaneous
preservation that takes place after causal interactions. The most original
part of the paper consists in the modification of Salmon’s concept of causal
interaction and the definition of spontaneous preservation. In this way, the
concept of causal interaction, originally thought for physics, is now also well
suited to the social sciences.

Causality and probability in the biomedical sciences

When trying to assess frameworks for causal modelling, two key questions
arise. First, what notion of cause is employed in the model? Causality
can be interpreted in a variety of ways—e.g., mechanistic, probabilistic,
counterfactual, agency, epistemic—and the choice of interpretation can have
a bearing on whether the modelling assumptions hold. Second, what notion
of probability is employed in the model? Probability also admits of a variety
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of interpretations—e.g., frequency, propensity, chance, classical, logical and
several Bayesian interpretations—and modelling assumptions such as the
Causal Markov Condition depend on the chosen notion of probability as
well as that of causality.

In ‘Interpreting probability in causal models for cancer’, Federica Russo
and Jon Williamson argue that cancer epidemiology is distinctive in that it is
concerned with both generic and single-case probabilities, since it deals with
both causal laws and with particular patient diagnoses and prognoses. Con-
sequently, we claim, it requires a twin interpretation of probability: generic
probabilistic claims should be given a frequency interpretation while single-
case claims should be interpreted using degrees of belief. In particular, ob-
jective Bayesianism turns out to be the most appropriate interpretation in
the single-case. If we are right, then this has an important consequence for
modelling: the Causal Markov Condition can be proved to hold by default
under an objective Bayesian interpretation (Williamson, 2005), so graphical
causal modelling becomes a plausible methodology in cancer epidemiology.

The choice of statistical framework can have crucial repercussions. A
good framework can lead to perspicuous models with well-articulated claims
and assumptions, while a poor framework can obfuscate the problem in
hand and even lead to situations in which no model in the framework ad-
equately captures what is going on. Bert Leuridan, in ‘Galton’s blinding
glasses: modern statistics hiding causal structure in early theories of inher-
itance’, argues that the statistical context in which Francis Galton worked
prevented him from finding the causal story behind inheritance. This is
because Galton’s choice of model was constrained by having to account for
occurrences of the normal distribution and of regression towards the mean.
In contrast Gregor Mendel, who made little use of statistical theory, hit
upon essentially the right causal picture. The lesson, Leuridan maintains,
is that we should be very careful in our use of contemporary frameworks
such as graphical causal models: we should test their assumptions and be
aware of their possible blinding influence.

Vanessa Didelez and Nuala A. Sheehan advocate the graphical causal
modelling framework in ‘Mendelian randomisation: why epidemiology needs
a formal language for causality’. They show that when it is not possible,
either in principle or for practical reasons, to perfectly intervene on a vari-
able, one can instead use observational data and instrumental variables to
decide causal claims, and that this procedure can be nicely represented via
the graphical causal model approach. Didelez and Sheehan argue that by
casting a problem in this formal language one can clarify the key causal
questions that one is trying to answer, and isolate the conditions that make
such causal inferences possible. Thus graphical causal models can be illu-
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minating rather than blinding.

Causality and probability

In philosophy, causality has been a central theme since the ancient Greeks
and has never lost its appeal. However, two events in the sciences have radi-
cally changed, and indeed invigorated, the debate: the advent of probability
theory and the discovery of indeterministic phenomena. These two events
gave a new flavour to old questions and raised completely new ones. For
instance, is causality essentially indeterministic or deterministic? If prob-
abilities are at the heart of causal processes, what is the relation between
causes and probabilities? If probabilities characterise physical and social
processes, how are probabilities to be interpreted?

As a consequence of these changes, a notion of cause in terms of neces-
sary and sufficient conditions has gradually been replaced by a probabilistic
notion. Thus Hans Reichenbach (1956) put forward the Principle of the
Common Cause and Patrick Suppes (1970) provided a probabilistic account
of causality that was very general in scope. The development of graphical
causal models in AI can be viewed as a continuation of this tradition.

In the ‘The causal roots of probability’, Marianne Belis investigates the
relation between causality and probability, particularly focusing on the sin-
gle case. Pursuing the idea that singular causes have ontological prior-
ity over Humean regularities, Belis argues that two concepts elucidate the
sought-after relation: ‘propensity’ and ‘capacity’, borrowed from Popper
(1959) and Cartwright (1989) respectively. Belis defends the propensity no-
tion of probability in spite of the well-known difficulty of their measurement—
a difficulty that often sees propensities labelled as ‘metaphysical rather than
scientific’. Instead, Belis argues that there is a way to measure propensities—
that is through the algebraic sum of all the strengths exerted upon them.
Moreover, propensities ‘reveal the ontological roots of probability’, i.e., the
inner causal character of probability in the single case.

Andrea L’Episcopo, in ‘Causality and the axiomatic probability calculus’,
narrows down on Phil Dowe’s conserved quantity (CQ) theory and proba-
bilistic theories of causality. The main claim of the paper is that any theory
of causality should be evaluated in its proper domain of application. For
this reason, argues L’Episcopo, many counterexamples and criticisms to the
major accounts of causality are misdirected. This claim hinges upon two
distinctions. The first is between an intuitive versus a physical notion of
causality, and the second is between an empirical versus a conceptual anal-
ysis of causality. For instance, Dowe’s CQ theory is an empirical analysis of
the physical notion of causality, and therefore, L’Episcopo argues, causation
by omission or prevention do not constitute genuine problems for it.
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In ‘Two probabilities of dysfunction and two kinds of chance’ Françoise
Longy draws our attention to the interesting case of the probability of dys-
functions of artifacts. The probability of dysfunction of artifacts may be
given two different interpretations. Consider, for instance, the probability
that a light bulb will burn out within five minutes after its first use. The
first reading concerns the physical probability that this particular object
(i.e., the physical object) with this particular physical structure will burn
out within five minutes—let us call this probability DYSF-PHYS proba-
bility; the second concerns the probability that the object, as an artifact
produced in such and such factory, will burn out within five minutes—let us
call this probability DYSF-ART probability. According to Longy, the ques-
tion is whether or not these are two different sorts of objective probability
of dysfunction, interpretable as chances rooted in some particular feature
of the world. Indeed they are. In particular, the DYSF-ART probability is
rooted in a number of conditions that determine the object as an artifact
but not as the specific physical make-up of the object. Longy supports this
claim by relying on the concept of function as is developed in the biological
sciences.

Causal pluralism

In recent decades many different views of causality have been proposed.
Among the most influential are Suppes’ probabilistic theory (Suppes, 1970),
Lewis’ counterfactual approach (Lewis, 1973), the Salmon-Dowe process
theory (Salmon, 1998; Dowe, 2000), and agency and manipulability ap-
proaches (Menzies and Price, 1993; Woodward, 2003). These approaches
provides us with a variety of accounts of what causality is. This raises the
problem of whether causality is genuinely a plurality of different concepts
or whether it is a single concept.

This abundance of accounts has made pluralism a fashionable stance.
Pluralists argue that different concepts of cause fit different contexts and
that, therefore, there is no real incompatibility between, say, the probabilis-
tic and process approach, exactly because they employ different concepts of
cause in different domains.

In ‘Causal dualism: which position? Which argument?’, Monika Dull-
stein focuses on Hall’s recent argument for causal dualism. Hall argues that
‘cause’ has two different meanings: the first relates to the concept of pro-
duction (causes are physically linked to and produce their effects), and the
second to difference-making (causes are responsible for differences, either
probabilistic or counterfactual, in the occurrence of their effects). The rea-
son to defend this dualist position lies in the fact that, on the one hand,
no production account can deal with negative causation, and, on the other,
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no difference-making account can deal with overdetermination. Dullstein
points out that such a pluralist stance can be simply read as a way of
thinking of causation, or, more interestingly, as a specific tenet about the
metaphysics of causation. Dullstein then raises the question of whether
Hall’s argument for causal dualism can provide any reason to believe in
metaphysical dualism. Her answer is that Hall’s argument fails in this re-
spect.

Amit Pundik, in ‘Can one deny both causation by omission and causal
pluralism? The case of legal causation’ draws the philosophers’ attention
to the intricate case of causation in the law. This ambitious paper aims at
establishing a number of points. In the first place, Pundik shows that in
the legal context omissions are often regarded as genuine cases of causation.
Secondly, that causation by omission and causal pluralism cannot be denied
coherently. In other words, if we opt for causal pluralism and accept that
law has its specific concept of causation, then this concept must include
causation by omission. Thirdly, he tries to convince those who might dismiss
legal causation as a genuine philosophical problem that, instead, this is an
extremely relevant and interesting matter.

General frameworks for causal analysis

A philosophical account of causality can have different purposes. For in-
stance, the metaphysics of causality investigates what causality in fact is;
epistemology is interested in how we come to know about causal relations;
and methodology explores new methods for causal reasoning and inference.
Phil Dowe (2000) introduced the distinction alluded to above between a
conceptual and an empirical analysis of causality. Conceptual analysis is
concerned with our talk about causality, i.e., about the meaning of cause in
ordinary language. Empirical analysis is instead concerned with the mean-
ing of cause in science.

Friedel Weinert, in ‘A conditional view of causality’, puts forward a
framework for causal analysis that fits both the natural and the social sci-
ences. His conditional model is based on Mackie’s INUS model, involving
conditions that are Insufficient but Necessary components of a set of Un-
necessary but Sufficient conditions. In Weinert’s account, causal relations
are facts about conditional dependencies between antecedent conditions and
consequent conditions. To show the wide applicability of such a conditional
view, Weinert analyses the Franck-Hertz experiment in quantum mechanics
and Max Weber’s adequate causation in the social sciences.

Aviezer Tucker, in ‘The inference of common cause naturalized’, draws
our attention once more to the Principle of Common Cause, one of the most
debated principles in the philosophy of causality. In this paper, Tucker
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shows that Reichenbach failed to deduce the principle from the second law
of thermodynamics, and points out that much of the literature on the topic
failed to distinguish between the inference that some common cause existed
(without specifying the particular properties of such a common cause) and
the inference that a concrete common cause existed (with a unique set of
properties). He then proposes a naturalised theory of common causes, rely-
ing on examples from various disciplines—for instance, biology, linguistics
and philology. The inference of the common cause involves three consec-
utive stages of comparisons: first, a comparison of likelihoods given some
common cause, whose properties are unknown, and given separate causes;
second, if the common cause makes the evidence more likely, five types
of common cause hypotheses compete; and third, if it is possible to prove
which of the five types is the most probable, scientists attempt to infer the
actual properties of common causes.

In ‘Contexts for causal models’ Margherita Benzi distinguishes between
two possible approaches to causal modelling. Whilst the first relies on the
idea of an underlying omnicomprehensive causal network, the second rela-
tivises the construction of the causal model to the context of inquiry. Al-
though the context-sensitivity of causal models generally attracts a consen-
sus among philosophers and practising scientists, there is little agreement
as to what this context exactly is. Benzi proposes a taxonomy of contexts
that is based on the idea that different levels of analysis reflect an increasing
specificity of the factors to be taken into account. At the lowest level, we
find generic background knowledge; this is refined in the context of inquiry,
where factors are selected according to the needs of the specific study at
hand; the causal model further refines the context of inquiry and picks out
the factors to include in the model; the last level involves those factors that
are more directly relevant for the assessment of the causal relation. Benzi
argues that approaches that relativise to the context of inquiry ought to be
preferred even if the price to pay is to give up the hope of the reduction of
causes to probabilities.

As mentioned above, causally interpreted Bayesian nets have shed new
light on causal inference in the last two decades. The major problem
with Bayesian nets is that they will deliver successful results if some ba-
sic assumptions—e.g., the Causal Markov and Faithfulness conditions—are
satisfied. In ‘Causal inference. How can Bayesian nets can contribute?’
Isabelle Drouet investigates the extent to which Bayesian nets algorithms
satisfying those assumptions can be integrated into the traditional path
analytic methodology. Drouet proposes a mixed methodology for causal in-
ference, in which Bayesian nets algorithms are run only after good reasons
that basic assumptions are satisfied have been provided.
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Philip Dawid, in ‘Counterfactuals, hypothetical and potential responses:
a philosophical examination of statistical causality’, runs a detailed and
careful analysis of the frameworks and tools developed for causal inference
by statisticians. In particular, he focuses on the potential response model
and on decision theory. The potential response model (PR) is perhaps the
dominant methodology. However, Dawid gives reasons to prefer the deci-
sion theoretic approach (DT). The reasons to prefer DT lie in the distinction
between hypothetical and counterfactual queries. Hypothetical and coun-
terfactuals, in turn, relate to the different tasks of inferring effects of causes
or causes of effects, respectively. Dawid’s main criticism of PR, which in-
cludes structural equations, is that, although it can handle the inference
of effects of causes, it faces serious troubles in inferring causes of effects,
especially when only observational data is available. The superiority of DT
is claimed on both philosophical and pragmatic grounds.

The anti-causal correlation-mongers have been deposed. Causality is no
relic of a bygone age; the renewed interest in causality from the 1980s onward
proves the importance of causal reasoning both for cognitive and action-
oriented purposes. On the one hand, knowledge of causes is essential to the
intellectual enterprise of understanding and explaining the world. On the
other, the action-oriented goal—e.g., to guide and inform policies, prescribe
treatments, etc.—needs a solid causal grounding, not the quicksands of mere
correlation.
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