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Abstract The orthodox view in statistics has it that frequentism and Bayesianism

are diametrically opposed—two totally incompatible takes on the problem of sta-

tistical inference. This paper argues to the contrary that the two approaches are

complementary and need to mesh if probabilistic reasoning is to be carried out

correctly.

1 Introduction

1.1 The argument

The argument of this paper proceeds along the following lines.

Most versions of Bayesianism rightly invoke some principle of direct inference—

such as the Principal Principle—for ensuring that prior probabilities are calibrated

with known physical probabilities. But such a principle presupposes that physical

probabilities can be determined independently of Bayesian prior probabilities. Since

Bayesian methods for estimating physical probabilities depend on a given prior

probability function, and it is precisely the prior that is in question here, this leaves

classical (frequentist) estimation methods—in particular confidence interval

estimation methods—as the natural candidate for determining physical probabilities.

Hence the Bayesian needs the frequentist for calibration.

On the other hand, the frequentist also needs the Bayesian, for the following

reason. The physical probabilities invoked by frequentists are generic—i.e.,

probabilities of repeatedly instantiatable attributes or events. But confidence

interval estimation methods are only of interest to the extent that they can be used to

generate a single-case interval estimate of a specific quantity, with the confidence
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level somehow indicating the extent to which the estimate can be relied upon. Now

this confidence in a particular estimate is most naturally explicated using the

Bayesian framework, since it is Bayesian probability that expresses the strength that

one ought to believe a single-case proposition. Hence the frequentist needs the

Bayesian in order to justify the application of frequentist methods to the single case.

1.2 Plan of the paper

The aim of the paper is to flesh out this argument and to show in more detail how

frequentism and Bayesianism might fruitfully be combined. Section 2 presents the

usual statistical view of the relationship between frequentism and Bayesianism—a

view in which the two are incompatible. One needs to move to an epistemological

perspective in order to understand how the two should be integrated (Sect. 3).

Section 4 presents an extended example which places confidence interval estimation

as the locus of integration. Sections 5 and 6 discuss two objections to that analysis.

Section 7 draws conclusions and points to ways in which this research might be

extended.

2 The Statistical View

2.1 Statistical inference

In this section we will encounter the orthodox view of the relationship between

frequentism and Bayesianism—this is the view that they are competing paradigms

for statistical inference.

The orthodox view is roughly that statistical inference works like this:

1. Conceptualise the problem and isolate a set M of models for consideration.

Typically models are probability functions or can be thought of as probability

functions.1

2. Gather evidence E.

3. Apply statistical methods to evaluate models in M in the light of E. Inferences

and decisions will be made on the basis of a set ME �M of models that are

appropriate given E.

Frequentist statistics instantiates this general pattern as follows:

1. Conceptualise the problem. Isolate a set M of models for consideration. Here M

is a set of candidates for physical probability P�: Frequentist statistics usually

understands physical probability as either limiting relative frequency (von

Mises 1928) or generic propensity (Kolmogorov 1933, §2), defined over

attributes that can be repeatedly instantiated. Thus probability is relative to a set

S which is construed by the limiting-relative-frequency approach as a collective

1 Often—especially when the models in M are indexed by a set of parameters—statisticians use the

singular word ‘model’ to refer to the set M itself. In line with the logicians’ use of the term, in this paper

the word ‘model’ will be reserved for a specific member of M:
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(an infinite sequence of outcomes) and by the propensity approach as a set of

repeatable conditions that would generate a collective.

2. Gather evidence E.

3. Apply statistical methods to evaluate models in M: In this case, inferences and

decisions will be made on the basis of a set ME �M of models that render the

evidence sufficiently likely, assuming the evidence is gathered in an appropriate

way etc. The formal apparatus of frequentist statistical theory says how likely a

model makes the evidence, but it is taken to be a pragmatic question as to

whether the evidence is made sufficiently likely for a model to continue to be

entertained.

On the other hand, Bayesianism is normally thought of as instantiating the

scheme in a very different way:

1. Choose appropriate variables or models, M; and a prior function P defined over

M: P is standardly interpreted as a belief function, representing rational degrees

of belief, and is defined over single cases rather than repeatably instantiatable

outcomes. On a subjective Bayesian account, P is largely a matter of personal

choice, while on an objective Bayesian account P is largely constrained by

evidence and the domain over which P is defined.

2. Gather evidence, ensuring that E is representable as an element e in the domain

of P.

3. Adopt a new belief function P0 ¼ Pð�jeÞ over M (this is Bayesian condition-
alisation). Typically Bayes’ theorem is applied at this stage: P(m|e) =

P(e|m)P(m)/P(e). One then can isolate a set ME of models with sufficiently

high posterior probability P0:

2.2 Incompatible?

From this orthodox perspective, it looks as if the frequentist and Bayesian

approaches are simply incompatible ways of doing statistical inference: they

implement the general statistical scheme in entirely different ways, employing

different concepts and generating different sets E of models that are deemed

appropriate on the basis of the evidence. Hence the standard view is that at most one

of these two paradigms can be correct, and much energy has been directed at

determining which one is correct.

But there is another way of looking at the relationship between the two

approaches. We can ask what question each approach is trying to answer.

Apparently, frequentism asks: how does evidence impact on the set of candidate

physical probability functions? On the other hand, Bayesianism asks: how does

evidence impact on rational degree of belief? Now, rational degree of belief is far

from identical to physical probability: rational degree of belief is normally taken to

be the basis for rational action (degrees of belief are often interpreted in terms of

betting dispositions, for example) while physical probability is a physical quantity,

akin to mass, charge or volume. Hence frequentism is intent on describing agent-

independent features of the world while Bayesianism is intent on deciding how an
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agent should act. Under this perspective, the two approaches do not seem so

incompatible after all.

3 The Epistemological View

This last perspective construes Bayesianism as an epistemological theory at root.

This view of Bayesianism is called Bayesian epistemology and is explored in more

detail in this section.

3.1 Bayesian epistemology

Bayesian epistemology is concerned with the following key question: how strongly

should an agent with evidence E believe the various propositions expressible in her

language L? Here E should be understood as the agent’s total evidence, everything

that is taken for granted in her current operating context: data, assumptions,

theoretical knowledge etc.2 Such evidence need not always be expressible as

propositions of L:
There are various Bayesian answers to this basic question, often based around

one or more of the following three norms. Arguably, an agent’s belief function PE

over L should satisfy:

Probability. PE should be a probability function;

Calibration. PE should satisfy constraints imposed by evidence: in particular, PE

should be calibrated with known physical probabilities where appropriate;

Equivocation. PE should not award extreme degrees of belief (i.e., near 0 or 1)

unless forced to by one of the above two norms: PE should equivocate sufficiently

between the basic possibilities expressible in L:

Those Bayesians who adopt only the Probability norm (typically together with

some rule of updating, such as conditionalisation) are known as strict subjectivists.

(They are subjectivists because the choice of an initial prior belief function is

largely up to the subject in question.)3 Those who adopt both Probability and

Calibration (again, typically with an updating rule) are sometimes called empir-
ically-based subjectivists. Those who adopt all three norms are objectivists—the

choice of belief function is much more highly constrained and correspondingly there

is much less of a role for the subject to determine the belief function. No further

updating rule is required in the case of objective Bayesianism, though updates turn

2 It should be emphasised that such evidence may only be granted defeasibly. If a body of evidence leads

to anomalous consequences, its more questionable elements will be withdrawn from the evidence base as

they become open to criticism and are no longer taken for granted. See Williamson (2010b, §1.4.1) for

further discussion of this notion of evidence.
3 Advocates of imprecise probability reject even the Probability norm, representing a belief function by a

set of probability functions rather than a single probability function. While this sort of view is not

normally classified as Bayesian, some versions of this view admit analogies with Bayesianism (see, e.g.,

Walley 1991).
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out to accord with conditionalisation in those cases in which conditionalisation is a

plausible rule of updating (Williamson 2011b).

Strict subjectivism is a minority view in epistemology. It deems an agent who has

evidence E = {the chance of a particle of type S decaying is .01, particle s is of type

S} yet believes that particle s will decay to degree .99, to be rational. However, most

would deem such an agent to be irrational on the grounds that the evidence points

the other way and warrants much less confidence that the particle will decay.

Calling strict subjectivism a minority view in epistemology is perhaps too

generous—indeed, it is not clear that there are any proponents of strict subjectivism

as an epistemological position. Bruno de Finetti and Colin Howson both advocate

strict subjectivism, arguing that the Probability norm (together with conditional-

isation, on de Finetti’s account) is the only rational constraint on degrees of belief.

However, that is apparently in a logical context—a theory of what it is for an agent’s

degrees of belief to be consistent—rather than an epistemological context, which

requires a theory of what it is for an agent’s degrees of belief to be rational (see, e.g.,

de Finetti 1937; Howson 2001).

Strict subjectivism is more common in statistics. In statistics, the hope is often

that one can do away with an explicit Calibration principle by appealing to strict

subjectivism and adopting a pretend-prior strategy: instead of creating a prior

probability function by calibrating directly to available evidence of physical

probabilities, create a prior under the pretence that this evidence is not available,

and update the pretend prior by conditionalising on the data that gave rise to the

evidence of physical probabilities; the resulting posterior probability function can be

considered to be the genuine prior function given the evidence of physical

probabilities that is actually available. There are several reasons why this strategy is

not a live one from an epistemological point of view. First, as mentioned above,

forsaking an explicit Calibration norm can lead to intuitively inappropriate degrees

of belief, such as degree of belief 0.99 that a particle will decay knowing full well

that the chance of it decaying is 0.01, which is but a short step away from Moore’s

paradox. Second, an explicit Calibration norm admits similar justifications to the

Probability norm (see Sect. 3.2) and it is hard to commit to the latter without

committing to the former. Third, the pretend-prior strategy leads to well calibrated

posteriors only in the asymptotic limit, and only if certain assumptions are

satisfied—e.g., the exchangeability assumption, which holds when the agent’s prior

probabilities do not depend on the order in which outcomes occur. But such

assumptions tend to lack independent normative justification and are certainly not a

rational requirement of strict subjectivism, and hence there is no guarantee that they

will be satisfied. Fourth, one can choose a pretend prior that would yield whatever

genuine prior one wishes after updating on the data, so this strategy offers no

normative constraint on degrees of belief. Fifth, in many cases—such as cases of

testimony—one has evidence of physical probabilities without having access to the

data that generated that evidence (e.g., one might have statistics of the whole sample

rather than individual sample outcomes), and in these cases the pretend-prior

strategy will not normally be implementable. Sixth, this strategy depends on

conditionalisation, but there are several important situations in which one’s updated

degrees of belief should plainly not agree with the results of conditionalisation: e.g.,
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if the evidence E has (pretend) prior probability 0; if learning the evidence E tells

the agent more than simply P(E) = 1; if the evidence E is not expressible in the

agent’s language . This last point is developed in Sect. 7.2.

In sum, under the epistemological perspective, strict subjectivism is on weak

ground. It will not be considered a serious option here.

Objective Bayesianism is also a minority view in epistemology (largely because

the Equivocation norm is hard to justify), though it is more widely endorsed in the

sciences. It is motivated by the consideration that the empirically-based subjectivist

will deem an agent who has evidence E = {the chance of a particle of type S
decaying is in the interval [.01, .99], particle s is of type S} yet believes that particle

s will decay to degree .99, to be rational, while many would deem such an agent to

be irrational on the grounds that the evidence is equivocal and hence fails to endorse

such extreme confidence.

Since the Calibration norm is to be the focus of this paper, our arguments will

apply equally to empirically-based subjective Bayesianism and to objective

Bayesianism and there is no need here to take a stance on which position to adopt.

3.2 An explication

We shall now sketch one way of fleshing out the three norms of Bayesian

epistemology. Nothing much will hang on the particular interpretation of the norms

presented here, but it will be useful to adopt a concrete explication in which to

frame the extended example of Sect. 4. The full details of the approach given here

can be found in Williamson (2010b).

The simplest case is perhaps that in which L is a finite propositional language on

propositional variables A1; . . .;An with sentences SL formed by applying the usual

connectives :;_;^;!;$ : In that case the three norms can be explicated as follows:

Probability. PE should be a probability function:

P1: PE(x) C 0 for each x 2 X ¼ f�A1 ^ � � � ^ �Ang;
P2: PE(s) = 1 for some tautology s 2 SL; and

P3: PE(h) =
P

x � h PE(x) for each h 2 SL:

The justification of this norm usually appeals to the Dutch book argument: if an

agent bets according to her degrees of belief and the norm is not satisfied, then these

betting commitments can be (and in the worst case, will be) exploited to force her to

lose money whatever happens (i.e., to force positive expected loss); on the other

hand, if the norm is satisfied then it is not possible to exploit the agent and worst-

case expected loss is zero. Thus the norm should hold in order to minimise worst-

case expected loss.

Calibration. PE should be compatible with evidence,

C1: PE 2 E ¼ hP�Li \ S:

Here P
� is a set of candidate physical probability functions: according to the agent’s

evidence, the physical probability function P� lies in P
�:P�L is the specialisation of

the information that P� 2 P
� to L: As to how P

�
L is to be understood depends on how
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physical probability itself is understood. On the one hand, if physical probability is

thought of as defined over single cases (P� is single-case chance, applying to events

such as the next throw of a particular die) then one can define P
�
L to be the

restriction of the set P� of potential chance functions to L : P 2 P
�
L if and only if P

is defined on L and P is not inconsistent with every probability function in P
�; in the

sense that it is not the case that there is some sentence h of L such that PðhÞ 6¼ QðhÞ
for every function Q in P

�: (Note that this allows for the possibility that not all the

propositions expressible in L need have determinate physical probabilities, i.e., that

P�ðhÞ may not be defined for each sentence h of L:) On the other hand, if physical

probability is thought of as defined over repeatably instantiatable outcomes (P� is

generic propensity or frequency, applying to outcomes such as an arbitrary throw of

a particular die), it must first be specialised to the single case in order to isolate a set

P
� of functions defined on L: The infamous reference class problem must be tackled

at this stage, i.e., one must decide which items of evidence about the generic

physical probabilities should be considered when determining single case proba-

bilities P�L; this task is unavoidable if single-case probabilities (degrees of belief) are

to be calibrated with generic probabilities (propensities or frequencies). As

explained in Sect. 7, the theory of evidential probability offers one possible

protocol for tackling this problem.

h�i is the convex hull operator: if two probability functions P and Q are in hP�Li
then so are any functions on the line segment from P to Q: S is a set of structural
constraints—while in many cases evidence constrains an agent’s degrees of belief

by telling her about physical probabilities, in other cases evidence can constrain

degrees of belief in ways not mediated by physical probabilities, and S is intended to

capture those latter constraints. For the purposes of this paper there is no need to

discuss S further, as we will not be considering any structural constraints—see

Williamson (2010b, §3.3) for more details.

Betting according to physical probabilities is also justifiable in terms of minimising

worst-case expected loss. Suppose evidence says that the physical probability of

h 2 SL is x;P�ðhÞ ¼ x; and that the agent bets according to PE(h) = q. Such a bet is

interpreted as a payment of qS for a return of S if h turns out to be true, where stake S is

chosen by a stake-maker and can be positive or negative. Expected loss is then x(q -

1)S ? (1 - x)qS = (q - x)S. If q [ x then a stake-maker can (in the worst case, will)

choose S [ 0 to ensure that the expected loss is positive. Similarly if q \ x and S is

chosen to be negative. Only if q = x is this kind of exploitation of betting

commitments not possible. More generally, if E determines someP�L then exploitation

is only possible if PE lies outside the convex hull hP�Li:
The Calibration norm is a generalisation of what is sometimes called the

Principal Principle, which says that if one knows that the chance of h is x, one

should set one’s degree of belief in h to be x, as long as there isn’t any

‘inadmissible’ evidence that renders such an assignment inappropriate.4 The

4 Miller’s Principle is a similar principle of direct inference. Lewis (1980) put forward his Principal

Principle in order to help elucidate the notion of physical probability for subjectivists, though he

advocated an independent ‘best-system’ analysis of physical probability understood as single-case

chance—see Sect. 7.2 on this point.
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Principal Principle applies to evidence of individual physical probabilities, while the

Calibration norm as formulated above handles evidence of arbitrary constraints on

physical probabilities.

Equivocation. PE should otherwise equivocate sufficiently between the basic

possibilities expressible in L:

E1: PE should be sufficiently close to equivocator function P= defined by

P=(x) = 1/2n for each state x of the form �A1 ^ � � � ^ �An:

Distance between probability functions is measured by Kullback-Leibler
divergence (KL-divergence), d(P, Q) =

P
x P(x) log P(x)/Q(x). (In fact, P

is closer to the equivocator than Q in terms of KL-divergence just if P has

greater entropy than Q, H(P) [ H(Q) where H(P) = -
P

x P(x) log P(x)). As

to what will count as sufficiently close to the equivocator will depend on pragmatic

considerations such as the required numerical accuracy of probabilistic predictions.

The Equivocation norm can also be justified by an appeal to minimising worst-

case expected loss (Williamson 2010a). Let L(x, Q) be the loss the agent incurs by

choosing Q as her belief function if x turns out to be the true state of the world. The

expected loss is L(P, Q) =
P

x P(x)L(x, Q). It turns out that, under natural

conditions, the belief function Q that minimises worst-case expected loss (i.e., that

minimises the maximum expected loss when P ranges over some set E of

probability functions compatible with evidence) is the belief function in E that is

closest to the equivocator, where the divergence function in question is defined in

terms of the loss function (Grünwald and Dawid 2004). Now, in the absence of any

specific information about the loss function, one can argue that L should be taken to

be logarithmic loss, L(x, Q) = -log Q(x), since logarithmic loss is the only loss

function that satisfies a list of natural desiderata that one might posit of a default loss

function (Williamson 2010a, pp. 133–134). In which case the corresponding

divergence function turns out to be KL-divergence, and the Equivocation norm, as

formulated above, should hold.

In sum, each of the above three norms can be motivated by the following sort of

argument. Degrees of belief are used to determine action. Prudent action demands

taking steps to minimise worst-case expected loss. But minimising worst-case

expected loss demands satisfying the norm. Hence degrees of belief should satisfy

the norm in question.5

The key point to note for the purposes of this paper concerns the Calibration

norm. The Calibration norm requires that PE 2 E ¼ hP�Li \ S; where P
� is the set of

physical probability functions that are compatible with the agent’s evidence E. But

it is prima facie plausible that frequentist statistics, which seeks to determine how

5 Here one should not necessarily think of loss in financial terms. One might suspect that there are times

at which one doesn’t care about being financially prudent. For example, betting in a casino might be

considered exciting but not financially prudent. In which case one might wonder whether the norms only

hold in those cases in which one wishes to be prudent. But prudence is not to be identified with financial

prudence: given that one wants excitement it can be prudent to go to a casino—financial losses are

outweighed by a lack of excitement. Arguably it is a matter of fact that an ideal action is a prudent action,

in the sense of an action that minimises worst-case expected loss, regardless of whether one cares about

financial loss.
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evidence narrows down the set of candidate physical probability functions, is the

natural method to appeal to in order to determine P
�:

In Sect. 2 we concluded with the thought that perhaps frequentism and

Bayesianism are not incompatible after all, because they have different goals: the

former concerns itself with physical probability while the latter with epistemolog-

ical probability, i.e., strength of belief. Now it appears that the connection may be

somewhat stronger still. Bayesian epistemology, which seeks to use evidence to

determine epistemological probability, may need to appeal to frequentist statistics,

which seeks to use evidence to determine physical probability. In the next section

we shall endeavour to make this connection more precise.

4 Frequentist Statistics for Calibration

4.1 Recap

In Sect. 2 we encountered the three-step view of statistical inference as (1)

determining a set M of models, (2) gathering evidence E; and (3) isolating a subset

ME of models that are appropriate given the evidence. The standard view of the way

in which Bayesianism instantiates this scheme pitches Bayesianism as being

incompatible with frequentism. But Bayesianism can be thought of as primarily an

epistemological theory, based on the norms of Probability, Calibration and

Equivocation, and under that perspective it appears that frequentist methods are

required in order to implement the Calibration norm (Sect. 3). In which case

Bayesianism (in its empirically-based or objective variants) is best represented as

instantiating the three-stage scheme as follows:

1. Let M be the set of probability functions defined over sentence of the agent’s

language L:
2. Gather evidence E and isolate a set E ¼ hP�Li \ S; where P

� is the set of

candidate physical probability functions, given E. This is the stage at which it is

natural to apply frequentist methods.

3. The set of belief functions that should be used as a basis for action is ME � E:
Empirically-based Bayesians would say that ME ¼ E while objective Baye-

sians would select only members of E that are sufficiently equivocal.

This scheme is clearly not incompatible with frequentist methods.

4.2 Extended example

This brief sketch can be fleshed out by means of a simple example.6

6 Depending one’s conception of physical probability, one might hesitate as to whether physical

probabilities attach to the macroscopic events of this example. The reader should feel free to reinterpret

the terms of this example so as to be comfortable that the relevant physical probabilities are all well

defined.

Why Frequentists and Bayesians Need Each Other 301

123



4.2.1 Initial evidence

An agent is sampling 100 vehicles at a road T-junction with a view to predicting

whether the 101st vehicle will turn left or right. We shall suppose that L is a

language with a predicate L for turns left (turns right corresponds to :LÞ; with 101

constant symbols v1; . . .; v101 for the vehicles in the order in which they are

observed, and with the wherewithal to express claims about physical probability P�:
(To keep the example in line with frequentist methods, we shall suppose that

physical probability is generic—i.e., defined over repeatably instantiatable

outcomes rather than over single cases—and is defined relative to a set of

repeatable conditions or a reference class S, which we will occasionally make

explicit by adding a subscript S to the relevant variable.) The agent goes ahead and

observes v1; . . .; v100 and finds that 41 of them turn left. The sample does not

indicate any dependence of an outcome on the past sequence of outcomes, and the

agent is prepared to grant that the outcomes are independent and identically

distributed (iid). Since the agent grants the sample and the iid claim, this constitutes

the agent’s evidence base E.7

4.2.2 Step 1. Determine a threshold of acceptance

First assume that s 0 is the minimum degree to which the agent would need to

believe a statement of the form P�ðLÞ 2 I for her to grant it in her current operating

context.8 s0 can be thought of as a threshold of acceptance, and, where utilities are

available, they can be used to determine the threshold as follows. Consider a utility

table of the form:

h :h

Grant h S1 E2

Don’t grant h E1 S2

Here S1 is the utility of granting h when it is true; E1 is the utility of a type 1

error, i.e., of not granting h when h is true; E2 is the utility of a type 2 error, i.e., of

granting h when it is false; and S2 is the utility of not granting h when h is false.

Arguably, one should grant h iff the expected utility of granting h outweighs that of

not granting h, i.e., iff

PðhÞS1 þ ð1� PðhÞÞE2�PðhÞE1 þ ð1� PðhÞÞS2;

i.e., iff

7 Recall that, in the approach to Bayesian epistemology presented in Sect. 3.1, the agent’s evidence base

includes everything she takes for granted in her current context of inquiry. This includes standard

modelling assumptions such as the iid assumption. Such assumptions are retracted from her evidence base

if they are no longer granted—e.g., if they are called into question by subsequent evidence.
8 This assumption will be qualified somewhat in Sect. 6.
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PðhÞ� S2 � E2

S1 þ S2 � E1 � E2

:

Presumably S1 C E1 and S2 C E2, so this threshold lies within the unit interval. For

instance, for the utility matrix

P�ðLÞ 2 I P�ðLÞ 62 I

Grant P�ðLÞ 2 I 1 -5

Don’t grant P�ðLÞ 2 I -1 1

the threshold of acceptance s0 is 6/8 = .75.

4.2.3 Step 2. Determine a confidence interval

Given s0, one can then use frequentist confidence-interval methods as above to

determine a confidence interval Ið �X; s0Þ such that P�ðP�ðLÞ 2 Ið �X; s0ÞÞ 	 s0; as we

shall now explain.

Classical frequentist estimation methods routinely yield assertions of the form

P�ðj �X � P�ðLÞj 
 dÞ 	 s: This says that in the limit, in roughly 100s% of samples,

the proportion �X of vehicles turning left in the sample will be within d of the

physical probability of vehicles at the junction turning left (L). (Note that �X ¼ �XS is

taken to vary over samples within some reference class S and similarly L = LV

varies over the reference class V of vehicles at the junction in question.) Such an

assertion might result from taking L to be binomially distributed and
�X�Nðp; pð1� pÞ=nÞ : the Central Limit Theorem implies that the distribution of
�X is approximately normal with mean p and standard deviation p(1 - p)/n, where

p ¼ P�ðLÞ and n is the sample size (100 in this case). Thus P�ð �X
 rÞ 	 Uððr �
pÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p
Þ where U is the standard normal distribution function: in our

example, if p = .5 then P�ð �X
 :41Þ 	 Uð�:09=:05Þ ¼ 0:0359:
Then,

P�ðj �X � pj 
 dÞ 	 U
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p

 !

� U
�d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p

 !

¼ 2U
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p

 !

� 1 ¼ s

say. Thus s can be construed as a function of d. On the other hand—and more

importantly for our analysis—d can be construed as a function of s : given s one can

choose d ¼ U�1ð1=2þ s=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p
so that P�ðj �X � pj 
 dÞ 	 s: Equiva-

lently, P�ðp 2 ½ �X � d; �X þ d�Þ 	 s: The interval ½ �X � d; �X þ d� is called a 100s%

confidence interval for p; note that �X is a variable (the sample frequency varies from

sample to sample) while p is a constant. The ultimate aim is to instantiate �X to its
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value �Xs in a particular sample s in class S, and thereby use the confidence interval

to provide practical bounds on the unknown p. As yet this is not possible, because d
depends on p and hence is also unknown. But the following procedure is often used

to provide an identifiable confidence interval for p. Let k ¼df
U�1ð1=2þ s=2Þ: Now,

j �X � pj 
 d if and only if

j �X � pj 
 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r

:

Squaring both sides,

�X2 � 2 �Xpþ p2
 k2p

n
� k2p2

n
;

i.e., as a quadratic in p,

1þ k2

n

� �

p2 � 2 �X þ k2

2n

� �

pþ �X2
 0:

This inequality holds when p is between the two zeros of this quadratic, i.e., when p
is in the interval

�X þ k2=2n� k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Xð1� �XÞ=nþ k2=4n2

p

1þ k2=n
;

�X þ k2=2nþ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Xð1� �XÞ=nþ k2=4n2

p

1þ k2=n

" #

;

an identifiable confidence interval for p. We shall use Ið �X; sÞ to refer to this interval.

In sum, we can apply frequentist methods at this step to infer that P�ðp 2
Ið �X; s0ÞÞ 	 s0; i.e., P�ðP�ðLÞ 2 Ið �X; s0ÞÞ 	 s0: Note that all probabilities remain

generic at this step, since L and �X are generic (repeatably instantiatable) variables.

As yet, there has been no application to the single-case sample of our example.

4.2.4 Step 3. Calibrate

Now, if all that is known about the specific sample s in question is that it is a sample

of type S and that P�ðP�ðLÞ 2 Ið �X; s0ÞÞ 	 s0 for samples of type S, then the

Calibration norm arguably implies that PEðP�ðLÞ 2 Ið �Xs; s0ÞÞ ¼ s0; i.e., that the

agent should believe to degree s0 that the physical probability of turning left lies

within the confidence interval induced by this specific sample.9 For example, if

s0 = .75 then P�ðP�ðLÞ 2 Ið �X; s0ÞÞ 	 s0 says that in about 75% of samples t 2 S;

9 Note that this inference is only appropriate in cases where Ið �Xs; s0Þ � ½0; 1�: Other cases may warrant

higher credence in the claim that P�ðLÞ 2 Ið �Xs; s0Þ; see Seidenfeld (1979, Chapter 2) and Mayo (1981,

§2) on this point. Expressed in the framework of Sect. 3.2, if Ið �Xs; s0ÞÞ 6� ½0; 1� then the single-case

consequences P�L of the physical probability information P
� do not just depend on the explicit information

that P�ðP�ðLÞ 2 Ið �X; s0ÞÞ 	 s0; but also on the further information that P�ðP�ðLÞ 2 Ið �X; s0ÞÞ 2 ½0; 1�: In

general, any application of the Calibration norm must respect the single-case consequences of the total
evidence, not just of the information that P�ðP�ðLÞ 2 Ið �X; s0ÞÞ 	 s0: To put it another way, the after-trial
evidence differs from the pre-trial evidence, and the fact that �Xs ¼ :41 may not only be pertinent with

regard to the construction of the interval I(.41, s0), but also in other regards (Hacking 1965, pp. 95–96).
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the interval Ið �Xt; :75Þ bounds the physical probability of turning left; the agent

knows just that s 2 S; hence she should believe to degree .75 that the interval

Ið �Xs; :75Þ bounds the physical probability of turning left. If 41 cars turn left in

sample s; �Xs ¼ :41 and the agent should believe to degree .75 that the interval

Ið �Xs; :75Þ ¼ ½:355; :467� bounds the physical probability of turning left.

4.2.5 Step 4. Accept

Since s0 is the acceptance threshold for statements of the form P�ðLÞ 2 I and the

agent believes to degree s0 that P�ðLÞ 2 Ið �Xs; s0Þ; the agent should go on to grant

that P�ðLÞ 2 Ið �Xs; s0Þ: Let E0 be her new evidence base after granting this.

4.2.6 Step 5. Recalibrate

Now, if all that is granted about v101 is that it is of type V, i.e., a vehicle at the same

junction, and that P�ðLÞ 2 Ið �Xs; s0Þ for vehicles of type V, then the Calibration norm

arguably implies that PE0 ðLv101Þ 2 Ið �Xs; s0Þ: Hence the agent should believe that the

next vehicle will turn left to some degree within the confidence interval Ið �Xs; s0Þ: In

our example, the agent grants that P�ðLÞ 2 ½:355; :467�; i.e., that the proportion of

vehicles at the junction that turn left is in the interval [.355, .467], and knows only

that vehicle 101 is a vehicle at the junction, so her degree of belief that vehicle 101

turns left should be within the interval [.355, .467].

While the empirically-based subjective Bayesian would stop here, the objective

Bayesian would proceed to the following step.

4.2.7 Step 6. Equivocate

Finally, the Equivocation norm says that the agent should believe that the next

vehicle will turn left to some degree within the interval that is sufficiently equivocal:

PE0 ðLv101Þ should lie within the interval and should be sufficiently close to P=(L
v101) = 1/2, where, as before, P= signifies the equivocator function. In our example,

since 1/2 [ .467, the agent should believe that vehicle 101 turns left to degree .467

or thereabouts.

5 Is This Application of Confidence Intervals Legitimate?

5.1 Confidence intervals as functions

We see then that confidence-interval methods form a core part of Step 2 of this

analysis. Note though, that the confidence-interval methods applied at Step 2 are

uncontentious, because they are a straightforward consequence of the probability

axioms: the Central Limit Theorem is a theorem of the probability calculus, and the

assertion that P�ðP�ðLÞ 2 Ið �X; sÞÞ 	 s simply follows from the resulting normal

approximation to the binomial distribution. At Step 2, this assertion remains
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generic, applying to samples in general—it has not been specialised to the single-

case sample in question. This application comes at Step 3, which is cast in a

Bayesian rather than frequentist way. It is thus not until Step 3 that a concrete

interval is actually isolated and it is asserted that the agent should be confident that

P�ðLÞ lies within this interval.

Howson and Urbach (1989, pp. 240–241) object to an analogous Bayesian

casting of confidence-interval methods. While they object to a different formulation

of the Calibration norm—namely the Principal Principle—being used to apportion

confidence from a confidence interval, their objection does not in fact hinge on the

particular way in which the Calibration norm is formulated. In our framework, their

objection proceeds as follows: P�ðP�ðLÞ 2 Ið �X; sÞÞ 	 s does not license the

inference to PEðP�ðLÞ 2 Ið �Xs; s0ÞÞ ¼ s; because Ið �X; s0Þ is not an interval of

numbers, but rather a function of possible experimental outcomes (a function

mapping �X to an interval of numbers).

But this objection cannot be right: by necessity, any application of the

Calibration norm in which physical probabilities are construed as generic rather than

single-case must draw inferences from a function of possible experimental

outcomes. Thus a Calibration norm must move from a statement of the form

P�ðhðxÞÞ 2 Y ; where h(x) is repeatedly instantiatable (a function mapping substi-

tutions of x to propositions), to a statement of the form PEðhðsÞÞ 2 Y ; where h(s) is

single-case (the result of substituting s for x to yield a proposition). For example, an

inference from a physical probability of .7 of surviving 5 years after diagnosis with

prostate cancer to a degree of belief of .7 that Bob will survive 5 years after

diagnosis with prostate cancer is an inference from the probability of a propositional

function (x will survive 5 years after diagnosis with prostate cancer) to the

probability of a proposition (Bob will survive 5 years after diagnosis with prostate

cancer). So the fact that Ið �X; sÞ is a function cannot be problematic in itself..

5.2 Two analogies

Howson and Urbach draw the following analogy:

For example, the physical probability of getting a number of heads greater

than 5 in 20 throws of a fair coin is 0.86 . . . That is, P�ðK [ 5Þ ¼ 0:86; where

K is the number of heads obtained. According to the Principal Principle,

P½ðK [ 5Þt j P�ðK [ 5Þ ¼ 0:86� ¼ 0:86; so 0.86 is also the confidence that

you should place in any particular trial of 20 throws of a fair coin producing a

number of heads greater than 5.

Suppose a trial is made and 2 heads are found in a series of 20 throws with a

coin that is known to be fair. To infer that we should now be 86 per cent

confident that 2 is greater than 5 would be absurd and a misapplication of the

Principal Principle. If one could substitute numbers for K in the Principle, it

would be hard to see why the substitution should be restricted to the term’s

first occurrence. But no such substitution is allowed. For the Principal

Principle does not assert a general rule for each number K from 0 to 20; the K-

term is not in fact a number, it is a function which takes different values
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depending on the outcome of the underlying experiment. (Howson and Urbach

1989, p. 240)

There are two problems with their example. First, it is misleading: the

problem is chiefly to do with changing information rather than with illegitimate

substitution. Before the trial t takes place it is indeed reasonable to believe that

(K [ 5)t to degree 0.86—just as at one time it was reasonable to believe that the

number of the planets in our solar system is less than 8—because the number of

heads K at trial t is unknown. The problem arises because, after the fact, it is

known that the number of heads at trial t is 2. This is clearly information, more

pertinent than the previous probabilistic information, that thwarts any inference

to the claim that one ought to believe that (K [ 5)t to degree 0.86. On Lewis’

formulation of the Principal Principle, the chance is now 0 that (K [ 5)t, and so

one must apply the Principal Principle to this new chance and believe to degree

0 that 2 [ 5. But there are other formulations of the Principal Principle (see, e.g.,

Hoefer 2007), and one might instead deem the new information to be

inadmissible information which prevents any application of the Principal

Principle at all.

The point is that the new information blocks the previous application of the

Principal Principle because it provides more pertinent information about the number

of heads at trial t, not because of any concerns about whether the K-term is a

number. Howson and Urbach are right that the K-term (the number of heads at trial

t) is not a number, since it is a definite description rather than a number. But the K-

term must pick out a number, for otherwise the previous application of the Principal

Principle would not be legitimate: it makes no sense to ask whether K [ 5 at trial t if

K is not instantiated as a number at trial t. So Howson and Urbach misdiagnose their

own example as being one of substitution failure rather than one of gaining more

pertinent knowledge.10

The second problem with Howson and Urbach’s example is that it is not

closely analogous to the confidence interval case, since the constant term, 5, is

known from the start. The inference we are interested in is from a statement of the

form P�ðp 2 Ið �X; sÞÞ 	 s to a statement of the form PEðp 2 Ið �Xs; sÞÞ ¼ s where p
(which does not vary from trial to trial) is unknown. Here, then, is a closer analogy:

the move from the claim that, three times out of four, Paul’s height (Hp, which is

unknown) is greater than that of a randomly selected male of the same species,

P�ðHp [ HÞ ¼ :75; to the claim that one ought to believe to degree .75 that Paul’s

height is greater than that of the next sampled male, who was Steve, and who turned

out to be 20 cm high, PE(Hp [ 20) = .75 where Hs = 20, in the absence of any

other pertinent evidence about male heights of that species (the species is not

revealed, say). But this is a harmless application of a calibration principle such as

the Principal Principle or the Calibration norm C1 of Sect. 3. Suppose that it is

known that, three times out of four, sampled males of the species are shorter than

10 Howson and Urbach are quite right, however, to emphasise that one must guard against substitution

failure, as their rebuttal of Miller’s paradox does hinge on substitution failure (Howson and Urbach 1989,

§15.e).
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Paul, P�ðHp [ HÞ ¼ :75; and that it is known that Steve has been randomly

sampled, but Steve’s height has not yet been obtained. Then surely it is reasonable

to believe that Steve is shorter than Paul, Hp [ Hs, to degree .75. This is a routine

application of the Principal Principle. Note that neither Hs nor Hp are known at this

stage. Then Steve’s height is measured and it is learnt that Hs = 20. In the absence

of any general knowledge of heights of males of this species, this new knowledge

hardly provides any grounds for moving away from degree of belief .75 that

Hp [ Hs. But if one knows that Hs = 20 and one believes to degree .75 that

Hp [ Hs then one ought to believe to degree .75 that Hp [ 20, i.e., that Paul’s

height is greater than 20 cm. Analogously, in our example the agent ought to

believe to degree .75 that p 2 ½:355; :467�:
In sum, any application of a Calibration norm that appeals to generic probability

must draw inferences from propositional functions to propositions. The inference of

Step 3 is of just this form and is neither fallacious nor analogous to an inference to

the claim that 2 [ 5. In fact it is closely analogous to uncontroversially benign

applications of the Calibration norm.

6 Is the Acceptance Assumption Legitimate?

6.1 Narrowest intervals

While the procedure spelt out in Sect. 4 survives Howson and Urbach’s objection, it

does need to be qualified in order to avoid a more telling objection. As it stands,

there is a certain arbitrariness to the above procedure. There are other intervals

I0ð �X; sÞ such that P�ðP�ðLÞ 2 I0ð �X; sÞÞ 	 s; and the results of the procedure will

depend on the chosen interval.

Consider for example the analysis of Step 2, but reapplied to a one-sided

confidence interval. Now,

P�ð �X� p� dÞ 	 1� U
�d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p

 !

¼ U
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p

 !

¼ s

say. Conversely, given s one can choose d ¼ U�1ðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p
so that

P�ð �X� p� dÞ 	 s: Equivalently, P�ðp 2 ½0; �X þ d�Þ 	 s: The same procedure as

before can be used to yield an identifiable confidence interval: letting k ¼df

U�1ðsÞ;P�ð �X� p� dÞ if and only if p is in the interval

0;
�X þ k2=2nþ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Xð1� �XÞ=nþ k2=4n2

p

1þ k2=n

" #

;

which we shall call I0ð �X; sÞ: If s0 = .75 then I0ð �Xs; s0Þ ¼ ½0; :444�: If this interval

had been chosen instead of Ið �Xs; s0Þ then the empirically-based subjective Bayesian

would have required that PE0 ðLv101Þ 2 ½0; :444� instead of [.353, .467], while the
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objective Bayesian would have required that PE0 ðLv101Þ ¼ :444 instead of .467.

Clearly something is wrong if the same procedure yields inconsistent results.

But what went wrong? One must point the finger at the starting-point of the

analysis—the assumption that there is a threshold degree of belief s0 above which

the agent should grant any statement of the form P�ðLÞ 2 I: Given s0 there may be

various sets I for which the agent believes that P�ðLÞ 2 I to this threshold degree of

belief. Indeed this family of sets will normally have empty intersection, and so—if

the assumption were true—the agent would be forced to believe that P�ðLÞ is no

number at all. Clearly, then, the assumption must be rejected.

Can the procedure be fixed? A standard way round this sort of problem is to

restrict the assumption by supposing instead that there is a threshold degree of belief

s0 above which the agent should grant P�ðLÞ 2 I where I is the narrowest interval

which meets this threshold (see, e.g., Kyburg Jr and Teng 2001, §11.5). Note that we

have already been employing this principle to some extent, since Step 4 accepts

P�ðLÞ 2 Ið �Xs; s0Þ for interval Ið �Xs; s0Þ at the threshold, but ignores all those

intervals Ið �Xs; sÞ for s[ s0; these latter intervals are all wider than the former.

6.2 Why the narrowest interval?

Why would the agent be better off with narrowest interval? Simply because the

intervals in question are being used for estimation here, and the narrower the

interval, the more informative it is about the physical probability being estimated.

Recall that the problem the Bayesian faces is that of Calibrating prior probabilities

to evidence of physical probabilities. These physical probabilities must be estimated

somehow. To the extent that the agent’s evidence determines several confidence

intervals for some physical probability, some wider than others, she should focus on

the narrowest such interval because that interval will convey the most information

about the physical probability in question.

Of course, the new assumption will clearly not be appropriate where there is no

narrowest interval: suppose a coin is known to be biased but the direction of the bias

is not known, and s0 = 0.5; then P�ðHÞ 2 ð:5; 1� and P�ðHÞ 2 ½0; :5Þ should both be

believed to the threshold degree of belief, but granting both would force one to hold

that P�ðHÞ 2 ;:
Moreover, the narrowest confidence interval will typically be the interval ½ �X �

d; �X þ d� that is symmetric about the sample proportion �X; as discussed in Sect. 4,

this interval is not identifiable because d is defined in terms of p, the unknown

quantity that is being estimated. The agent can hardly grant the narrowest interval

estimate if the narrowest interval is unknowable. The best the agent can do is grant

the narrowest interval estimate from all those interval estimates that she can
formulate.

In sum, we can modify the acceptance assumption by supposing that there is a

threshold degree of belief s0 above which the agent should grant P�ðLÞ 2 I; in

those cases in which the agent knows of no other interval I0 that is at least as

narrow as I and for which her degree of belief in P�ðLÞ 2 I0 also meets the

threshold s0.
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7 Discussion

7.1 Summary

This paper has argued that one should not view frequentism and Bayesianism as

chalk and cheese; rather, their relationship should be one of harmonious symbiosis.

One particular way in which the two positions can be integrated proceeds along the

following lines:

Step 1. Let s0 be the minimum degree to which the agent would need to believe a

statement of the form P�ðLÞ 2 I for her to grant it. Here I is an interval,

and it is understood that, if more than one such statement reaches the

threshold degree of belief, the agent will only grant the statement

involving the narrowest interval (if there is precisely one narrowest

interval).

Step 2. Given s0, find a confidence interval Ið �X; s0Þ such that P�ðP�ðLÞ 2
Ið �X; s0ÞÞ 	 s0:

Step 3. The Calibration norm implies that PEðP�ðLÞ 2 Ið �Xs; s0ÞÞ ¼ s0:

Step 4. The agent should grant that P�ðLÞ 2 Ið �Xs; s0Þ:
Step 5. The Calibration norm implies that PE0 ðLv101Þ 2 Ið �Xs; s0Þ:
Step 6. The Equivocation norm implies that PE0 ðLv101Þ should lie within the

interval and should be sufficiently close to P=(L v101) = 1/2.

This last step applies to an objective Bayesian account but not to an empirically-

based subjective Bayesian account.

Regardless of whether the details of this specific integration are accepted, the

following two general points can be made.

7.2 The Bayesian needs the Frequentist

Standard forms of Bayesianism invoke a calibration principle along the lines of the

Principal Principle or the Calibration norm C1 of Sect. 3. The idea here is that, in

cases where the agent has evidence of physical probabilities, she would be irrational

if she did not bet according to those physical probabilities (at least in situations

where the reference class problem is resolvable). But such a principle presupposes

that (1) physical probabilities can be known, at least approximately, and (2) that

they are obtained before the prior belief function is set, i.e., they can be estimated

independently of the agent’s prior belief function. This second presupposition rules

out subjectivist Bayesian methods for estimating physical probabilities by updating

the prior belief function in the light of individual items of sample data, since the

prior has not yet been determined.11 The only plausible remaining estimation

methods are frequentist estimation methods. Hence the Bayesian needs to employ

frequentist estimation methods in order to calibrate with physical probabilities.

11 Jaynes (1976, §IIIa) maintains that Bayesian interval estimates with respect to a uniform prior are

close to, but slightly narrower than, frequentist confidence intervals.
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There are various possible ways in which one might try to undermine this

argument. First, one might be sceptical of the existence of physical probabilities. De

Finetti himself famously claimed that ‘probability does not exist’ (de Finetti 1970,

p. x). This is not the place for a general defence of physical probabilities—suffice it

to say that even the sceptic can accept that one ought to calibrate one’s degrees of

belief with sample frequencies, especially where the sample contains plentiful, good

quality data.12

Second, one might be sceptical as to whether one really should calibrate degrees

of belief with physical probabilities. Again, a sustained defence of the Calibration

norm is beyond the scope of this paper—see Williamson (2010b, §3.3) for a fuller

discussion. But, as pointed out in Sect. 3, a defence can be given in terms of

minimising worst-case expected loss. If one were to reject this defence, one would

also have to rescind the standard Dutch book argument for the Probability norm,

which is itself essentially a justification in terms of minimising worst-case expected

loss. (And it is argued in Williamson 2010b, §§3.1–3.2 that other ways of justifying

the Probability norm are far less compelling.)

Third, one might be sceptical of whether frequentist estimation methods are

appropriate methods for estimating physical probabilities. But, as emphasised

above, the frequentist confidence-interval methods of Step 2 are totally unconten-

tious. The contentious step is Step 3, which turns out to be a routine application of

the Principal Principle or the Calibration norm. So the Bayesian seeking to calibrate

degrees of belief with physical probabilities cannot deny that confidence-interval

methods are an appropriate way of estimating physical probabilities.

Fourth, one might have a particular view of physical probabilities which fits more

naturally with Bayesian methods. For example, under the Ramsey-Lewis best-
system view (Ramsey 1928; Lewis 1994), facts about physical probabilities are

determined by the best systematisation of reality—the deductive system, from all

those that yield true conclusions about fundamental matters of fact, that offers the

best balance between simplicity, strength and fit. Now a calibration principle such as

the Principal Principle would require roughly that, for all possible systemisations

S, one ought to set one’s degrees of belief, conditional S being the best

systematisation, to what S says the physical probabilities are. In order to determine

a prior function over the agent’s language L; one then needs, for each S, to award

some prior probability to the claim that S is the best systematisation. This is clearly

a Bayesian resolution to the task at hand: there is no use of frequentist methods here.

However, while this kind or move might be natural for someone who is interested

in the Principal Principle insofar as it elucidates the metaphysics of probability, it

faces difficulties in the present, epistemological context. This move translates the

problem of setting a prior over L into the problem of setting a prior over claims of

the form ‘S offers the best balance between simplicity, strength and fit’, for all

possible systematisations S of all fundamental matters of fact. From the point of

view of Bayesian epistemology this is unsatisfactory because it replaces an intuitive

12 In this paper, the term ‘physical probability’, rather than the more common term ‘objective

probability’, is used to refer to non-epistemic probability, in order to avoid confusion in the case of

objective Bayesianism, which is objective in the sense that it admits little room for subjective choice, but

which cannot be classified as objective in the non-epistemic sense.

Why Frequentists and Bayesians Need Each Other 311

123



problem, about which there is substantial agreement even if some aspects are

contentious, with a much larger and less tractable problem, about which there are

few firm intuitions. One might suggest that one ought to adopt a uniform prior over

the systematisation partition, i.e., over the partition of claims of the form ‘S offers

the best balance between simplicity, strength and fit’. But such a suggestion is not

applicable to the case at hand: while it might be appropriate in the total absence of

evidence, here we concerned with the question of how one should best calibrate

given evidence E which offers substantial information about physical probabilities.

While there might be some dispute as to whether frequentist interval estimates

should explicate this substantial information, it is much more straightforward to

determine the consequences of this evidence over L than over the systematisation

partition.

In response, the proponent of this sort of move might say something like this: a

prior in the presence of evidence E should match the posterior that would be formed

by updating the ‘pretend’ prior that one would have adopted in the total absence of

evidence, by Bayesian conditionalisation on E. Thus one might update a uniform

prior ever the systematisation partition. Some general problems with this pretend-

prior strategy were discussed in Sect. 3.1, one of which is particularly pertinent here.

This strategy can fail from a practical point of view, since E need not be expressible

in the agent’s language L; in which case the relevant conditional probabilities are

undefined and conditionalisation is simply not possible. One might suggest then,

that one should expand the domain of the belief function to include not only L and

the systematisation partition but also all possible sets of evidence E, so that the

relevant conditional probabilities can be defined. But the prior over this new domain

should not be uniform if some sets of evidence are to favour some systematisations

more than others, since the uniform equivocator function P= renders logically

independent propositions probabilistically independent (Williamson 2011a). Since

all possible evidence sets are under consideration, the problem of determining an

appropriate prior over the new domain in the total absence of evidence is harder if

anything than the problem of determining a prior over the systematisation

partition.13 Hence the epistemological difficulties remain for the advocate of the

best-system view of physical probabilities.

7.3 The frequentist needs the Bayesian

The second general point that can be made is this. Frequentist confidence-interval

estimation methods are used to estimate unknown constants—e.g., the true value of

a parameter of a parameterised set of probability functions. Thus the standard line in

statistics text books is this:

With the realisation that a particular value of an estimator T, called a point

estimate, is almost surely wrong, it is natural to want to indicate the degree of

13 Efforts have been directed at resolving this sort of problem in the area of machine learning—e.g.,

stemming from the ideas of Solomonoff (1964). However, these efforts have been primarily directed at

the more restricted problem of balancing simplicity and fit, and even there, nothing approaching

consensus has been reached.
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fuzziness or anticipated error by giving an interval of parameter values that,

with some assurance or confidence, will contain the true value of the

parameter. (Lindgren et al., 1957, p. 160)

The point is that one wants to say that, with some appropriate fixed degree of

confidence, a particular interval of numbers (which has been identified) contains a

constant (which is unknown). There are two things to note about such a conclusion:

(i) a claim is made about a single case (that the value of a constant is within a certain

interval), and (ii) it apportions a fixed confidence level to this claim. Now the

frequentist needs to justify this conclusion, for otherwise confidence-interval

methods will not be compelling. But the frequentist cannot even formulate the

conclusion in the frequentist framework. As is well known, while physical

probability statements are important steps on the way to drawing such an inference,

the conclusion itself cannot be formulated as a physical probability statement:

physical probabilities are not normally single-case and they are not degrees of

confidence. It is Bayesian probabilities that are single-case and are degrees of

confidence. Indeed, this conclusion can be articulated using Bayesian probability as

a statement of the form PEðp 2 IÞ ¼ s; say. Moreover, as we have seen, the

Bayesian can justify this conclusion, by appealing to the frequentist methods and

then calibrating degrees of belief to the resulting physical probabilities. So the

frequentist needs the Bayesian to justify the application of confidence-interval

estimation methods.

Now the main way in which one might try to avoid the force of this argument is

to deny that the confidence-interval conclusion in question is a statement about

confidence. The conclusion might, for example, be formulated as a statement of

reliability (see, e.g., Mayo 1996, p. 272): 100s% of the time, interval estimates

formulated in this way will be successful. But such a statement of reliability can

at best be used to justify using confidence-interval estimates in the long term—it

cannot, as it stands, be used to justify the use of the procedure in a particular case.

(One might normally use such methods, but, in one particular case, wonder

whether to or not; since a single case will make negligible difference to

asymptotic reliability, there is little that a reliability claim can do to motivate the

use of such methods in that case.) To move from the general to the single case,

one needs a further claim that one should conform in each single case in

accordance with the general rule. But this further claim is precisely what the

frequentist lacks and what the Bayesian can provide in virtue of having a

Calibration norm.

Another way in which one might attempt to deny that the confidence-interval

conclusion in question is a statement about confidence is to treat it behaviourally:

one should act as if the interval estimate is correct, but one need not be confident

that it is (see, e.g., Neyman 1955, §13). But this response is not really at odds with

the Bayesian position. Bayesian epistemology is itself a behavioural theory

according to which the claim that one should behave as if the interval estimate is

correct is equivalent to the claim that one should bet that it is correct, which is in

turn equivalent to the claim that one should be confident that is correct (Ramsey

1926). So the claim that one should merely act as if the interval estimate is correct
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implies that one should be confident—in the Bayesian sense—that it is correct, and

the question of a Bayesian justification of confidence intervals remains pertinent.

If one accepts that confidence-interval methods concern confidence, one might

try to avoid the force of the Bayesian justification by claiming that Bayesian

epistemology fails as a theory of confidence. Again—as Fermat might say—the

margins of this paper are too small for a general defence of Bayesian epistemology.

We may simply note that this tactic will not help the frequentist, who lacks a viable

alternative explanation as to why confidence should be apportioned using

confidence intervals in the single case.14

The general conclusion then is that—like it or not—frequentists and Bayesians

need each other.

7.4 Questions for further research

Of course there remain questions for further research, three of which are particularly

pressing.

First, while this paper argues that confidence interval estimation is one locus for

an integration of frequentism and Bayesianism, it leaves open the question of

whether there are other loci for integration. There is a well-known duality between

confidence interval estimation and hypothesis testing, for example, and the question

arises as to whether there is also a need for frequentists and Bayesians to join forces

to test hypotheses.

Two other questions for further research involve the reference-class problem and

the acceptance phase of the integration of Sect. 4. We shall now present these

questions in a little more detail.

7.4.1 The reference class problem

The reference class problem has been set aside in this paper. This is appropriate as

our running example was simple enough, with a single physical probability

statement P�ðP�ðLÞ 2 Ið �X; s0ÞÞ 	 s0; for clashes of reference class not to arise. But

the problem still has to be tackled in general, and it is an open question as to how it

might best be tackled.

One approach to tackling the problem is to apply the theory of evidential

probability as follows. Suppose the agent’s evidence yields two statements at the

end of Step 2 of Sect. 4, P�ðP�ðLÞ 2 Ið �XS; s0ÞÞ 	 s0 and P�ðP�ðLÞ 2 Ið �XT ; s0ÞÞ 	
s0; where S and T are different reference classes—trials of type S and T select

individuals from different classes. If the agent performs sample s of reference class

S and sample t of class T, then at the end of Step 4 we have that the agent grants

14 The only other justification of single-case applications of confidence-interval methods seems to be

Fisher’s fiducial argument; however, this seems to require a calibration principle (Hacking 1965, p. 137),

so it is apparently a Bayesian justification. Since the fiducial argument is highly controversial, only

applicable in specific situations and hard to apply even there, the more straightforward justification of

Sect. 4 is preferred here; the exact relationship between the two justifications remains a question for

further research. See Seidenfeld (1979, Chapters 4 and 5) and Haenni et al. (2011, Chapter 5) for further

discussion of the fiducial argument.

314 J. Williamson

123



both P�ðLÞ 2 Ið �Xs; s0Þ and P�ðLÞ 2 Ið �Xt; s0Þ: Suppose �Xs 6¼ �Xt so that these two

claims would yield conflicting conclusions if the agent calibrated with respect to

one or the other, i.e., PEðLv101Þ 2 Ið �Xs; s0Þ and PEðLv101Þ 2 Ið �Xt; s0Þ where

Ið �Xs; s0Þ 6¼ Ið �Xt; s0Þ: According to the precepts of evidential probability (Kyburg

Jr and Teng 2001), the former statement trumps the latter if:

Richness. P�ðP�ðLÞ 2 Ið �XS; s0ÞÞ 	 s0 was obtained from a richer domain (i.e.,

attributes fL;A1; . . .;Ang are measured in samples of class S, while attributes

fL;A1; . . .;Amg are measured in samples of class T, and m \ n).

Specificity. Trials of class S are trials of class T but not vice versa.

Precision. Ið �Xs; s0Þ 
 Ið �Xt; s0Þ:

In general, these principles are applied in the above order to yield a smaller set of

untrumped relevant statistical statements. Then the convex hull is taken of the

remaining intervals (this is an application of the Principle of Strength). So if neither

P�ðLÞ 2 Ið �XS; s0Þ nor P�ðLÞ 2 Ið �XT ; s0Þ trumps the other, one sets PEðLv101Þ 2
hIð �Xs; s0Þ; Ið �Xt; s0Þi; the narrowest interval containing the two intervals.

The principle of Richness is intended to explicate the intuition that joint

distributions are more informative than marginal distributions, and hence more

pertinent. Specificity is the principle of the narrowest reference class: if trials of type

S involve sampling vehicles at the junction while trials of type T involve sampling

any moving object at the junction—including vehicles, pedestrians, birds etc.—and

if v101 is a vehicle, then the data from an S-trial is taken to be more pertinent than

that from a T-trial. The principle of Precision embodies the agent’s need for more

precise estimates of physical probabilities, and is redundant given our assumption

that the agent will only grant P�ðLÞ 2 Ið �XS; s0Þ for the narrowest such interval that

reaches the threshold (Sect. 6). Finally, the application of the principle of Strength is

also redundant in our framework, in which convex hulls are built into the

formulation of the Calibration norm.

The theory of evidential probability, then, can be viewed as a precise theory of

how to determine the convex hull of the single-case consequences of potentially

conflicting statistical statements—i.e., it can be used to determine the set hP�Li that

is required by the Calibration norm C1 of Sect. 3. The question of how well it

succeeds in doing this would be an interesting question for further research.

7.4.2 Postponing acceptance

Step 4 of the procedure outlined in Sect. 4 involves granting a belief that reaches a

threshold, with a view to drawing further conclusions which would not be drawn

were the threshold belief not granted. Now any inference must be an inference from

what is previously granted, so the act of granting is not a problem in itself. But our

success as reasoners depends on our taking the right things for granted. Any act of

granting involves a loss of information—it involves neglecting the possibility that

what is granted may in fact be false. In our case this possibility has degree of belief

1 - s0, and this is deemed sufficiently small as to be negligible. But the question

remains as to whether more accurate and hence more successful inferences could be
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drawn if this possibility weren’t neglected, i.e., if the act of granting or acceptance

were postponed to a later stage in the reasoning process.

While this is a question for future research, two possible approaches stand out.

One approach is to factor in the neglected uncertainty of the above procedure. Let

us focus on Steps 3–5:

Step 3. The Calibration norm implies that PEðP�ðLÞ 2 Ið �Xs; s0ÞÞ ¼ s0:

Step 4. The agent should grant that P�ðLÞ 2 Ið �Xs; s0Þ:
Step 5. The Calibration norm implies that PE0 ðLv101Þ 2 Ið �Xs; s0Þ:

Here the inference PE0 ðLv101Þ 2 Ið �Xs; s0Þ can be viewed as correct if the agent is

right to grant that P�ðLÞ 2 Ið �Xs; s0Þ: Thus it is correct with (Bayesian) probability

s0. On the other hand, it is incorrect with probability 1 - s0, in which case another

inference is appropriate: if P�ðLÞ 62 Ið �Xs; s0Þ then P�ðLÞ 2 ½0; 1�nIð �Xs; s0Þ; taking the

convex hull, as long at neither endpoint of Ið �Xs; s0Þ is 0 or 1, we have that

h½0; 1�nIð �Xs; s0Þi ¼ ½0; 1� and the trivial inference PE0 ðLv101Þ 2 ½0; 1� becomes the

appropriate inference with probability 1 - s0.15 If PE0 ðLv101Þ 2 ½0; 1� then one

might assume that the probability that PE0 ðLv101Þ 2 Ið �Xs; s0Þ is just the width of that

interval, jIð �Xs; s0Þj=j½0; 1�j ¼ jIð �Xs; s0Þj: Hence we have that PE0 ðLv101Þ 2 Ið �Xs; s0Þ
with probability s0 þ ð1� s0ÞjIð �Xs; s0Þj: In our example this probability is

.75 ? (0.25 9 (.467 - .355)) = .778. Hence we can conclude that the agent ought

to believe to degree .778 that she ought to believe Lv101 to some degree in the

interval [.355, .467]. This may or may not be sufficiently high for the agent to grant

that she ought to believe Lv101 to some degree in the interval [.355, .467]. The point

is that this procedure allows one to postpone the acceptance phase until the end of

the chain of reasoning, and thereby to take extra uncertainties into account. More

generally, one can extend the theory of evidential probability to take account of the

uncertainties attaching to its inferences: this yields the theory of second-order
evidential probability, which is described in Wheeler and Williamson (2011) and

Haenni et al. (2011).

Note that this procedure is itself based on a certain assumption: we granted that

the probability that PE0 ðLv101Þ 2 Ið �Xs; s0Þ is just the width of that interval. The

question arises as to whether there is any approach which avoids this sort of

assumption, which, being based on a principle of indifference, may be more

palatable to the objective Bayesian than to the empirically-based subjective

Bayesian. A second possible approach which does avoid this assumption is based on

de Finetti’s representation theorem and can be sketched as follows. First, use one-

sided confidence intervals as in Sect. 6 to yield statements of the form

P�ðP�ðLÞ
 �X þ xÞ 	 sx for each x 2 ð0; 1�: Then calibrate to yield PEðP�ðLÞ
 �Xs þ
xÞ ¼ sx for each x 2 ð0; 1� �XsÞ: Similarly P�ðP�ðLÞ� �X � xÞ 	 sx for each x 2
ð0; 1� and PEðP�ðLÞ
 �Xs � xÞ ¼ 1� sx for each x 2 ð0; 1� �XsÞ: These two kinds of

claim fully specify PEðP�ðLÞ
 yÞ for y ¼ �X�x 2 ½0; 1�—i.e., the Bayesian prob-

ability distribution of the physical probability distribution is fully determined. Now

15 Recall that it is assumed that Ið �Xs; s0Þ � ½0; 1� in order for the original inference to be legitimate. See

footnote 9.
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de Finetti’s representation theorem says that Lv101; . . .; Lv100þn are exchangeable

with respect to PE if and only if there is a distribution function F such that for all n,

PEð�Lv101 ^ � � � ^ �Lv100þnÞ ¼
Z1

0

yrnð1� yÞn�rn dFðyÞ;

where rn is the number of positive instances in �Lv101 ^ � � � ^ �Lv100þn (de Finetti,

1937). It turns out that F is the distribution function of the limiting relative

frequency of L : FðyÞ ¼ PEð �X1
 yÞ where �X1 is the limiting proportion of L as the

number of vehicles tends to infinity. Since exchangeability is rather natural when

the agent already grants that the relevant variables are iid with respect to physical

probability (Gillies 2000, pp. 77–83), and since physical probabilities almost always

coincide with limiting relative frequencies, the representation theorem can be

interpreted as implying that the agent’s degrees of belief can be thought of as

formed by adopting a Bayesian belief distribution over physical probabilities. Hence

one can take FðyÞ ¼ PEðP�ðLÞ
 yÞ; which as we saw above, is determined from the

first hundred sampled vehicles, and, in particular, PEðLv101Þ ¼
R 1

0
ydFðyÞ:

This sketch glides over a lot of details—for example, confidence interval

estimation gets rather subtle when P�ðLÞ is close to 0 or 1 (Brown et al. 2001), and

further argument is needed before one can be convinced that F(y) will turn out to be

a continuous distribution function—so this second approach to postponing

acceptance must be regarded as much more speculative than the first. But it would

be interesting to see whether this general idea can be fleshed out and whether its

steps can be adequately justified.16
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