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Inductive Influence
Jon Williamson

ABSTRACT

Objective Bayesianism has been criticised for not allowing learning from experience:
it is claimed that an agent must give degree of belief 1

2 to the next raven being black,
however many other black ravens have been observed. I argue that this objection can
be overcome by appealing to objective Bayesian nets, a formalism for representing
objective Bayesian degrees of belief. Under this account, previous observations exert
an inductive influence on the next observation. I show how this approach can be used to
capture the Johnson–Carnap continuum of inductive methods, as well as the Nix–Paris
continuum, and show how inductive influence can be measured.
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1 Introduction

To what extent should I believe it will rain here tomorrow? Objective
Bayesianism is a theory which puts forward precise answers to questions
like this.1 In common with other Bayesians, objective Bayesians argue that an
agent’s degrees of belief should be probabilities. But objective Bayesians go
further by isolating a single probability function as a candidate for an agent’s

1 (Rosenkrantz [1977]; Jaynes [2003]).
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degrees of belief.2 This probability function is objectively determined by the
extent of the agent’s background knowledge.

Background knowledge isolates the most appropriate probability function
in two ways. First, the agent’s degrees of belief should make the commitments
that are warranted by her background knowledge: those probability functions
that do not satisfy constraints imposed by background knowledge should
be eliminated from consideration. Knowledge of long-run frequencies, for
instance, constrains degrees of belief. Thus if the agent knows only that
freqa(B(a)) = x, where the frequency is found by repeatedly sampling
individuals a, then the agent should set degree of belief p(B(a1)) = x, where
a1 is some unobserved individual. Probability functions that do not satisfy this
constraint should be disregarded.

Second, the agent should not believe things to a greater or lesser extent than
is warranted by background knowledge: the agent should select a probability
function, from all those remaining, that embodies the most middling degrees
of belief, those furthest from the extremes of 0 and 1.3 Information theory
motivates the use of entropy H = −∑

ω∈� p(ω) log p(ω) to measure distance
from the extremes; hence the Maximum Entropy Principle: an agent should
adopt as her belief function, from all the probability functions that satisfy
constraints imposed by background knowledge, that which has maximum
entropy.

Objective Bayesianism faces a number of challenges,4 not least the charge
that learning from experience becomes impossible on the objective Bayesian
account (Section 2). In Section 3, I shall argue that this charge is a mistake,
attributable to a misapplication at the first stage of the objective Bayesian
method: the constraints imposed by background knowledge have not been
correctly assessed. In order to elucidate these constraints I introduce the
machinery of objective Bayesian nets in Section 4. These nets offer a way of
representing maximum entropy probability functions that renders probabilistic
dependence and independence relationships perspicuous. They are useful
here, I claim, because when learning from experience past observations
exert an inductive influence—a type of dependence relationship—on future
observations (Section 5).

When objective Bayesian nets are applied to the problem of learning from
experience, the resulting formalism yields the Johnson–Carnap continuum of
inductive methods as a natural special case (Section 6). In Section 7 we see that

2 I will only be considering finite probability spaces in this paper. The extension of objective
Bayesianism to the infinite case is steeped in controversy and arguably proceeds at the expense
of uniqueness of the most appropriate probability function—see (Williamson [forthcoming
(a)], Section 19).

3 (Williamson [2006]).
4 (Williamson [forthcoming (a)], Part III).
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the Nix–Paris continuum of inductive methods emerges as another special
case—though arguably a less central special case. The question now arises as
to which point in the Johnson–Carnap continuum yields the most appropriate
inductive method from the objective Bayesian perspective. In Section 8 I
reject the idea that the classification efficiency of the agent’s language might
provide the answer to this question. Instead in Section 9 I show how frequency
considerations can be used to isolate the optimal inductive method.

2 The Problem

Consider an agent whose language contains a large number of variables B1,
B2, . . . , Bk each of which takes one of two possible values, true or false. We
shall write b1

n for the assignment Bn = true and b0
n for Bn = false.

This agent, we shall suppose, has no background knowledge that links these
variables. In that case, the Maximum Entropy Principle will yield a probability
function that gives each outcome the same probability and that renders all
variables probabilistically independent:

p(b1
n) = p(b0

n) = p(b1
101 | b1

1 · · · b1
100) = 1/2.

But this can seem counter-intuitive. Suppose Bn = true if and only if the
n’th raven to be observed is black. Then p(b1

101|b1
1 · · · b1

100) = 1/2 = p(b1
1)

represents a failure to learn from experience: an agent who observes a hundred
ravens, all black, should not give any more credence to the next raven being
black than she did before collecting this evidence.

Many have argued that this failure to learn from experience reveals a flaw
in objective Bayesianism, and that the Maximum Entropy Principle should be
duly rejected.5

3 Diagnosis

The inference of Section 2—that independence in the face of ignorance leads to
a failure to learn from experience—is, I claim, too hasty. True, the Maximum
Entropy Principle does yield probabilistic independence when the agent has
no background knowledge. But in the learning problem there is background
knowledge that has not been taken into account by the above analysis. When
this knowledge is taken into account, the conclusion does not follow: there is,
after all, no problematic failure to learn from experience.

5 For instance, (Gillies [2000], pp. 45–6; Howson and Urbach [1989], pp. 65–6; Earman [1992],
p. 17) criticise the Principle of Indifference, which is a special case of the Maximum Entropy
Principle, on the basis of the problem of learning from experience. See also (Paris [1994], p. 178).
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What is this background knowledge that has been overlooked? In our raven
example it is the explicit supposition: Bn = true if and only if the n’th raven to
be observed is black. It is known that the variables are all applications of the
same predicate. In fact in the raven example Bn is better written B(an), where
an denotes the n’th observed raven and B is the predicate ‘is black’. So the
variables have predicate B in common—there is a known connection between
all the variables.

Herein lies a difficulty: this type of qualitative background knowledge
tends to be overlooked when the Maximum Entropy Principle is applied.
The reason for this is the following. The first step of the objective Bayesian
method—eliminating from consideration those probability functions that
do not satisfy constraints imposed by background knowledge—requires
some procedure for deciding whether a probability function is compatible
with background knowledge. If background knowledge consists of a set
of quantitative constraints on degrees of belief then we can test to see
the probability function satisfies those constraints. But if the knowledge is
qualitative, as it is in the learning case, it is hard to see exactly what constraints
such knowledge imposes. One of the challenges for objective Bayesianism is to
clarify the ways in which qualitative knowledge constrains degrees of belief.6

So there is qualitative background knowledge that has not been taken into
account. If we are to resolve the problem we must somehow convert this
qualitative knowledge into quantitative constraints on degrees of belief. To do
that we shall need to apply the machinery of objective Bayesian nets.7

4 Objective Bayesian Nets

An objective Bayesian net is a representational tool. It is a way of representing
the degrees of belief that an agent should adopt under the objective Bayesian
account. I shall briefly sketch the key aspects of objective Bayesian nets in
this section—see (Williamson [2005b]) for a fuller account.8 In Section 5 we
shall see how objective Bayesian nets can be applied to the problem at hand,
learning from experience.

A Bayesian net consists of a directed acyclic graph whose nodes are variables,
together with the probability distribution of each variable conditional on its
parents in the graph. Assuming the Markov condition, which says that each
variable is probabilistically independent of its non-descendants conditional on
its parents, the graph and conditional distributions suffice to determine the

6 (Williamson [forthcoming (a)], Section 18).
7 Note that Paris ([1994], pp. 198–9) offers a similar diagnosis but a different resolution. See also

(Paris and Vencovská [2003]).
8 See also (Williamson [2002]) and (Williamson [2005a], Sections 5.6–5.7).
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joint probability distribution over all the variables in the graph. A Bayesian net
is a good representational device because it is relatively compact (if the graph
is sparse then relatively few probabilities need to be specified to determine the
joint distribution) and because it perspicuously represents the independencies
that the probability function satisfies.9

As we saw in Section 1, according to objective Bayesianism an agent should
adopt as her belief function the probability function, from those compatible
with her background knowledge, that has maximum entropy. An objective
Bayesian net is just a Bayesian net representation of this entropy-maximising
probability function.

Given a set of quantitative constraints involving the variables defined from
an agent’s language, an objective Bayesian net can be constructed as follows.
First construct an undirected constraint graph by taking the variables as nodes
and linking two variables by an edge if they occur in the same constraint. The
following key property holds: if a set Z of variables separates sets X and Y of
variables in the graph, then the maximum entropy probability function renders
X and Y probabilistically independent conditional on Z, written X ⊥⊥ Y | Z.10

Given this property, one can easily transform the constraint graph into a
directed acyclic graph for which the Markov condition holds. Finally, one
can maximise entropy to find the probability distribution of each variable
conditional on its parents in the graph. This yields an objective Bayesian net.

Certain types of qualitative information can be handled as follows. A
relation R is an influence relation if learning of new variables that are known
not to be influences of current variables provides no reason to change one’s
degrees of belief concerning the current variables. For example causality is
an influence relation: while learning of the existence of a new common cause
can lead one to render two variables more probabilistically dependent than
they were, learning of non-causes provides no reason to change one’s degrees
of belief.11 Knowledge of qualitative influence relationships can be converted
into quantitative constraints on degrees of belief: for sets of variables U and
V , if U ⊆ V is closed under knowledge of influences (i.e. any variable in V

that is not ruled out as an influence of some variable in U is itself in U ), and an
agent has no quantitative information that rules otherwise, then pV

βV �U = pU
βU

:
the belief function pV

βV
on V formed from full background knowledge βV

should, when restricted to U , match the belief function pU
βU

on U formed
from the background knowledge βU that pertains to U . One special case
will be important for our purposes: if the agent possesses full knowledge of
influences and some knowledge concerning their strengths then the graph in

9 (Pearl [1988]; Neapolitan [1990]).
10 (Williamson [2005a], Theorem 5.1).
11 Other examples of influence relations are discussed in (Williamson [2005b], Part II).
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Figure 1. No background knowledge.

her objective Bayesian net will just be the influence graph—the graph whose
arrows depict the direct influence relationships. Moreover in this case the
probability distributions in the net can be determined iteratively: first find the
probability distribution of the root variables by maximising entropy, then find
those of their children, then their grandchildren, and so on.12 This iterative
approach can greatly simplify the entropy-maximisation task.

5 Resolution

Now let us apply objective Bayesian nets to the problem of learning from
experience.

Consider our starting point: an agent has a domain of binary variables
V = B1, . . . Bk , but no background knowledge. To construct an objective
Bayesian net we first link each pair of variables that occur in the same
constraint. But there is no knowledge here—so no constraints, and no
edges in the constraint graph. To construct the objective Bayesian net—the
Bayesian net that represents the maximum entropy probability function—we
must convert this graph into a directed acyclic graph that satisfies the
Markov condition, and determine the probability distribution of each variable
conditional on its parents in this graph. Since there are no edges in the
constraint graph, there are no arrows in the graph of the objective Bayesian
net (Figure 1)—all variables are probabilistically independent. No variable
has any parents in the graph, so all probability distributions in the objective
Bayesian net are unconditional. The probability values furthest from the
extremes of 0 and 1 are of course p(bεn

n ) = 1/2, n = 1, . . . , k where εn = 0 or
1. This Bayesian net determines the conditional distribution

pε =df p(b1
n+1|bε1

1 · · · bεn
n ) = 1/2

for all ε1, . . . , εn ∈ {0, 1}, and where ε = (ε1, . . . , εn). This distribution clearly
represents an inability to learn from experience, but since the variables are not
known to be related in any way, that is by no means unreasonable.

Now suppose instead that it is known that these variables are all applications
of the same predicate. This knowledge provides a connection that links the
variables. Moreover, suppose the agent wishes to predict the value of Bn+1,

12 (Williamson [2005a], Theorem 5.8).
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Figure 2. Knowledge of influences.

after observing b
ε1
1 , . . . , bεn

n in that order: variable Bi is observed before
variable Bj for i < j .

Consider the relation observed before. This is an influence relation: coming
to learn of the existence of a variable that will not be observed before any others
does not provide any grounds to change one’s degrees of belief concerning the
others. We shall say that Bi is an inductive influence of Bj if Bi is observed
before Bj . Qualitative knowledge of inductive influence—knowledge of the
order of observation—then translates into equality constraints on degrees of
belief, as discussed in Section 4.

Moreover if, as is the case here, the relata of observed before are instantiations
of the same predicate, then one expects some kind of dependence between
observations: one’s degree of belief in a new instance would be higher given
a positive past instance than given a negative past instance.13 (One would
expect each positive past instance to make the same difference to the degree
of belief in the new instance. Similarly for negative past instances. One would
also expect that the greater the number of past observations, the smaller the
difference each observation would make.)

We shall suppose—just for the sake of argument—that the agent has some
quantitative knowledge about the strength of inductive influence, namely that

pε ≥ pε′ + τn

if ε′ has fewer positive instances than ε, i.e. if
∑n

j=1 εj >
∑n

j=1 ε′
j , where τn

is some small non-negative real number and n≥1. We shall call τn the n-th
inductive influence threshold.14

With full knowledge of inductive influence relationships and some
knowledge of their strengths, we have the special case mentioned at the

13 I should emphasise that I take it for granted here that learning from experience is the right
thing to do. This implies that observations are probabilistically dependent with respect to an
agent’s rational degrees of belief. In this paper I am trying to show that the objective Bayesian
can model learning from experience, not to justify learning from experience.

14 Note that the inductive influence thresholds may depend on background knowledge and so may
depend on ε if this evidence has already been observed, i.e. is a part of background knowledge.
This point is discussed in Section 6.
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Figure 3. Inductive influence: r10 positive instances; inductive influence threshold
τ 10.

end of Section 4. Consequently the graph in the objective Bayesian net is just
the influence graph, with an arrow from Bi to Bj just if Bi is observed before
Bj , i.e. iff i < j , as depicted in Figure 2. Each variable Bn+1 has as its parents
all previous variables B1, . . . , Bn. The least extreme values for the conditional
distributions, found by maximising entropy, are:

pε =df p(b1
n+1|bε1

1 b
ε2
2 · · · bεn

n ) = 1
2

+ τn


 n∑

j=1

εj − n

2


 ,

for n = 0, . . . , k − 1. Equivalently,

pε = 1
2

+ τn

(
rn − n

2

)
,

where rn =df

∑n
j=1 εj is the number of observed positive instances.

Equivalently,

pε = 1 + τn(rn − sn)

2
,

where sn =df n − rn is the number of observed negative instances. For ten
observations, pε is plotted in Figure 3.

In this case there is learning from experience as long as τn > 0: p(b1
1) = 1/2

but p(b1
101 | b1

1 · · · b1
100) = 1/2 + 50τ 100. Thus the inductive-influence approach

offers the objective Bayesian a way out of the objection that she cannot learn
from experience. A key question arises however—how should one determine
the inductive influence thresholds τn?

6 The Johnson–Carnap Continuum

There is one obvious constraint on the inductive influence thresholds: it must
be the case that τn ≤ 1/n, for otherwise there exist ε1, ε2, . . . , εn such that
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Figure 4. The Johnson-Carnap continuum of inductive methods.

p(b1
n+1|bε1

1 b
ε2
2 · · · bεn

n ) > 1, in violation of the axioms of probability. So we
shall write

τn = 1
n + λn

where λn ∈ [0,∞].
If λn = λ, a constant, then τn = 1/(n + λ) and we get what is known as the

Johnson–Carnap inductive method with parameter λ ∈ [0,∞]:15

pε = rn + λ/2
n + λ

.

A portion of this class of inductive methods is depicted in Figure 4. (There
is one qualification to make here: if n = λ = 0 then pε is undefined with
the Johnson-Carnap method; τ n is also undefined, but pε = 1/2 under the
inductive-influence approach.)

There are some important special cases of this family of inductive methods.
If λ = 0, pε = rn

n
: the agent’s degree of belief in the next raven being black

is just the observed frequency of black ravens. If λ = 1, pε = rn+1/2
n+1 : this is

the Jeffreys–Perks rule of succession.16 If λ = 2, pε = rn+1
n+2 , Laplace’s rule of

succession. If λ = ∞, pε = 1
2 : this is the case of no learning from experience.

We see, then, that the Johnson–Carnap continuum emerges as a special
case of the inductive-influence approach. The extra generality of the inductive-
influence framework is of key importance for the following reason. In
their derivation of their continuum, Johnson and Carnap make a crucial
assumption: a kind of exchangeability assumption. This is the assumption that
the probability pε depends only on n and the number of observed positive

15 (Johnson [1932]; Carnap [1952]).
16 (Good [1965], p. 18).
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instances rn, and not on the order in which these observations occur (this
principle is known as Johnson’s Sufficientness Postulate—see Section 7). As
Gillies points out, this is quite reasonable in cases where the underlying process
exhibits objective independence—for example when observing ravens or when
tossing a coin.17 But in other cases, cases where the underlying process is a
dependent (Markovian) process, this assumption is clearly unreasonable—for
example in the game of red or blue, where a tally is kept of the number of heads
and tails in a coin-tossing experiment and a blue signal is the output when the
number of heads is greater than or equal to the number of tails, otherwise a red
signal is the output.18 So exchangeability and the Johnson–Carnap continuum
are appropriate only in certain circumstances.

In contrast, the inductive-influence approach is not beset by these problems
to do with exchangeability. This is because these problems only arise
when a fully-specified, exchangeable prior probability function is updated
using Bayesian conditionalisation, but objective Bayesians update using the
Maximum Entropy Principle and do not need to fully-specify an initial
probability function. Problems arise thus: if an agent initially commits to
an exchangeable p (exchangeable in the sense of Johnson’s Sufficientness
Postulate) and updates by conditionalising, then on learning evidence
b

ε1
1 b

ε2
2 · · · bεn

n she commits to setting her new probability p′(b1
n+1) to her

prior p(b1
n+1|bε1

1 b
ε2
2 · · · bεn

n ), which is some point in the Johnson–Carnap
continuum. This is fine if the underlying data-generating process is an
independent process, but a bad move if it is dependent. The objective
Bayesian, on the other hand, does not need to fully determine a prior at
the outset, because she updates as follows: on learning b

ε1
1 b

ε2
2 · · · bεn

n her
new probability p′(b1

n+1) is determined by the Maximum Entropy Principle
with respect to her total knowledge, which consists of her prior knowledge
together with the string of observations b

ε1
1 b

ε2
2 · · · bεn

n . Thus she only needs
to determine p′(b1

n+1) = p′(b1
n+1|bε1

1 b
ε2
2 · · · bεn

n ) at the point of update. This
means that she can delay setting τ n (equivalently λn) until this point. If her
evidence b

ε1
1 b

ε2
2 · · · bεn

n appears to emanate from a dependent process, she
can set λn accordingly: there is nothing to prevent an inductive influence
threshold depending on the previously observed evidence. In sum, whether
exchangeability holds under the inductive-influence approach depends on
whether the λn are constant and this depends on background knowledge. An
agent may start out with constant λn for low n, but as n increases the evidence
may indicate a dependent process such as the game of red or blue, and the λn

may vary accordingly. Thus the inductive-influence approach is more flexible

17 (Gillies [2000], pp. 77–83).
18 (Feller [1950], pp. 67–95; Popper [1957]; Gillies [2000], pp. 77–83).
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than the Johnson–Carnap approach, and overcomes a key objection to the
latter approach, namely its inability to relinquish exchangeability.

Note that the Johnson–Carnap continuum is a special case (α = β) of the
following rule

pε = rn + α + 1
n + α + β + 2

which is induced by the beta distribution.19 (The beta distribution with
parameters α, β, has density function f (x) = �(α+β)

�(α)�(b)
xα−1(1 − x)β−1.) This

rule can be modelled in the inductive-influence framework if we set

τ n = 2rn − n + α − β + 1
(2rn − n)(n + α + β + 1)

.

Before discussing the measurement of the inductive influence thresholds,
we shall take a look at a connection with another continuum of inductive
methods.

7 The Nix–Paris Continuum

The Johnson–Carnap continuum is not the only family of inductive methods
that has been put forward in the literature. Also of interest is the Nix–Paris
continuum of inductive methods with parameter δ, which is characterised by

p(b
ε1
1 b

ε2
2 · · · bεn

n ) = 1
2

(
1 − δ

2

)k
[(

1 + δ

1 − δ

)rk

+
(

1 + δ

1 − δ

)k−rk
]

,

where δ ∈ [0, 1).20 Note that if δ = 1 then Nix and Paris ([2006])
set p(b

ε1
1 · · · bεk

k ) = 1 if k = 0, p(b
ε1
1 · · · bεk

k ) = 1/2 if rk = 0 or k, and
p(b

ε1
1 · · · bεk

k ) = 0 otherwise. This δ-continuum differs from the λ-continuum
except at the extreme values: δ = 1 corresponds to λ = 0 and δ = 0 corresponds
to λ = ∞.21

The δ-continuum is the set of probability functions that satisfy the following
constraints (where θ, φ,ψ are quantifier-free sentences of a monadic first order
predicate language containing infinitely many predicates):22

Regularity p(θ) = 0 iff |= ¬θ .

Constant Exchangeability If θ ′ is obtained from θ by permuting constant
symbols then p(θ ′) = p(θ).

19 See (Good [1965], p. 17) for example, or (Zabell [1982]).
20 (Nix and Paris [2006], Theorem 14).
21 (Nix [2005], Proposition 4.2).
22 (Nix and Paris [2006], Theorem 24).
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Figure 5. The Nix–Paris continuum of inductive methods.

Predicate Exchangeability If θ ′ is obtained from θ by permuting predicate
symbols then p(θ ′) = p(θ).

Strong Negation If θ ′ is obtained from θ by negating each occurrence of a
particular predicate then p(θ ′) = p(θ).

Generalised Principle of Instantial Relevance If θ |= φ and φ(ai+1) ∧ ψ is
consistent then p(θ(ai+2)|φ(ai+1) ∧ ψ) ≥ p(θ(ai+1)|ψ).23

On the other hand, in this more general setting the λ-continuum is the set of
probability functions that satisfy Regularity, Constant Exchangeability and:

Johnson’s Sufficientness Postulate pε = p(b1
n+1 | b

ε1
1 · · · bεn

n ) depends only on
n and rn = ∑n

j=1 εj .24

Let sn = n − rn as before, and β = (1 + δ)/(1 − δ), where δ 	= 1. Then

pε = βrn−sn+1 + 1
(βrn−sn + 1)(β + 1)

.

A portion of this family of inductive methods is depicted in Figure 5.
For δ 	= 1 we can model this rule under the inductive-influence approach if

we let

τn = δ(βrn−sn − 1)

(βrn−sn + 1)(rn − sn)
.

However it should be noted that the δ-continuum suffers in an important
respect: pε = p(b1

n+1 | b
ε1
1 · · · bεn

n ) depends only on the difference rn − sn

23 This principle is discussed in (Wilmers et al. [2002]).
24 This result requires that there be at least two monadic predicates in the language. Note that

if there is only one monadic predicate then Johnson’s Sufficientness Postulate coincides with
Constant Exchangeability.
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between positive and negative instances, not on their absolute values. Thus
one positive instance out of one past instance yields the same degree of belief
in the next instance being positive as 501 positive instances out of 1001 past
instances.

In contrast, Johnson’s Sufficientness Postulate ensures that (apart from the
extreme case λ = ∞) degrees of belief become calibrated with frequencies in
the long run:

lim
n−→∞

(
p(b1

n+1 | b
ε1
1 · · · bεn

n ) − rn

n

)
= 0.

This is surely a desirable characteristic of any inductive method, at least where
the underlying process is independent rather than Markovian, yet it contradicts
the Generalised Principle of Instantial Relevance.25 Thus the δ-continuum fails
to satisfy this property in general.

These considerations provide grounds, then, for preferring the λ-continuum
over the δ-continuum.

8 Linguistic Slack

We now return to the question of how to determine the inductive influence
thresholds τn, or equivalently the λn introduced in Section 6. I suggested there
that the λn might depend on observed evidence as well as previous λi, i < n: if
the evidence is compatible with an independent process then constant λn = λ

may be appropriate, otherwise the evidence will guide appropriate choice of
λn. Exactly how the evidence will guide this choice is a question for future
research; here I would like to focus on the former case, the choice of λ

when the evidence does not indicate a dependent process. In this section we
shall examine a proposal for setting λ by appealing to features of the agent’s
language. I shall argue that the resulting method is ultimately unsatisfactory.
In Section 9 I shall put forward what I think is the right proposal.

Predicates or property terms have two key roles in language. First,
classification: they are used to describe individuals and to efficiently classify
them by means of definite descriptions. For instance, the property terms
‘female’, ‘Kentish’ and ‘logician’ might be used in the sentence ‘Bertha is the
female Kentish logician’ to communicate the identity of the individual Bertha.
Second, conceptualisation: property terms are used to capture natural kinds or
concepts. ‘Female’, ‘Kentish’ and ‘logician’ are natural concepts, in that they
latch on to categories about which we communicate, and they admit, albeit
weakly, generalisations.

These two roles typically pull a language in different directions. The game
of twenty questions shows us that for a language to be optimal with respect

25 (Wilmers et al. [2002], Theorem 3).
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to classification, each predicate should bisect the population of individuals:
the proportion of individuals that instantiate a conjunction of j property
terms should be 1/2j for j ≥1. In a language that is optimal for classification,
twenty property terms suffice to uniquely classify a million individuals; twenty
questions suffice to isolate each such individual. But it is rare that natural
concepts neatly bisect the population. While about half of all individuals are
female, a far smaller proportion are Kentish, and fewer still are logicians.
Thus a natural language tends to be non-optimal with respect to classification
efficiency—from the point of view of classification there is redundancy or
slack.

Plausibly, knowledge of linguistic slack has a bearing on an agent’s
degrees of belief. If a language has no slack—i.e. is optimal with respect
to classification efficiency—then each property has frequency 1

2 . Objective
Bayesianism advocates setting degrees of belief to frequencies where known,
so an agent who knows that there is no linguistic slack should give degree of
belief 1

2 that a property will hold of the next individual to be observed (in the
absence of further knowledge that constrains this degree of belief). So in this
case an agent’s degrees of belief should not be permitted to vary from 1

2 on
the basis of observed evidence; there should be no learning from experience,
λ = ∞. On the other hand, if a language does have slack then it is likely that
the frequency of some property is not 1

2 . Knowledge of this slack should lead
the agent to be less cautious about changing her degrees of belief on the basis
of observed evidence: her degrees of belief should be permitted to vary from
1
2 , and the more slack the more variation.

One can quantify linguistic slack as follows. Given a language, let EQ
be the expected number of single-predicate questions required to identify
an individual. If the individuals are sampled uniformly at random then
EQ ≥ log2 n where n is the number of individuals. Let the slack of the
language (lack of classification efficiency) be measured by σ = EQ − log2 n.
1/σ can then be used as a measure of the classification efficiency of the
language (if 1/σ is high then the properties have frequency near 1

2 ). Thus 1/σ

is a natural candidate for the inductive parameter λ:

λ = 1
EQ − log2 n

Consider some toy examples. Suppose we have four individuals, Auberon
and Bertha who are logicians, and Cuthbert and Doreen who are not. In
language 1 there are two natural property terms female and logician. Here
EQ = 2, λ = ∞ and p(female(Bertha)|¬female(Auberon)) = 1/2. In language
2 there is one natural property term female, and an unnatural property
term random, which holds for Auberon and Doreen. Again, EQ = 2, λ = ∞
and p(female(Bertha)|¬female(Auberon)) = 1/2: naturalness of the predicates
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need not impact on classification efficiency. In language 3 there are two
natural property terms female and human. Since all the individuals are human,
this language does not have the capacity to isolate individuals by their
properties, EQ = ∞, λ = 0 and p(female(Bertha)|¬female(Auberon)) = 0.
Finally language 4 has three property terms female, logician and human. In this
case EQ = 8/3, λ = 3/2 and p(female(Bertha)|¬female(Auberon)) = 3/10.
Natural languages will of course be most like language 4 in that they will
have natural property terms, some of which are redundant, and hence some
slack.

Note that EQ (and thus λ) can be estimated by performing twenty-question
type games. This procedure is also readily generalisable to individuals sampled
according to some distribution q which need not be uniform. In this case the
slack σ = EQ − EQ∗ where EQ∗ is the optimum EQ; information theory tells
us that this optimum EQ is determined by an optimum coding, e.g. Huffman
coding, and that H(q) ≤ EQ∗ < H(q) + 1 where H is entropy.

While this procedure gives an objective way of determining the inductive
influence thresholds

τn = 1
n + λ

= σ

nσ + 1
, (λ = 1/σ ),

before the arrival of empirical observations, it suffers from a number of
problems. First, there is an implicit assumption here that λn is a constant λ.
It would be nice to have some justification for this assumption. Second, the
procedure is somewhat arbitrary—why set λ to 1/σ rather than some other
function inversely proportional to σ ? Third, although unlikely in a natural
language, it is quite possible to construct a language that has a large amount
of slack and for which all properties have frequency 1

2 because they all apply
to the same half of the population. In this case an increase in slack fails to
motivate an increase in the amount to which past observations can change
degrees of belief—ideally degrees of belief should not budge from the known
frequency 1

2 . Thus the link between slack and degrees of belief is not as strong
as might be thought. Finally, the linguistic slack may simply not be known, in
which case the question of the choice of λn remains open.26

In view of the above problems, I think that this method for setting the λn

is untenable. We must continue our quest to identify the inductive influence
thresholds.

26 It might also be objected that the procedure makes induction language-relative. I suggest in
Section 10 that this is no bad thing.
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9 Frequencies and Degrees of Belief

In this section I shall put forward what I think is a better way to determine the
inductive influence thresholds τ n —equivalently the λn.

Suppose, just for the sake of argument, that our agent knows that

freqF,a(F (a)) = x,

i.e. knows that the frequency of an arbitrary individual instantiating an
arbitrary property term in the language is some value x. Here the reference
class ranges over both individual terms a and property terms F in the agent’s
language.27 In the toy languages of Section 8, for example, x is 1

2 for languages
1 and 2, 3

4 for language 3, and 2
3 for language 4. (Note that one could take

|1/2 − x| to be an alternative measure of the slack in a language—however
the concept of linguistic slack does not play a part in the proposal being put
forward here.)

If this is all the background knowledge that the agent has, then according
to objective Bayesianism this frequency information should directly constrain
the agent’s prior degrees of belief, p(b1

n) = x for all n. So set p(b1
1) = x. Now

p(b1
2) = p(b1

2|b1
1)p(b1

1) + p(b1
2|b0

1)p(b0
1),

and p(b1
2|b1

1) and p(b1
2|b0

1) are determined by maximising entropy as in
Section 5,28 yielding

p(b1
2) = x

1 + τ 1

2
+ (1 − x)

1 − τ 1

2
= τ 1(x − 1/2) + 1/2

and this is equal to x if and only if τ 1 = 1 for x 	= 1/2. When x = 1/2 continuity
considerations would motivate setting τ 1 = 1 as well. Now τ 1 = 1/(1 + λ1) so
λ1 = 0.

One can show inductively that for general n,

p(b1
n+1) = nτn(x − 1/2) + 1/2

and this is equal to x if and only if τn = 1/n (for x 	= 1/2, and, appealing to
continuity considerations, for x = 1/2 too). τn = 1/(n + λn) so λn = 0.

In sum, then, in the absence of further evidence (e.g. that the Bn are produced
by a Markov process), whatever the value of x the agent should simply set her

27 Note that the negation of a property term will not necessarily be a property term itself. On
the other hand if the set of the property terms in the language is closed under negation then
x = 1/2.

28 Note that there is a difference between this scenario and that of Section 5. Here we have
the extra knowledge that freqF,a(F (a)) = x; this forces p(b1

1) = x instead of p(b1
1) = 1/2.

However, the conditional probabilities p(b1
2 |b1

1) and p(b1
2 |b0

1) are determined exactly as before.
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degrees of belief according to the observed frequencies:

pε = rn

n
.

Equivalently (when n≥1), she should set her degrees of belief according to the
Johnson–Carnap inductive method with parameter λ = 0.

This argument began with the supposition that the frequency freqF,a(F (a)) is
known. But this supposition is not essential. All that is required is indifference:
as long as the initial background knowledge does not warrant giving different
prior degrees of belief to b1

i and b1
j for some i and j , then by the Principle

of Indifference (which is a special case of the Maximum Entropy Principle)
these degrees of belief should be the same, p(b1

1) = p(b1
2) = · · · = p(b1

k) = x

say. Whence by the above argument, λn = 0 for all n = 1, . . . , k.
In the absence of indifference let j be the smallest index such that background

knowledge differentiates between b1
j and the b1

i that come before it, so
p(b1

1) = p(b1
2) = · · · = p(b1

j−1) 	= p(b1
j ). Then λ1 = λ2 = · · · = λj−2 = 0 and

background knowledge will guide the determination of subsequent λn.
In sum, objective Bayesianism advocates setting degrees of belief to observed

frequencies in the short run as well as the long run.

10 Conclusion

I hope to have shown that learning from experience is, after all, possible
under objective Bayesianism. We saw in Section 5 that objective Bayesian
nets provide a new way of framing the problem of learning from experience:
observed before is an influence relation and earlier observations exert an
inductive influence on later observations. We then bootstrapped a quantitative
solution as follows. First we supposed known inductive influence thresholds
τn. The resulting objective Bayesian net has parameters

p(b1
n+1|bε1

1 b
ε2
2 · · · bεn

n ) = 1 + τn(rn − sn)

2
.

In Section 6 we saw that the axioms of probability force τn ≤1/n. Then in
Section 9 we saw that indifference forces τn = 1/n. So we do, in fact, know
the inductive influence thresholds. Consequently, in the absence of further
relevant knowledge one should set one’s degree of belief in the next raven
being black to the observed frequency of black in past observations of ravens:

p(b1
n+1|bε1

1 b
ε2
2 · · · bεn

n ) = rn

n
.

There is, of course, more to do. I suggested in Section 6 that background
knowledge and observed evidence might override the default inductive
influence thresholds; it would be interesting to explore this possibility in
more detail. Another important task is to extend the formalism to cover
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multiple predicates and also relations—see (Williamson [forthcoming (b)]) in
this regard.

There is an interesting question as to whether the grue paradox creates a
problem for the analysis presented here: an agent with predicate ‘grue’ would
draw different conclusions from an agent with predicate ‘green’, when learning
from experience. I would argue that this is not as problematic as it might at
first seem. Objective Bayesianism holds that degrees of belief should vary with
background knowledge. But an agent’s language betokens implicit knowledge
about her domain: if an agent’s language contains twenty words for snow then
that says something about her environment; similarly, if her language contains
‘green’ but not ‘grue’ as a primitive predicate then that says something about
projectibility. So it should be no surprise that objective Bayesian degrees of
belief are relative to language—nor is such relativity undesirable.29

Is language objectively determined? Is there a fact of the matter as to
what is the best language for an agent operating in a certain domain? I
suspect that the constraints on language imposed by its use—for classification,
conceptualisation, communication, induction, and so on—are very stringent,
and that language is substantially objective. But if not, no matter. What is
important for objective Bayesian method is the objectivity of the relation
between knowledge and belief, not the objectivity of knowledge itself. Thus
of concern to us here is not the question of whether explicit knowledge
and implicit knowledge, e.g. language, is objective, but whether, given some
knowledge base, an agent’s degrees of belief are objectively determined by that
knowledge. Arguably they are, at least with finite languages where there is a
unique entropy maximiser.30

My goal here has been to show that one can meet the charge that learning
from experience is impossible under objective Bayesianism. To do so, I had
to introduce the machinery of objective Bayesian nets. I am not suggesting
that this machinery needs to be applied to perform inductions in practice.31 If
the conclusions of Section 9 are accepted, then the method is much simpler:
set your predictive probabilities pε to the sample frequencies, if that is all the
pertinent evidence that there is.

Typically, of course, there will be more pertinent knowledge than this, and
the apparatus developed here may help to model the interplay between various
types of knowledge. Indeed, even in the case of observing black ravens there
tends to be more pertinent knowledge. Our agent does not just know that
the variables are all applications of the same predicate, she knows that she is

29 (Williamson [2005a], Chapter 12).
30 See (Williamson [forthcoming (a)], Sections 16, 19, 20; Williamson [2005a], Sections 5.3, 5.4).
31 While objective Bayesian nets need not be applied to perform inductions in practice, they are

a useful practical tool for implementing objective Bayesian inference—see, e.g. (Nagl et al.
[forthcoming]).
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observing ravens and observing whether they are black. If she knows a bit about
biology, she will know that the odd albino raven will crop up.32 This biological
knowledge should prevent her from setting her predictive probability pε to 1.
But to what extent should this knowledge lower her degree of belief from 1?
She may know that albinos occur very rarely in general: her experience may
dictate that their frequency is no more than one in a thousand; in which case,
then, her knowledge imposes the constraint that her predictive probability
should lie in the interval [0.999, 1]. If this knowledge seems subjective then that
is a problem of knowledge, not a problem for objective Bayesianism which is
concerned with the relation between knowledge and belief.33
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