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Abstract

In this paper I counter Alexander Bird’s claim that Bayesian probabilities
ought to be informed by explanatory considerations. Bird (2022) invokes an
argument of Michael Huemer to conclude that inductive inference requires
explanatory constraints on prior probabilities. I suggest that this argument is
unsuccessful, on account of its appeal to David Lewis’ Principal Principle. Bird
goes on to interpret the probabilities in Bayes’ theorem other than the prior
as a measure of how well a hypothesis explains the evidence. I show that this
interpretation faces a new version of the old evidence problem.

§1
Introduction

Proponents of inference to the best explanation—‘explanationists’—have argued
that explanatory considerations impose substantive constraints on rational degrees
of belief. Bird (2022), for example, claims that explanatory considerations constrain
both the prior probability P(H) and the ratio P(E|H)/P(E) in Bayes’ theorem:1

P(H|E)= P(H)× P(E|H)
P(E)

.

Bird appeals to the argument of Huemer (2009) to justify the claim that ex-
planatory considerations constrain the prior probability P(H). In §2, I present a
new problem for Huemer’s argument: I show that the use of the Principal Principle
to justify one part of the argument undermines another part of the argument.

Bird goes on to suggest that the ratio P(E|H)/P(E) can be interpreted as a
measure of how well H explains E. In §3, I put forward a new kind of ‘old evidence
problem’ that casts doubt on this explanationist interpretation.

I conclude in §4 that these explanationist arguments fail to motivate the claim
that Bayesianism should take explanatory considerations into account.

1This paper adopts the standard conventions that P is an epistemic probability function, i.e., a
function that represents an agent’s rational degrees of belief, P(·|·) denotes conditional probability, E is
total evidence and H is some hypothesis of interest. The negation of a proposition A will be denoted
by Ā. ‘Prior’ probabilities are probabilities assigned before the evidence E is obtained. P(H|E) is the
‘posterior’ probability of H, i.e., the probability of H in the light of evidence E.
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§2
The prior

§2.1. Huemer’s argument

Huemer (2009) argues in detail that prior probabilities must be informed by ex-
planatory considerations if objective Bayesianism is to provide an account of induc-
tive inference.2 This argument is endorsed by Poston (2014, §7.3) and Bird (2022,
§8.3), among others. The argument can be sketched as follows.

Suppose there have been n repetitions of an experiment with two possible out-
comes, A+

i and A−
i , but there is no further information about the experiment.

Objective Bayesians would seek to apply some version of the Principle of Indiffer-
ence to such a scenario. Huemer considers two ways of applying the Principle of
Indifference, which yield different prior probability functions:

Keynesian prior. The function PK that gives each possible state of outcomes the
same probability, PK (A±

1 · · ·A±
n )= 1/2n.3

Laplacean prior. A function PL that gives each possible number of positive out-
comes the same probability, PL(0)= PL(1)= ·· · = PL(n)= 1/(n+1).

I have used the term ‘Keynesian prior’ above, because this assignment of degrees
of belief best fits the Principle of Indifference as formulated by Keynes (1921), who
argued that one should give the same probability to each member of a partition
of possible outcomes only if those outcomes are indivisible. Given the problem
formulation, the states A±

1 · · ·A±
n form a partition of indivisible outcomes. The

numbers 0, . . . ,n of positive outcomes are not indivisible, because, for example,
the outcome 1 can be realised in multiple ways—by the states A+

1 A−
2 A−

3 · · ·A−
n and

A−
1 A+

2 A−
3 · · ·A−

n for instance.
The latter kind of prior is ‘Laplacean’ because it induces what is known as

Laplace’s rule of succession:

PL(A+
n+1|A+

1 · · ·A+
n )= n+1

n+2
> 1

2
= PL(A+

n+1),

for n > 0. The use of this rule can be interpreted as yielding a kind of inductive
inference: learning n outcomes, all positive, raises the probability that the next
outcome will be positive.

Huemer observes that

PK (A+
n+1|A+

1 · · ·A+
n )= 1

2
= PK (A+

n+1)

and claims that this identity amounts to inductive scepticism: under the Keynesian
prior, learning n outcomes, all positive, fails to raise the probability that the next

2Subjective Bayesians hold that that there are relatively weak constraints on degrees of belief—
usually, just the axioms of probability and conditionalisation as an updating rule. According to subjec-
tive Bayesianism, different agents may have markedly different degrees of belief yet be equally rational.
Objective Bayesians, in contrast, hold that constraints on epistemic probabilities are much stronger.
Usually, objectivists advocate the Principal Principle (see §2.2) and some kind of principle of indiffer-
ence, as explained below. Objective Bayesianism is of primary interest here, because explanationists
advocate strong constraints on degrees of belief. See Howson and Urbach (1989) for an introduction to
Bayesianism and Williamson (2010) for a defence of one version of objective Bayesianism.

3Here, a state A±
1 · · ·A±

n is a conjunction of outcomes that includes either A+
i or A−

i for each
i = 1, . . . ,n.
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outcome will be positive above the prior value 1
2 . Thus, the claim is that the

Laplacean prior permits inductive inference but the Keynesian prior does not.
Huemer (2009, §3.4) then argues that the Laplacean prior can be favoured on

the grounds that it is explanatorily more basic than the Keynesian prior, for reasons
considered below. He concludes that objective Bayesianism requires explanatory
constraints on the prior if it is to provide a viable account of inductive inference.

§2.2. A problem for Huemer’s argument

Huemer’s argument that the Laplacean prior is explanatorily more basic appeals to
David Lewis’ Principal Principle (Lewis, 1980):

Principal Principle. If X says that the chance of A is x, and E is any proposition
that is compatible with X and admissible, then P(A|X E)= x.

Huemer argues that chances are explanatorily prior to both states of outcomes
and numbers of positive outcomes, so one should assign a uniform probability
distribution over chances, rather than directly to states or to numbers of outcomes.
By adopting such an assignment, and by applying the Principal Principle, Huemer
(2009, §3.3) derives a Laplacean prior.

I shall not challenge that part of Huemer’s argument here. What I shall chal-
lenge is the claim that the Keynesian prior necessarily precludes inductive inference.
As we shall see, versions of Bayesianism that invoke the Principal Principle can use
the Principal Principle to ensure that inductive inference is possible, regardless of
the choice of prior.4

Consider the chance proposition X that features in the Principal Principle.
Chance propositions tend to be established by appeal to sample statistics, observed
symmetries, and/or physical theories. (By ‘established’ I just mean added to the stock
of evidence.5) Take the use of sample statistics, for example. The use of confidence
interval estimates of chances is common across the sciences: from a sample, one
infers that the chance of A lies in some specific confidence interval around the ob-
served proportion of positive outcomes in the sample. Exactly which interval one
chooses depends on the level of inductive risk one is prepared to accept, though a
default 95% confidence level is typical in many sciences. Having inferred that the
chance lies in some suitable confidence interval, one will then treat this as evidence
from which to infer further propositions. In the standard Bayesian framework, if E
contains sample data and one establishes chance proposition X , which says that the
chance of A lies within some specific confidence interval, then one must condition
on X E. Applying the Principal Principle, we have that rational degree of belief in
A, P(A|X E), must also lie in that confidence interval.

Let us return to the experiment with two possible outcomes and the question
of whether the Keynesian prior permits induction. Now, A+

1 · · ·A+
n constitutes a

sample that yields the value 1 for the proportion of positive outcomes. If one
is prepared to establish some proposition X about the chance of A+

n+1 from this
sample, one then needs to condition on X in addition to the sample data. The
posterior probability of A+

n+1 is thus the quantity PK (A+
n+1|X A+

1 · · ·A+
n ), not the

4I focus on David Lewis’ original formulation of the Principal Principle here, as that is the most
familiar formulation, but the following points would apply equally to other formulations, such as the
Calibration principle of Williamson (2010).

5Bird (2022, Chapter 5) argues in favour of the claim of Williamson (2000, Chapter 9) that evidence
is knowledge, E=K, but I do not presuppose any particular account of the nature of evidence here.
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quantity PK (A+
n+1|A+

1 · · ·A+
n ). For example, if one is prepared to establish that the

chance is within some confidence interval that has lower bound l > 1/2, then the
Principal Principle will force

PK (A+
n+1|X A+

1 · · ·A+
n )≥ l > 1

2
= PK (A+

n+1).

We see then that in the presence of the Principal Principle, the Keynesian prior does
not preclude induction after all. It is the Principal Principle here that accommodates
induction, not the choice of prior.

Recall that Huemer argues that objective Bayesian inductive inference requires
explanatory constraints on the prior in order to favour the Laplacean prior over the
Keynesian prior, which precludes induction. But we have seen that the Keynesian
prior does not preclude induction. Hence, Huemer’s argument is undermined.

§2.3. Potential responses to the problem

In response to this problem for Huemer’s argument, one might raise concerns about
the claim that the chance proposition X is established on the basis of the sample
A+

1 · · ·A+
n . For example, one might maintain that one would only be prepared to in-

fer a chance proposition X if one had evidence E that the sample were random and
that the outcomes of the experiment were independent and identically distributed.
No matter—the key point still holds: in suitable circumstances (i.e., where one has
this further evidence E that allows one to establish X and that is admissible and
compatible with X , and where X specifies a lower bound l > 1/2 for the chance of a
positive outcome), PK (A+

n+1|X EA+
1 · · ·A+

n )> 1/2, by an application of the Principal
Principle. Induction remains possible with the Keynesian prior, and this possibility
is enough to undermine Huemer’s argument.

Alternatively, one might suggest that one should never establish such a chance
proposition X . (One might, for example, think that one should only take the de-
ductive consequences of one’s observations as evidence, and note that X does not
follow deductively from the sample.) Perhaps the most one would be prepared to
do is believe X to some appropriate degree short of 1—to degree 0.95, say. Then
the above problem for Huemer’s argument does not seem to get off the ground.

The Bayesian can respond to this second objection, however, by appealing to
Jeffrey conditionalisation instead of Bayesian conditionalisation. Jeffrey condition-
alisation allows the Bayesian to update probabilities in the light of a change in
degree of belief in X that is induced by the sample A+

1 · · ·A+
n . If P ′ is the new belief

function, we have:

P ′(A+
n+1) = PK (A+

n+1|X A+
1 · · ·A+

n )P ′(X )+PK (A+
n+1|X̄ A+

1 · · ·A+
n )P ′(X̄ )

≥ l×0.95

> 1/2

as long as l > 10/19. Thus learning from experience remains possible with the Key-
nesian prior, even if chance propositions are never added to the stock of evidence.6

6Two technical points are relevant here. Firstly, this use of Jeffrey conditionalisation requires
certain ‘rigidity’ conditions to hold, namely that P ′(A+

n+1|X A+
1 · · ·A+

n ) = PK (A+
n+1|X A+

1 · · ·A+
n ) and

P ′(A+
n+1|X̄ A+

1 · · ·A+
n )= PK (A+

n+1|X̄ A+
1 · · ·A+

n ). These do plausibly hold here. Given these rigidity con-
ditions, and given that P ′(A+

1 · · ·A+
n )= 1, so P ′(X )= P ′(X |A+

1 · · ·A+
n ) and P ′(X̄ )= P ′(X̄ |A+

1 · · ·A+
n ), this
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So far, we have considered objections that seek to limit the establishing of
chance propositions. Alternatively, one might be inclined to respond to the problem
by rejecting objective chances or the Principal Principle itself. But to do that would
undermine Huemer’s argument that the Laplacean prior is explanatorily more basic,
which appeals to both chances and the Principal Principle.

We are left with a dilemma. With the Principal Principle, both PK and PL can
accommodate induction perfectly well. Without the Principal Principle, there are
no explanatory grounds for choosing PL over PK . Either way, Huemer’s argument
turns out to be inconclusive: it does not force the conclusion that objective Bayesian
inductive inference requires explanatory constraints on the prior.7

§3
The ratio

§3.1. Explanatory virtue and old evidence

Even if the standard argument for explanatory constraints on the prior probability
P(H) does not succeed, one might yet claim that there are explanationist con-
straints on the ratio P(E|H)/P(E) that features in Bayes’ theorem, and hence on
the posterior probability of H. In this vein, Bird (2022, p. 207) maintains that the
ratio quantifies the ‘external explanatory virtue of H relative to E’. The claim is
that the ratio P(E|H)/P(E) can be interpreted as a measure of how well H explains
E: H explains E to the extent that this ratio is greater than 1.8

use of Jeffrey conditionalisation is just an instance of the theorem of total probability for P ′, and should
therefore be uncontroversial.

Second, Jeffrey conditionalisation was developed to handle exogenous changes in degrees of be-
lief: i.e., changes that are not captured simply by conditioning on other established propositions
(see, e.g., Jeffrey, 2004, §3.2). In particular, one should not suppose that P ′(X ) is simply identifi-
able with PK (X |A+

1 · · ·A+
n ), even though the change in degree of belief in X is prompted by the sample

A+
1 · · ·A+

n . Indeed, it is not possible that P ′(X ) = 0.95 = PK (X |A+
1 · · ·A+

n ), on pain of contradiction: if
PK (X |A+

1 · · ·A+
n )= 0.95 and l > 10/19 then,

1/2 = PK (A+
n+1|A+

1 · · ·A+
n )

= PK (A+
n+1|X A+

1 · · ·A+
n )PK (X |A+

1 · · ·A+
n )

+PK (A+
n+1|X̄ A+

1 · · ·A+
n )PK (X̄ |A+

1 · · ·A+
n )

> 10/19×0.95

= 1/2,

a contradiction. The objective Bayesian can rationalise the fact that P ′(X ) ̸= PK (X |A+
1 · · ·A+

n ) as follows
(see Williamson, 2010, §4.2). Conditionalisation is only appropriate where certain requirements are
met: in particular, the proposition θ that is conditioned upon needs to be ‘simple’ in the sense that all
the information it provides can be captured by the constraint P(θ) = 1. Here, the sample proposition
A+

1 · · ·A+
n is not simple because it not only tells us that P(A+

1 · · ·A+
n )= 1 but it also provides information

about chances. Thus we should not expect that P ′(X )= PK (X |A+
1 · · ·A+

n ).
The key point is that Huemer’s argument fails for any version of Bayesianism that adopts the Prin-

cipal Principle and permits exogenous changes in beliefs about chance propositions, even if chance
propositions are never fully established.

7One might wonder what grounds we might have, then, for choosing one of PK and PL over the
other, and, more generally, how to avoid inconsistencies that might arise by applying the Principle of
Indifference in mutually incompatible ways. While this is a bigger question than can be answered here,
it is worth noting that in a Bayesian framework, different ways of applying the Principle of Indifference
arguably lead only to subjectivity, not inconsistency (Williamson, 2010, Chapter 9).

8Bird’s claim is that ratio as a whole has an explanationist interpretation, but that the individual
probability P(E|H) does not have a distinct explanationist interpretation, and nor does P(E). Fur-
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A problem arises for this interpretation of the ratio as a measure of explanatory
virtue, however. The problem is that we only seek to explain previously established
propositions. We do not, for instance, seek to explain why the moon is made of blue
cheese, because the moon has not been established to be made of blue cheese. Now,
for the Bayesian, any previously established proposition E must be fully believed,
P(E)= 1. But if P(E)= 1 then P(E|H)= 1 for any H such that P(H)> 0. In which
case,

P(E|H)
P(E)

= 1,

i.e., H is deemed to be explanatorily neutral with respect to E. Thus, whenever
E is a proposition that we might seek to explain, the ratio measure takes H to be
explanatorily neutral with respect to E. But the explanationist will want to maintain
that there are genuine cases in which P(H) > 0 and H is not explanatory neutral
with respect to E. By modus tollens, then, one can only conclude that the ratio
cannot be interpreted as a measure of how well H explains E.9

The upshot is that we have a new kind of ‘old evidence problem’: a precondition
for interpreting the ratio as a measure of how well H explains E is that E should
already be evidence, in which case the ratio measure deems H to be explanatorily
neutral with respect to E.10

One might try to respond to this problem in one of two ways: by trying to tackle
the problem head on (§3.2) or by attempting to avoid the problem altogether (§3.3).
Both paths are beset with obstacles, as we shall see.

§3.2. Tackling the new old evidence problem

This new old evidence problem differs from the standard old evidence problem of
Glymour (1981). The standard problem is that it is difficult to see how old evidence
E can possibly confirm a hypothesis H. According to Bayesian confirmation theory,
confirmation requires probability raising, i.e., P(H|E) > P(H). But since E is old
evidence, P(E)= 1, so P(H|E)= P(H).

Despite the apparent differences between the new and the standard old evidence
problems, there are also similarities. In particular, the two problems stem from the
fact that when P(E) = 1 and P(H) > 0, P(H|E)/P(H) = P(E|H)/P(E) = 1. The
question thus arises as to whether some response to the standard problem might
help to resolve the new problem.

thermore, Bird takes informal explanationist reasoning to have largely heuristic value: it offers an ap-
proximation to more formal Bayesian reasoning, ‘leading to the same or similar judgments reasonably
frequently’ (Bird, 2022, p. 208). Thus, the explanationist interpretation of the ratio saves us from having
to calculate P(E|H) and P(E) individually: we need only multiply the ratio, which measures the external
explanatory virtue of H relative to E (aka its ‘external loveliness’), by the prior probability of H, which
measures the internal explanatory virtue of H (aka its ‘internal loveliness’).

9Note that this problem is orthogonal to Lipton’s distinction between inference to the best actual
explanation and inference to the best potential explanation (Lipton, 1991, Chapter 4). Lipton argues
that inference to the best explanation is fallible and should thus be construed as inference to the best
potential explanation, not inference to the best actual explanation: the latter form of inference would
be infallible because the actual explanation must be at least approximately true. Thus Lipton’s concern
is that one should not presuppose the truth of the hypothesis H that one infers. Here, in contrast, the
concern is that Bird’s interpretation of the ratio presupposes the truth of the evidence E. This concern
arises for inference to the best potential explanation, just as it does for inference to the best actual
explanation.

10This problem also besets a closely related measure of explanatory power due to Good (1960). See
also McGrew (2003) and Schupbach and Sprenger (2011).
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There are two main lines of response to the standard old evidence problem: one
due to Daniel Garber and one due to Colin Howson (see, e.g., Sprenger, 2015). The
approach of Garber (1983) is intended to deal with failures of logical omniscience:
cases in which one does not initially realise that the total stock F of current evidence
entails E. It is then not E itself but the proposition that F entails E that is of
primary interest. The new old evidence problem does not hinge upon a failure of
logical omniscience, however. The problem here is that explaining E presupposes
that E is already established—it is no surprise that F entails E. Therefore, Garber’s
response to the standard problem does not extrapolate to the new problem.

Howson (1991) provided a second strategy for tackling the standard old evidence
problem and Howson’s strategy is more readily applicable to the new problem.
Consider the extent to which one would have believed E counterfactually, were E
not already in one’s stock of evidence F . One might then take the ratio

P(E|H(F −E))
P(E|F −E)

to be a viable measure of how well H explains E, where F −E is formed by con-
tracting F in such a way that E cannot be established from F −E.

This contraction strategy faces two obstacles, however: one to do with auxiliary
hypotheses and one to do with underdetermination.

The first obstacle is that the contraction strategy can fail to yield an accurate
measure of how well H explains E. This is because contraction can remove propo-
sitions from F that inform how well H explains E. In particular, contraction can
remove theoretical propositions from F that bear on the connection between H and
E. For example, suppose that H is the Standard Model of particle physics and E is
the proposition that the 2012 experiments of the Large Hadron Collider observed
the Higgs Boson. Our total evidence F includes E, which was established early in
2013. The question is whether P(E|H(F −E))/P(E|F −E) can be interpreted as a
measure of how well H explains E. Note that H only explains E in the context of
a multitude of auxiliary hypotheses about physics, experimentation and the proper
functioning of the Large Hadron Collider. Now, many of these auxiliary hypotheses
were also required to establish E in the first place, back in 2013, so, when forming
the contraction F −E, one might reasonably remove some of these hypotheses in
order to ensure that E cannot be established from F −E. But removing these cru-
cial auxiliary propositions will underestimate how well H explains E, because H
requires these auxiliaries to explain E. Hence, P(E|H(F −E))/P(E|F −E) can turn
out to be a poor measure of how well H explains E.

The second obstacle to the contraction strategy is one of underdetermination:
there will usually be a great many ways to construct F−E. Indeed, the literature on
belief contraction and revision posit conditions that a contraction operator should
satisfy and it soon becomes clear that there are many reasonable contraction op-
erators (see, e.g., Hansson, 2022). This underdetermination of contraction leads to
the ratio measure being ill-defined.11

11In the context of subjective Bayesianism, this underdetermination is perhaps of no great concern.
Subjective Bayesians hold that any prior probability function P is rationally permissible, and permis-
siveness with respect to the contraction operator is just more of the same thing. But as pointed out in
note 2, subjectivism is not what is required here. The explanationist is looking for substantive constraints
on rational degree of belief that are forced by explanatory considerations. For the explanationist, it is
rationally required, not merely rationally permissible, that these constraints are satisfied. It is for this
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One might object at this point that there are cases in which the contraction
strategy appears relatively unproblematic. For example, if E happens to be the
single most recently established proposition, one might take the rational belief
function held just prior to establishing E as a proxy for P(·|F − E). In such a
situation, there is arguably no need for a general rule for determining F −E.

In response, it is important to observe that what this suggestion is doing is
treating the evidence just prior to establishing E as a candidate for F−E. While this
may be a viable candidate, it remains but one candidate: other candidates for F−E
will usually also be rationally permissible. Thus, the problem of underdetermination
remains. The explanatory virtue interpretation of the ratio requires a determinate
way of retracting old evidence, yet there is none to be found because there are many
equally viable candidates for F −E.

We have seen, then, that attempts to resolve the standard old evidence prob-
lem do not adequately resolve the new old evidence problem that arises for Bird’s
construal of the ratio as a measure of how well H explains E. Garber’s approach
is not applicable to the new problem. While Howson’s contraction strategy might
appear to offer a way out, it faces two substantial obstacles in the present context:
a problem of auxiliary hypotheses and a problem of underdetermination.

§3.3. Avoiding the new old evidence problem

Rather than attempting to solve the new old evidence problem, one might try to
avoid the problem altogether by denying that E is old evidence. In particular,
one might attempt to disavow Bird’s interpretation of E as evidence: this would
avoid the claim that E must have been previously established. One could, for
example, take explanatory constraints on the ratio P(E|H)/P(E) to apply only
to prior probabilities formulated before any evidence has been collected. In this
situation, the proposition E is not evidence at all—neither old nor new. And
without evidence, our new old evidence problem cannot bite.12

Unfortunately, this view is prone to the following rather different kind of prob-
lem. According to this view, the ratio does not measure the explanatory virtue of
a hypothesis in relation to evidence—rather, it measures the explanatory virtue of
one arbitrary proposition in relation to some other arbitrary proposition. Now, for
most pairs of propositions, A,B, proposition A will be explanatorily neutral with
respect to proposition B. For example, the proposition A that the 2012 experi-
ments of the Large Hadron Collider observed the Higgs Boson does not explain
the proposition B that the moon is made of blue cheese. If explanatory considera-
tions are to constrain the ratio, we must have that P(B|A)/P(B) = 1 whenever A is
explanatorily neutral with respect to B.

All these neutrality constraints force the prior probability function to satisfy
many probabilistic independencies. In the above example, both A and its negation
Ā are explanatorily neutral with respect to B, forcing P(B|A) = P(B) = P(B|Ā). A
similar constraint must hold for any two propositions A and B such that neither
A nor Ā explains B. But these constraints quickly become untenable. A and B

reason that Huemer appeals to objective Bayesianism and Bird invokes what he calls ‘super-objective
Bayesianism’ (Bird, 2022, p. 186). An ill-defined or very permissive measure of how well H explains E
will not impose substantive enough constraints for the explanationist.

12Alternatively, by drawing an analogy with Lipton’s distinction between actual and potential expla-
nations (see note 9), one might phrase this objection as follows: one should not take E to be ‘actual’
evidence, but rather ‘potential’ evidence. Again, the key idea is to interpret the ratio before evidence is
collected.
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might be effects of a common cause: neither explains the other, but each raises the
probability of the other; Bayesianism will fail to validate this probability raising if
explanatory neutrality forces probabilistic independence. Worse, A might logically
imply B without explaining B: explanatory neutrality would force P(B|A) = P(B)
while the axioms of probability force P(B|A) = 1, leading to inconsistency when-
ever P(B) < 1. Hence, this attempt to rescue the explanatory virtue interpretation
arguably leads to problems of even greater magnitude than the new old evidence
problem.

Incidentally, a sample A±
1 · · ·A±

n from the experiment of §2 cannot be said to ex-
plain the next outcome A±

n+1, so explanatory neutrality would force P(A±
n+1|A±

1 · · ·A±
n )=

P(A±
n+1) for all n≥1. These independence constraints lead to the Keynesian prior

over outcomes of the experiment, PK (A±
1 · · ·A±

n )= 1/2n. Thus, any attempt to move
away from Bird’s interpretation of E as evidence threatens to further undermine his
appeal to Huemer’s argument for explanatory constraints on the prior, because this
move favours the Keynesian prior over the Laplacian prior.

§4
Conclusion

Huemer’s argument for explanationist constraints on the prior P(H) rests on the
claim that the Keynesian prior is necessarily non-inductive. In the presence of the
Principal Principle, this claim is false: the Principal Principle can be exploited to
ensure that any prior—the Keynesian prior included—can accommodate inductive
inference. On the other hand, Bird’s argument for explanationist constraints on
the ratio P(E|H)/P(E) faces a new kind of old evidence problem, and, as we have
seen, attempts to tackle or avoid this problem face formidable obstacles. These
problems undermine the claim that there are substantive explanationist constraints
on Bayesian probabilities.
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