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1 Introduction

While in principle probabilistic logics might be applied to solve a range of
problems, in current practice they are rarely applied. This is perhaps be-
cause they seem disparate, complicated, and computationally intractable.
In fact, as we shall illustrate in this paper, several approaches to proba-
bilistic logic fit into a simple unifying framework. Furthermore, there is the
potential to develop computationally feasible methods to mesh with this
framework. A unified framework for dealing with logical relations may con-
tribute to probabilistic methods in machine learning and statistics, much in
the way that the notion of causality and its relation to Bayesian networks
have contributed to advances in these fields.

The unifying framework is developed in detail in [6]. Here we shall very
briefly describe the gist of the whole approach.

1.1 Probabilistic Logic

Probabilistic logic asks what probability (or set of probabilities) should at-
tach to a conclusion sentence v, given premises which assert that certain
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probabilities (or sets of probabilities) attach to various sentences 1, ..., ©,.
That is, the fundamental question is to find a suitable set Y such that

RN ZR L SRTL (1.1)

where R is a notion of entailment, X1, ..., X,,, Y are sets of probabilities and
Y1, ---,Pn, 1 are sentences of some logical language £. This is a schematic
representation of probabilistic logic, inasmuch as the entailment relation g
and the logical language L are left entirely open.

1.2 The Progicnet Programme

What we call the progicnet programme consists of two basic claims:

Framework. A unifying framework for probabilistic logic can be constructed
around Schema 1.1;

Calculus. Probabilistic networks can provide a calculus for probabilistic
logic—in particular they can be used to find a suitable Y such that
the entailment relation of Schema (1.1) holds.

These two claims offer a means of unifying various approaches to combining
probability and logic in a way that seems promising for practical applica-
tions. We shall now take a look at these two claims in more detail.

1.2.1 Framework

The first claim is that a unifying framework for probabilistic logic can be
constructed around Schema (1.1). This claim rests on the observation that
several seemingly disparate approaches to inference under uncertainty can
in fact be construed as providing semantics for Schema (1.1):

Standard Probabilistic Semantics. According to the standard seman-
tics, the entailment gof(l, o, X ke Y holds if all probability func-
tions P which satisfy the premisses—i.e., for which P(¢1) € Xq, ...,
P(pn) € X,,—also satisfy the conclusion P(¢) € Y. The logical lan-
guage may be a propositional or predicate language.

Bayesian Statistical Inference. Under this account, the probabilistic
premisses contain information about prior probabilities and likeli-
hoods which constitute a statistical model, the conclusion denotes
posterior probabilities, and the entailment holds if, for every prob-
ability function subsumed by the statistical model of the premisses,
the conclusion follows by Bayes’s theorem. Again a propositional or
predicate language may be used.

Evidential Probability. Here the language is a predicate language that
can represent statistical statements of the form ‘the frequency of S in
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reference class R is between [ and u’. The ¢; capture the available
evidence, which may include statistical statements. These evidential
statements are uncertain and the X, characterise their associated risk
levels. The entailment holds if the conclusion follows from the pre-
misses by the axioms of probability and certain rules for manipulating
statistical statements.

Probabilistic Argumentation. Here the language is propositional and
the entailment holds if Y contains the proportion of worlds for which
the left-hand side forces v to be true.

Objective Bayesian Epistemology. This approach deals with a propo-
sitional or predicate language. The go;-X" are interpreted as evidential
statements about empirical probability, and the entailment holds if
the most non-committal (i.e., maximum entropy) probability function,
from all those that that satisfy the premisses, satisfies the conclusion.

With the exception of the first, these different semantics for probabilistic
logic are presented more fully in the subsequent sections of this paper.

1.2.2 Calculus

In order to answer the fundamental question that a probabilistic logic faces—
i.e., in order to find a suitable Y—some computational machinery needs to
be invoked. Rather than appealing to a proof theory as is usual in logic,
the progicnet programme appeals to probabilistic networks. This is because
determining Y is essentially a question of probabilistic inference, and prob-
abilistic networks can offer a computationally tractable way of inferring
probabilities. It turns out that under the different approaches to proba-
bilistic inference outlined above, it is often the case that Xi,...,X,,,Y are
single probabilities or intervals of probability. When that is the case, a
Bayesian network (a tool for drawing inferences from a single probability
function) or a credal network (which draws inferences from a closed convex
set of probability functions) can be used to determine Y. The construction
of the probabilistic network depends on the chosen semantics, but given the
network the determination of Y is independent of semantics. Hence the
progicnet programme includes a common set of tools for calculating Y [6].
Examples of the use of probabilistic networks will appear in the following
sections; here we shall introduce the key features of probabilistic networks
and their role in the progicnet programme.

A probabilistic network is based around a set of variables {Ay,..., A, }.
In the context of probabilistic logic, these may be propositional variables,
taking two possible values True or False; if the language L of the logic
is a predicate language, the propositional variables may represent atomic
propositions, i.e., propositions of the form Ut where U is a relation symbol
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and t is a tuple of constant symbols. A probabilistic network contains a
directed acyclic graph whose nodes are Ay, ..., A,. This graph is assumed to
satisfy the Markov condition: each variable is probabilistically independent
of its non-descendants, conditional on its parents in the graph. For instance,
the following directed acyclic graph implies that A3 is independent of A;

conditional on As:

FIGURE 1. Example of a probabilistic network.

A probabilistic network also contains information about the probability
distribution of each variable conditional on its parents in the graph. In
a Bayesian network, these conditional probabilities are all fully specified;
a Bayesian network then determines a joint probability distribution over
Ay, ..., A, via the relation P(A1,..., A,) = [[,_, P(4;|Par;) where Par; is

i=1
the set of parents of A;. In our example, we might have

P(A) = 0.7, P(B|A) = 0.2, P(C|B) = 0.9,
P(B|-A) = 0.1, P(C|-B) = 0.4,

from which we derive, for example,
P(AN-BAC)=P(A)P(—-B|A)P(C|-B) = 0.224.

In a credal network, the conditional probabilities are only constrained
to lie within closed intervals. A credal network then determines a set of
joint probability distributions: the set of those distributions determined
by Bayesian nets that satisfy the constraints. For example, a credal net-
work might by satisfied by the above graph together with the following
constraints:

P(A) € [0.7,0.8],  P(B|A) =02, P(C|B) € [0.9,1],
P(B|-A) € [0.1,1],  P(C|-B) € [0.4,0.45].

In the context of probabilistic logic, we are given premisses go‘f Lo
and a conclusion sentence 1, and we need to determine an appropriate Y
to attach to 1. The idea is to build a probabilistic network that represents
the set of probability functions satisfying the premisses, and use this net-
work to calculate the range of probabilities that these functions give ¢. As
mentioned above, the construction of the probabilistic network will depend
on the chosen semantics, but common inference machinery may be used to
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calculate Y from this network. The approach taken in [6, §8.2] is to imple-
ment this common machinery as follows. First, compile this network: i.e.,
transform it into a different kind of network which is guaranteed to generate
inferences in an efficient way. Second, use numerical hill-climbing methods
in this compiled network to generate an approximation to Y.

In this paper we will illustrate the general approach of the progicnet
programme by means of an example in which a number of applications can
be exhibited. The example stems from psychology, more specifically from
psychometrics, which studies the measurement of psychological attributes
by means of tests and statistical procedures performed on test statistics.
This example is constructed with the aim of bringing out the use of logical
relations in probabilistic inference. In the next section we shall introduce
the psychometric case study. In subsequent sections we shall see how the
inferential procedures introduced above can be applied to this problem do-
main, and how they fit into a single framework within which the progicnet
calculus can be utilized.

2 Applying the Progicnet Framework

We now illustrate the progicnet programme with an example on the mea-
surement of psychological attributes. The first subsection introduces the
example, and the second subsection indicates how each of the approaches
that is covered by the progicnet framework can be employed to solve specific
problems. At times, the example may come across as somewhat contrived.
If so, this is because we illustrate all procedures with a single example.
Straightforward applications of the framework and calculus will typically
involve two procedures only.

2.1 A Psychometric Case Study

Psychometrics is concerned with the measurement of psychological attributes
in individuals, for example to do with cognitive abilities, emotional states,
and social strategies. Typically, such attributes cannot be observed directly.
What we observe are the behavioural consequences of certain psychologi-
cal attributes, such as a high score in a memory test, a certain reaction to
emotionally charged images, or the characteristics of social interactions in
some game. In many psychometric studies, the psychological attributes are
taken as the hidden causes of these observable facts about subjects, or in
short, they are taken as latent variables. The observable variables, and the
correlational structure among them, are used to derive facts about these
latent variables.

Notice that the general aim of psychometrics fits well with the general
outlook of the progicnet framework. As in the progicnet framework, most
psychometric questions start out with a number of probabilistic facts, deriv-
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ing directly from the observations, and a number of logical and probabilistic
relations among observable and latent variables, deriving from the psycho-
logical theory. The goal is then to find further logical and probabilistic facts
concerning the latent variables, which satisfy the constraints determined by
the observations and the psychological theory. Hence psychometrics lends
itself well to a conceptualisation in terms of the progicnet framework.

Let us make this more concrete in the context of a version of a cognitive
psychological experiment, which we concede is still rather abstract. Say
that we have presented a number of subjects, indexed j, with three cognitive
ability tasks, A, B, and C, which they can either pass or fail. We denote
the corresponding test variables by A;, B;, and C}, denoting the scores of
subjects j on the three tests, respectively. Each test variable can be true
or false, which, in the case of A;, is denoted by the assignments a} (or a;)
and af (or —a;), respectively.

Imagine further that these tests are supposed to inform us about a psy-
chological theory concerning three aspects of cognition, two of them to do
with different developmental stages of the subjects and the other with pro-
cessing speed. The corresponding latent variables are denoted by F}, G,
and Hj, respectively. Say that the categorical variables F; and G each dis-
cern two developmental stages, and are thus binary. The processing speed
H; € [0, 00) is continuous, but for convenience we may view H; as categor-
ical on some suitable scale, taking integer values n for 1 <n < N and N
sufficiently large, say N = 100. The atomic statements in the language are
then valuations of these variables for subjects. For example, b2 or —bs mean
that subject j = 5 failed test B, and h}®> means that subject j = 3 has a
latent processing speed n = 15. For convenience we collect the variables in
Vi ={4;,B;,C;, F;,G;, H;}.

Imagine first that the psychological theory provides the following inde-
pendence relation among the variables in the theory:

Vi#k: P(V;)=P(W). (2.1)

This relation expresses that all subjects are on the same footing, in the
sense that they are each described by the same probability function over all
the variables. Because of this the order in which the subjects are sampled
does not matter to the conclusions we can draw from the sample. Moreover,
unless we condition on observations of specific subjects and assignments, we
can omit reference to the subjects j in the probability assignments to the
variables.

Second, imagine that the developmental stages F' and G and processing
speed H are independent components in determining the test performance,
and further that test scores are determined only by these latent variables,
i.e., conditional on the latent variables, the performance on the tests is
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uncorrelated. The exact independence structure might be:
P(A,B,C,F,G,H) =P(F)P(G)P(H)P(A|F,G)P(B|G,H)P(C|H). (2.2)

Both the independence among the subjects j, and the independence rela-
tions between the variables within each subject present strong simplifica-
tions to the psychometric example.

Next to the independence premises, psychological theory might deter-
mine the following relations between assignments to the latent and the ob-
servable variables. All these relations hold for all subjects j, and thus we
omit again any such reference.

fAg—-a, (23

g — a, (24)

P(blg AB") = —. (2.5)
N

P(c|h™) = 2;”. (2.6)

Again these relations may be taken as premises in the progicnet framework,
because each of these relations effectively restricts the set of probability
assignments over both latent and observable variables. Or in terms more
familiar to statisticians, the above premises determine a model: they fix the
likelihoods of the hypotheses about subjects. Note, however, the available
knowledge about the outcome of test A, as expressed in Equations (2.3) and
(2.4), is purely logical and in this sense qualitative. One of the challenges is
to combine such purely logical constraints with the probabilistic facts given
in the other premises.

2.2 Various Approaches in a Unifying Framework

As signalled at the beginning of this section, the reader may feel that the
psychometric example is unnecessarily complicated. We hope it will be
apparent from subsequent sections why the example is so multi-faceted. One
of the strengths of the progicnet framework is that it can accommodate a
large variety of inferential problems, and we have chosen the example such
that all these inferential problems find a natural place.

Of course a large number of problems on the psychometric example are
essentially statistical. We may want to estimate the probability that a sub-
ject will pass test C' given her performance on A and B, or how probable it
is that her processing speed exceeds a certain threshold. Most of these prob-
lems will be dealt with in Bayesian statistical inference, which is sketched
in Section 3. There we define a probability over the latent variables, by
observing a number of subjects and then adapting the probability over la-
tent variables accordingly. Because this type of inference is particularly
well-suited for the example, we will pay a fair amount of attention to it.
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Of course there are also statistical inference problems to which Bayesian
statistical inference is not that easily applicable. For example, we might
discover that an additional factor D influences the performance on the tests
A, B, and C, so that we have to revise our predictions over these perfor-
mances. Alternatively, we might be given further frequency information
from various experimental studies on the variables already present in the
example, say

P(g|b) € [0.2,0.4], (2.7)
P(glc) € [0.3,0.5]. (2.8)

On the addition of such information, we can employ inferences that use so-
called evidential probability. It tells us how to employ the discovery of the
factor D in improving predictions, and how to adapt the predictions for G
after learning the further frequency information. Section 4 introduces this
approach.

Evidential probability provides solutions to a number of inferential prob-
lems on which Bayesian inference remains silent. But there are yet other
problems for which both these statistical approaches are unsuited, for in-
stance those concerned with logically complex combinations of observable
and latent variables. Say that growing theoretical insight entails that

(@A g)Vb. (2.9)

We might then ask what probability to attach to other complex formu-
lae. As worked out in Section 5, probabilistic argumentation is able to
provide answers on the basis of a strict distinction between logical and
probabilistic knowledge, and by considering the probability of a hypothe-
sis to be deducible from the given logical premises. However, answers to
such questions will typically be intervals of probability, which makes ac-
tual computations less efficient. Here objective Bayesianism, as dealt with
in Section 6, presents a technique to select a single probability assignment
from all assignments that are consistent with the premises.

In the next few sections we show that inferential problems such as the
above can be answered by the variety of approaches alluded to in the above,
that these approaches can all be accommodated by the progicnet framework,
and that their accommodation by the framework makes them amenable to
the common calculus introduced in the foregoing. In this way we illustrate
the use of this framework.

3 Bayesian Statistical Inference

This section introduces Bayesian statistical inference, illustrates how it is
captured in the progicnet framework, and finally shows that it can be em-
ployed to solve inferential problems on the psychometric example. Bayesian
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statistical inference is a relatively important approach in this paper. It cov-
ers a fairly large number of the inferential problems in the example, because
the example itself has a statistical nature. However, it also misses impor-
tant aspects. In subsequent sections, we will show how each of the other
approaches in this paper can be used to fill in these lacunas.

3.1 Simple Bayesian Inference in the Progicnet Framework

The key characteristic of Bayesian statistics is that it employs probabil-
ity assignments over statistical hypotheses, next to probability assignments
over data. More specifically, a Bayesian statistical inference starts by deter-
mining a model, or a set of statistical hypotheses that are each associated
with a full probability assignment over the data, otherwise known as likeli-
hood functions, and further a so-called prior probability assignment over the
model. Relative to a model and a prior probability, the data then determine
a so-called posterior distribution over the model, and from this posterior we
can derive expectation values, predictions, credence intervals, and the like
[1, 13].

We may illustrate the general idea of Bayesian inference with the psy-
chometric example of the previous section. In the example, {h;, e hé-v }is
a model with a finite number of hypotheses concerning the latent speed of
some subject j, and Equation (2.6) determines the likelihoods P(c}|h}) =

% of the hypotheses h] for c}, the event of subject j passing the test

Cj. Finally, we might take a uniform distribution P(h}) = L as prior

N
probabilities. With Bayes’s theorem it follows that

P Cl- h" n
P(h2|cl) = P(h?) ;thl-)j) _ ;gj& i)_ (3.1)

That is, upon learning that subject j passed test C;, we may adapt the
probability assignment over processing speeds for that subject to the values
on the right hand side. This transition from the prior P(h}) to the posterior
P(h|c}) is at the heart of all Bayesian statistical inferences.

It may be noted that the probability of the datum P(c}) appears in
Bayes’s theorem. This probability may seem hard to determine directly.
However, by the law of total probability we have

P(h) = SO PP ) = 311;1. (3.2)

So, relative to a model, the probability of c} is easily determined. We
simply need to weigh the likelihoods of the hypotheses with the prior over
the hypotheses in the model.
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We can represent the transition from prior and likelihoods to posterior
in the progicnet framework, as it was introduced in Section 1. Recall that
in Schema (1.1), all premises take the form of restrictions to a probabil-
ity of a logical expression, go,LXZ However, the likelihoods P(c}|h§~”) = %
cannot be identified directly with probability assignments to specific state-
ments, because c;|h§‘ does not correspond to a specific proposition. They
do represent restrictions to the probability assignments, but rather they are
restrictions of a different type. Since

1 n
P =
J
we may write out this restriction in terms of two related and direct restric-
tions to the probability assignments, as follows:

N+n
YN

(HR) ™ & vy e [0,1]: ()" and (c} A RD) (3.3)

The left side of this equivalence is the likelihood in the notation of
Schema (1.1), while the right side fixes the probability of two related propo-
sitions in parallel. In words, we restrict the set of probability functions over
the algebra to those functions for which the ratio of the probabilities of the
two propositions ¢} A A7 and h? is £

With this notation in place, all expressions in Equation (3.1) are seen to
be restrictions to a class of probability assignments, or models for short.
More specifically, the restrictions together determine the set of models
uniquely: only one probability assignment over the h}’s and cjl-’s satisfies the
restrictions on the left hand side. But this is not to say that the complete
credal set, as introduced in Section 1, is a singleton. The one probability
assignment over the h7’s and c; ’s can still be combined with any probability
assignment over the other propositional variables.

Still restricting attention to the transition from prior to posterior for
the hypotheses h7 and the data c}, the Bayesian inference can now be
represented straightforwardly in the form of Schema (1.1):

n\ < 1)7.n\ Xtn ni .1 2AN4n)
Vne{l,...,N}: (hj)N, (cj]hj) W = (hj\cj)N@NH). (3.4)

Equation (3.4) is a representation of the Bayesian statistical inference, start-
ing with a model of hypotheses h’, their priors and likelihoods

N +n
2N '’

" 1

and ending with a posterior

P(cj|h}) =

2(N +n)

ni 1\
Phjles) = Nan+ 1)
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The derivation of the posterior employs standard probability theory and
concerns credal sets. It is therefore amenable to the calculus introduced in
Section 1.

In sum, provided we supply the relevant premises, we can also interpret
inferences within the progicnet framework as Bayesian statistical inferences.
One type of premise concerns the statistical model, the other type of premise
determines the prior probability assignment over the model. From these two
sets of restrictions we can derive, by using the progicnet calculus, a further
restriction on the posterior probability P(h;‘\c})

3.2 Bayesian Inference across Subjects

The above makes explicit what Bayesian statistical inference is, and how it
relates to the progicnet framework. In the remainder of this section, we will
show that we can accommodate the psychometric example in its entirety in
a Bayesian statistical inference. That is, we extend Bayesian inference to
apply to all variables and subjects, and we include all probabilistic restric-
tions presented in the example. It is noteworthy that this involves additional
assumptions to do with a prior over latent and observable variables. If we
want to do without such assumptions, we must move to one of the other ap-
proaches for incorporating logical and probabilistic relations that this paper
deals with.

Recall that the idea of statistical inference is not just that we can learn
about values of variables within subjects, but that we can learn about them
across subjects. For example, from observing the value of C; for a subject
j we should be able to derive something about the probability assignment
over the values Hj, for a different subject k. The independence expressed in
Equation (2.2) determines in what way this learning across subjects can take
place. It expresses that each subject has a valuation over both latent and
observable variables, that is drawn from the same multinomial distribution
P(V)withV ={A, B,C, F,G, H}. By learning valuations and expectations
over these variables for some subjects, we therefore also learn the expecta-
tions over variables for other, as yet unobserved subjects. Moreover, the
valuations of the variables are not drawn from just any multinomial distri-
bution over the variables. Because we only have access to the observable
variables, the latter would mean we could never learn anything about the
latent variables. Fortunately the psychometric example offers a number
of relations among latent and observable variables, and these relations re-
strict the set of multinomial distributions from which the valuations of the
observable variables are drawn.

To make this specific, consider again the relation between the observ-
able variables C; and the latent variables H;. To keep things manageable
we choose N = 3, so that we have 3 x 2 = 6 complete valuations of C;
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and H; together. Without further restrictions, we thus have a multinomial
distribution determined by 6 parameters, namely probabilities for each full
valuation P(ci A h%) = 0 with k = ni + n, and a restriction that these
probabilities add up to 1, leading to 5 degrees of freedom. We can also pa-
rameterise this distribution differently, with a probability P(h}) = 0~ for
the latent variables h", a restriction that these sum to 1, and next to that
three conditional probabilities P(cj|h}) = 1 — P(c)|h}) = 6cn. In either
case we have a set of multinomial distributions from which valuations of
observed and latent variables may be drawn.

As suggested in the foregoing, we have some additional restrictions
to this set of distributions deriving from the likelihoods of H; for Cj:
P(cj|h?) = &% In the latter parametrisation of the multinomial distri-
butions, these restrictions can be accommodated very easily, because they
come down to setting parameters 8o to specific values, namely

Ocn = (3.5)

2N
Once the restrictions given by the likelihoods P(c}|h?) are put in place,
all remaining degrees of freedom in the parameter space derive from the
freedom in the probability over the hypotheses P(h?). Every point in the
parameter space 0, = (01,052, 0y3) is associated with a particular value for
the probability of the observable variable C}, according to

P ; (cH|hm)P —3N+”9 3.6
) = PP = 3 “ o (3.6)

n=1

Note that these values need not be unique: it may happen, and indeed it
does happen in the example, that several probability assignments over the
h’, or points 6 in the parameter space, lead to the same overall probability
for c‘7 Hence observing the relative frequency of values for the variables C}
may not lead to a unique probability over the hypotheses (h;’) In any
case, the main insight is that learning the relative frequency of values for
the variables C; does tell us something about the probabilities of h} for
some as yet unobserved subject k.

3.3 Setting up the Statistical Model

The foregoing concludes the introduction into Bayesian statistical inference
for the psychometric example. We will now fill in the details of this ap-
proach. The aim is to specify a Bayesian inference for ', G and H from
the observation of A, B, and C and the relations (2.3) to (2.6), along the
lines just sketched for H and C. Readers who are more interested in the
complementary tools provided by the other approaches can skip the present
subsection.
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As indicated in Section 1, to make actual inferences in the psychometric
example it is convenient to build up a so-called credal network, a graphical
representation of the probability assignment over all the variables, and to
build up the parametrisation of the multinomial distribution, from which
observations are drawn, on the basis of this network. By the independence
relation of Equation (2.2) we have the following network:

(F—(&

FI1GURE 2. The network for the psychometric case study.

This network captures the independence relations for each subject j
separately. It expresses exactly the independencies brought out by Equa-
tion (2.2): conditional on certain latent variables certain test variables are
independent of each other, and the three latent variables are independent
of each other as well.

Now that we have pinned down this overall structure of the model, we
can fill in some of the details by means of the relations between latent and
observable variables. More specifically, from Equation (2.4) we can derive
that

gg-) A ag-)

is false, so that we have P(a9|g}) = 0 and hence
P(aflg] A f}) =0

for ¢ = 0,1. Similarly, from Equation (2.3) we can derive that fj1 A gjl- A a}
is false, so that we have
P(ajlgj A f}) = 0.

Equations (2.5) and (2.6) provide input to the Bayesian inference even more
straightforwardly: they fix the values for P(bj|g; Ah%) and P(cj|h]) respec-
tively. The nice thing about the above network representation is that its
parametrisation, in terms of probabilities for latent variables and probabil-
ities of observable variables conditional on these latent variables, allows us
to include these restrictions directly. All the relations between latent and
observable variables restrict the space of multinomial probability distribu-
tions, by setting one or more of its parameters to specific values.
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After all these relations have been incorporated, we have narrowed down
the set of multinomial distributions to a specific set, which we may denote
P. Within this specific set, we have the following degrees of freedom left:

j ;) = 041 F0G1, (3.7)
P(bjlg] AhY) = Oprcorm, (3-8)
P(f;) = 0p, (3.9)

P(g;) = e, (3.10)

P(h) = Oy (3.11)

So for N = 3 we have 7 degrees of freedom left in the space of multinomial
distributions. Note that the uncertainty of the likelihoods, Equations (3.7)
and (3.8), is quite different from the uncertainty over the latent variables,
Equations (3.9) to (3.11). The former uncertainty concerns the evidential
bearing that the observable variables have on the latent variables, while the
latter uncertainties concern the latent variables themselves.

For each point within the above space of multinomial distributions, we
can derive likelihoods for the observable variables A and B, analogously to
Equation (3.6) for C:

P(ajl) = (1—9}71)9@1 9A1|F0G17 (312)
5 n
PO =Y O (9(;1 <+ (- 9(;1)931|G0Hn) . (3.13)
n=1

Because Equations (2.3) to (2.6) do not pin down all evidential relations,
the likelihoods for A; and B; will also depend on the values of 6 41|pog1 and
Op1jgopn. One possible reaction to this is that we stipulate specific values
for the latter parameters, for instance by the maximum entropy principle.
This approach is developed further in Section 6.

The fully Bayesian reaction, however, is to include the unknown likeli-
hoods in the space of multinomial distributions, and to work with a second-
order probability assignment over the entire space, which includes param-
eters pertaining to the probability of latent variables, and parameters per-
taining to observable variables conditional on latent variables. We then
assign a prior probability assignment to each point in the space of multino-
mial distributions. And once we have provided a prior probability over all
parameters, we can integrate the parameters 041 pog1 and 6pi|gogn out,
and come up with a marginal likelihood for A; and B, of all probability
assignments over latent variables.
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3.4 Bayesian Inference and Beyond

With these last specifications, we are ready to apply the machinery of
Bayesian statistical inference. We have a model, namely the space of multi-
nomial distributions over observable and latent variables, suitably restricted
by Equations (2.1) to (2.6). And we have a prior probability over this model.
So from a sample of subjects with their scores on the observable variables,
we can derive a posterior probability distribution over the possible multi-
nomial distributions, which entails expectations for the latent variables and
test scores of as yet unobserved subjects. This completes the exposition of
a Bayesian statistical inference for the psychometric example.

But can we accommodate this full Bayesian inference in the progicnet
framework? Recall that this framework only takes finite numbers of proba-
bility assignments as input. However, the space of multinomial distributions
used in the foregoing comprises of a continuum of statistical hypotheses.
Fortunately, this can be solved by making the #-parameters of the above
vary discretely, exactly like we made the hypotheses H; on processing speed
vary discretely in order to fit it into the progicnet framework. With this
discretisation of the probability space, we can indeed accommodate the ad-
vanced version of Bayesian statistical inference in the progicnet framework,
and use the common calculus to the inference problems.

There are, however, shortcomings of the Bayesian approach that invite
us to supplement it with other approaches. It depends on the details of the
relations between latent and observable variables whether inferences such
as the above can guide us to a unique probability assignment over latent
variables. As repeatedly indicated in the foregoing, different points in the
space of multinomial distributions may have the same marginal likelihoods
for the observable variables, and in such cases the statistical model is sim-
ply not identified. For example, setting aside the extreme cases, there will
always be several probability assignments over the latent variables h’' that
have maximal likelihood for the observed relative frequency of cjl-. Unfortu-
nately, this paper is too short to include a discussion of the exact conditions
under which this occurs. But we are sure that if it does occur, the results of
the statistical analysis crucially depend on the prior probability assignment
over the model, and in a way that cannot be resolved by collecting more
data.

Shortcomings of this kind call for different approaches to the problem
presented by the psychometric example. To improve on the estimations we
might, for example, try and employ statistical knowledge on test and latent
variables for slightly different classes of subjects. In the next section we
will show how evidential probability enables us to employ such knowledge,
and furthermore how this approach is covered by the progicnet framework.
Alternatively, we might try and avoid the use of priors over the model alto-
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gether and simply work with the set of probability assignments determined
by the input. This is the approach of probabilistic argumentation, which is
dealt with in Section 5. Finally, we may also take the preferred element in
the set of allowed distributions under some preference ordering of probabil-
ity distributions. This objective Bayesian approach, finally, is dealt with in
Section 6.

4 Evidential Probability

The first of the above suggestions is nicely accommodated by evidential
probability (EP). We will first briefly review EP and then illustrate it in
the context of the psychometric example.

4.1 Introduction into EP

The theory of evidential probability rests on two central ideas [10, 12, 7]:
probability assessments should be based upon relative frequencies, to the
extent that we know them, and the assignment of probability to specific
events should be determined by everything that is known about that event.

The crux of the difference between evidential probability and Bayesian
statistical inference is how approximate joint statistical distributions are
handled. Bayesian statistical methods assume that there are always joint
distributions available for use, whereas evidential probability does not. In-
stead, EP maintains that there must be empirical grounds for assigning a
joint frequency probability and that we must accept the uncertainty that
attends our incomplete knowledge of statistical regularities. There are of
course many inference problems where the two approaches perfectly align:
both theories agree that Bayes’s theorem is a theorem. But the two accounts
differ sharply in their assessment of the range of reasonable applications of
Bayesian inference structures, and whether the alternative evidential prob-
ability methods are appropriate. See Seidenfeld [14] and Kyburg [11] for a
succinct comparison.

Evidential probability is conditional in the sense that the probability
of a sentence 1 is relative to a finite set of sentences I's, which represent
background knowledge. The evidential probability of 1(j) given I's, written
as %j(1(5),Ts),! is an interval, [I,u], in view of our limited knowledge of
relative frequencies. Prob(¢(t),T's) = [l,u] expresses that the evidential
probability that individual j is a 1 given the relevant statistical information

LSyntactically, ‘7(Z), p(¥), [l,u)’ is an open formula schema, where ‘r(-)’ and ‘p(-)’
are replaced by open first-order formulas, ‘@’ is replaced by a sequence of propositional
variables, and ‘[l,u]’ is replaced by a specific sub-interval of [0, 1]. The binding operator
‘%’ is similar to the ordinary binding operators (V, 3) of first-order logic, except that ‘%’
is a 3-place binding operator over the propositional variables appearing within the target
formula 7(Z) and the reference formula p(Z), and binds those formulas to an interval.

Hereafter we relax notation and simply use an arbitrary variable ‘x’ for ‘z’.
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in s is [I,u], where relevant information in I's includes

e the relative frequency information that the proportion of a reference
set R that is also () is between [ and u percent, and

e the information that the individual j is a member of R,
but excludes

e the relative frequency information of rival reference sets R* to which
J belongs that are no stronger than R, and

e all other frequency information about ¢ except those from sets R’ that
j belongs to that are larger than R, i.e., R C R'.

There may well be several classes that satisfy these conditions with respect
to ¥(j), each with conflicting statistics to associate to j, but there is nev-
ertheless a unique evidential probability assigned to ¥(j) given I's: it is
the smallest cover of the intervals associated with the set of undominated
reference formulas.

There are two types of inference in EP, corresponding to direct inference
and indirect inference. First, direct inference, the inference from known
frequencies of 1 in a population that are R to a member ¢ of that pop-
ulation, is effected in EP by each canonical statement. The statement
Prob(¢(j),I's) = [l,u] is an instance of direct inference. It is straight-
forward to accommodate this inference in the progicnet framework, because
it essentially relies on a fixed set of probability assignments. The other type
is ndirect inference, the inference from an interval valued probability that
an individual j is ¥ to an interval valued probability assignment of 1) in
a population R. It is effected in EP by its rules for adjudicating between
strength and conflict among potential reference classes.

EP is much less easily accommodated in the progicnet framework than
other semantics we consider, because EP employs probability distributions
that are defined over different populations and the semantics for the entail-
ment relation are determined primarily by rules for resolving conflict among
relevant reference statistics. However, as is further worked out in the prog-
icnet programme, the error probabilities that are associated with this type
of inference can still be treated within in the progicnet framework.

4.2 TIllustration in the Psychometric Example

Since all probability assessments in EP are based upon observed relative fre-
quencies, the probabilistic components of our psychological theory—relations
(2.5) and (2.6)—do not have direct expression within EP: there is no place
for a ‘latent’ random variable within the theory. Nevertheless, the sen-
tences representing the psychological theory within EP may include the



66 R. Haenni, J.-W. Romeijn, G. Wheeler, J. Williamson

bi-conditionals

fi=r
g; <=
hj<_)p//

for all j, where each p’ is an open reference formula occurring in some or
another closed direct inference statements in I's that effect the constraints
described by (2.5) and (2.6). There may be several statistical statements in
I's in which each open reference formula appears, of course. We are simply
specifying the potential statistics for our inference problem, and pointing
out that the list of potential statistics are determined by knowledge in I's.

Suppose that we have a particular subject, ;7 = 5. We said at the
outset that EP uses two sources of knowledge for assigning probabilities
that concern subject 5: it draws upon knowledge of relevant statistical
regularities known to affect subject 5, and it draws upon everything that
is known about that individual, subject 5. We now demonstrate how each
of these features is exercised in EP, and how this is represented in terms of
the fundamental question of the progicnet framework.

Imagine that we have the medical files on our subjects and that what
warrants accepting constraint (2.5) is that none of them have a record of
adverse exposure to lead during childhood, which is taken to be a quantity
greater than 10 micrograms of lead per deciliter of blood. However, news
reaches us that any exposure to lead greater than 5 micrograms per deciliter
is adverse, and a review of files reveals that there are subjects in the study
who have had exposure above this threshold. Thus a new parameter is
introduced, D, for exposure to lead.

Our theory says that adverse exposure to lead reduces the pass rates for
task B of late development subjects. In other words, (2.5) is now available
in leaded (d) or unleaded (—d) grades:

n—m

%7 (bj, p; ARG Ndj) = , for some positive m < n (4.1)

%ij(bjs o AR A—dy) = = (4.2)
So if we know that subject 5 was a late development subject exposed to
lead as a child, we would discount his expected performance category H by
m in predicting his success at task B, and if we know all this about subject
5 but that he was not poisoned as a child then we would predict his success
at B to be %
And what if we had no pediatric records for subject 57 Here we would

expect a prediction of success on B to be within the interval ["F™, %],
since leaded and unleaded are values of a binary variable and thus represent
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mutually exclusive categories. Still we do not know which state subject 5
is in, and it won’t do to pick some point in between: subject 5 is either a
leaded or unleaded subject. Thus, the evidential probability assigned to the
direct inference b5 given that (4.1) and (4.2) are in I's, and that no other
relevant statistics are known, is the interval [®5™, %].

Suppose now that we want to know the developmental category G that
subject 5 belongs to, and that I's is fixed. We know that there are replace-

ments for (2.7) and (2.8) in I's, of the form

%j(p,b;,[0.2,0.4]), (4.3)
%j(p',c;,[0.3,0.5)) (4.4)

respectively. Sentence (4.3) expresses that a proportion between 0.2 and
0.4 of the subjects who pass B belong to observable class p’, which has the
same truth value as category 1 of G. Sentence (4.4) expressed that between
0.3 and 0.5 of the subjects who pass C' also belong to observable class p,
which has the same truth value in our theory as category 1 of G. Suppose
subject 5 has passed B and has also passed C'. What is the probability
that he is in category 17 Subject 5 belongs to two references sets, B and
C, that yield conflicting probabilities regarding subject 5’s membership to
category 1 of G. There are no reference sets to which j belongs that offer
stronger frequency information, nor are there larger sets to which either
B or C belong. Thus, B and C represent undominated relevant reference
statistics for p’. Therefore, EP assigns the shortest cover to p’,[0.2,0.5].
Thus Prob(g(j),T's) = [0.2,0.5].

Each of these inferences may be represented as an instance of the basic
question,

so‘l)(l)"'?CIOTL b"l} )

by substituting gof(l, ..., Xn by T's on the left hand side and 1 by an or-
dered pair, (x, [/, u]), on the right hand side, which expresses that the eviden-
tial probability of formula y is [I, u]. So, the inference towards Prob(g(j),'s)
[0.2,0.5] would be represented as

/\ %o (T U, 17/\% ),10.2,0.5)),

where the left hand side consists of the conjunction of all direct inference
statements (" %x(7(x), p(x), [[,u])' ") and all logical knowledge about rela-
tionships between classes (¢!), the entailment relation k¢ is non-monotonic,
the right hand side asserts that the target sentence g(j) is assigned [0.2, 0.5].
That g(j) is [0.2,0.5] just means that the proportion of EP models of

/\ %x [l/ 11/\@]
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that also satisfy ¢g(j) is between [0.2,0.5]. Since the semantics for ke are given
by the rules for resolving conflict rather than by probabilistic coherence, we
assign 1 to all premises and also to ¥ = (g(j),[0.2,0.5]).

This shows that EP fits into the progicnet framework. For statistical
information that is fully certain the application of the common calculus is
uninteresting, since the semantics for g is determined by the EP rules for
resolving conflicts among reference statistics. Nevertheless, we can pose a
question about the robustness of an EP inference, where error probabilities
are assigned to the statistical premises. This ‘second-order’ EP inference
does utilize the calculus, and we refer to the joint progicnet paper [6] for
details.

5 Probabilistic Argumentation

In the above we have concentrated on statistical questions concerning the
psychometric example. Probabilistic argumentation tackles a different set
of questions that we might ask about subjects and psychological attributes,
concerning the logical relations between the attributes. To some extend such
logical relations can be accommodated by Bayesian statistical inference, as
was illustrated in Section 3. But probabilistic argumentation provides tools
for dealing with logical and probabilistic relations without taking recourse
to prior probability assignments.

5.1 Introduction into Probabilistic Argumentation

In the theory of probabilistic argumentation [3, 4, 5, 9], the available knowl-
edge is partly encoded as a set of logical premises ® and partly as a fully
specified probability space (2, 24 P). Variables which constitute the multi-
variate state space €2 are called probabilistic. This setting gets particularly
interesting when some of the logical premises include non-probabilistic vari-
ables, i.e., variables that are not contained in the probability space. The
two classical questions of the probability and the logical deducibility of a
hypothesis 1 can then be replaced by the more general question of the prob-
ability of a hypothesis being logically deducible from the premises. In other
words, we use the given logical constraints to carry the probability measure
P from €2 into the state space of all variables involved.

For this, the state space € is divided into an area Args(¢) = {w € Q :
O, = 1} of so-called arguments, whose elements are each sufficient to make
the hypothesis ¥ a logical consequence of the premises, and another area
Args(—y)) = {w € Q : &, = -} of so-called counter-arguments, whose
elements are each sufficient to make the complementary hypothesis = a
logical consequence of the premises (by ®, we denote the set of premises
obtained from instantiating the probabilistic variables in ® according to
w). Note that the premises themselves may restrict the possible states in



Logical Relations in a Statistical Problem 69

the probability space, and thus serves as evidence to turn the given prior
probability measure P into a (conditional) posterior probability measure P’.

The so-called degree of support of 1 is then the posterior probability of
the event Args(v),

P(Args(y)) — P(Args(1))

dsp(¥) = P'(Args(v)) = 1—P(Args(Ll))

(5.1)

and its dual counterpart, the so-called degree of possibility of 1), is 1 minus
the posterior probability of the event Args(—)),

dps(t) = 1 — P’ (Args(~45)) = 1 — dsp(~)). (5.2)

Intuitively, degrees of support measure the presence of evidence support-
ing the hypothesis, whereas degrees of possibility measure the absence of
evidence refuting the hypothesis. Probabilistic argumentation is thus con-
cerned with probabilities of a particular type of event of the form “the
hypothesis is deducible” rather than “the hypothesis is true”. Apart from
that, they are classical additive probabilities in the sense of Kolmogorov’s
axioms. In principle, degrees of support and possibility can therefore be
accommodated in the progicnet framework.

When it comes to quantitatively evaluate the truth of a hypothesis v, it is
possible to interpret degrees of support and degrees of possibility as respec-
tive lower and upper bounds of an interval. The fact that such bounds are
obtained without effectively dealing with probability intervals or probabil-
ity sets distinguishes the theory from most other approaches to probabilistic
logic. Note that the use of probability intervals or sets of probabilities is
by no means excluded in the context of probabilistic argumentation. This
would simply lead to respective intervals or sets of degrees of support and
degrees of possibility. Indeed, in order to solve the psychometrical example
from Section 2.1, it turns out that we need to introduce such intervals of
support and possibility.

5.2 Illustration in the Psychometric Example

Looking at the example from Section 2.1 from the probabilistic argumen-
tation perspective, we first observe that the probabilistic constraints (2.5)
to (2.8) affect the variables B, C, G, and H only, whereas variables A and
F are tied to variable G by (2.3) and (2.4) on a purely logical basis. This
allows us to consider a set of premises ® = {f A g — —a,—~g — a} and a re-
stricted state space {2 which includes the variables B, C, G, and H, but not
A and F. If further logical constraints are observed, for example (a A g) Vb
from (2.9) or any other complex formula, they can be easily incorporated
by extending ® accordingly. The multi-faceted psychometric example is
thus a nice illustration of the setting on which probabilistic argumentation
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operates. It also underlines the large variety of inferential problems the
progicnet framework accommodates.

Since the probabilistic constraints in the example do not sufficiently
restrict the possible probability measures relative to {2 to a single function
P, we must cope with a whole set P of such probability measures. Recall
that we specified this set in Section 3, where we identified the space of
multinomial distributions that is consistent with the relations provided in
the psychometric example, Equations (3.7) to (3.11). Recall further that for
Bayesian inference, even when it came to inference about a single subject,
we needed to define a prior probability over the model. But probabilistic
argumentation does not need any such prior. Relative to what we have
already learnt about a subject, for example that she passed test A, each
P € P in the remaining set of probability assignments leads to respective
degrees of support and possibility for a given hypothesis, for example the
hypothesis that the subject passes test C.

Moreover, from the fact that all given probabilistic constraints are ei-
ther point-valued or intervals, we know that the resulting sets for degrees
of support and possibility will also be point-valued or intervals. Note that
hypotheses involving only probabilistic variables B, C, G, or H have equal
degrees of support and possibility, i.e., the two intervals will coincide in
those cases, but this does not hold for hypotheses involving A or F'. In gen-
eral, we may interpret the numerical difference between respective degrees
of support and possibility as a quantification of the amount of available
evidence that is relevant to the hypothesis in question. Besides the usual
interpretation of probabilities as additive degrees of belief, which is cen-
tral to the Bayesian account of rational decision making, classical Bayesian
inference is not designated to provide such a separate notion of evidential
strength relative to the resulting degrees of belief.

From a computational point of view, however, the step from a fixed prob-
ability measure to a set of probability measure, as required in our example,
makes the inferential procedure of probabilistic argumentation much more
challenging. As suggested in Subsection 1.2, one solution would be to in-
corporate the given constraints over the probabilistic variables into a credal
network [2], and to use that network to compute lower and upper prob-
abilities for the events Args(y)) and Args(—1)) to finally obtain respective
bounds for degrees of support and possibility. Thus, the progicnet frame-
work neatly accommodates inferences in probabilistic argumentation that
employ interval-valued degrees of support and possibility (for corresponding
algorithms and technical technical details we refer to [6]).

As inference in credal networks still gets extremely costly, even for small
or mid-sized networks, the solution sketched above is not always a satisfac-
tory way out. More promising is the idea of choosing (according to some
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principles) the “best” probability measure among the ones in P, and then
proceed as in the default case. The next section proposes a possible strategy
for this.

6 Objective Bayesianism

To some extent the previous sections have had the idea of the progicnet
framework as an epistemological scheme in the background: the inferences
in the psychometric example tell us what to believe on the basis of the in-
put provided. In objective Bayesianism, this perspective is brought to the
fore. To answer the questions posed at the end of Section 2.1, they are re-
cast explicitly in terms of the strengths of one’s beliefs. For example, given
background knowledge, assumptions and data—such as Equations (2.1) to
(2.6)—and the observed performance of a subject on tests A and B, how
strongly should one believe that the subject will pass test C?7 By refor-
mulating the questions this way, one can invoke the machinery of Bayesian
epistemology.

6.1 Bayesian Epistemology and Objective Bayesianism

According to the Bayesian view of epistemology, the strengths of our beliefs
should be representable by real numbers in the unit interval, and these
numbers should satisfy the axioms of probability: an agent should believe a
tautology to degree 1 and her degree of belief in a disjunction of mutually
exclusive propositions should equal the sum of her degrees of beliefs in those
individual propositions. Thus the strengths of the agent’s beliefs should be
representable by a probability function P. Moreover, an agent’s degrees of
belief should be compatible with her background knowledge, assumptions,
data and evidence (which we shall collectively call her epistemic background
or simply evidence £). The notion of compatibility can be explicated by
principles of the following kind:

1. If a proposition is in her evidence, then the agent should fully believe
it.

2. The agent’s degrees of belief should match her best estimates of the
physical probabilities: if the agent knows that 70% of subjects who
pass A and B also pass C, and she knows that the subject in question
has passed A and B, but no other relevant facts, then she should
believe that the subject will pass C' to degree 0.7.

3. If no probability function fits the evidence using the above principles—
the evidence is inconsistent—then some consistency maintenance strat-
egy should be invoked. E.g., deem a probability function to be com-
patible with the evidence if it is compatible with a maximal consistent
subset of the evidence.
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4. If two probability functions are compatible with the evidence then so
is any function that lies between them; if a sequence of probability
functions are compatible with the evidence then so is the limit of that
sequence.

Via principles 1 and 2 the evidence £ imposes constraints x on the agent’s
degrees of belief. The set of probability functions that satisfy these con-
straints will be denoted by P, . If this set is empty we may need to consider
a set IP);< that is obtained by a consistency maintenance procedure (prin-
ciple 3). Invoking principle 4 we consider the convex closure [P} ] of this
set of probability functions. Then E, the set of probability functions that
are compatible with the evidence &, is just [P} ]. See [15, §5.3] for a more
detailed discussion of these principles and their motivation.

Subjective Bayesian epistemology holds that an agent should set her
degrees of belief according to any probability function in E—she can sub-
jectively choose which function to follow. Objective Bayesian epistemology,
on the other hand, holds that while an agent’s degrees of belief should be
compatible with her evidence, her degrees of belief should equivocate on is-
sues that are not decided by this evidence. Thus the agent’s degrees of belief
should be set according to a function Pg in E that is maximally equivocal.
Where the domain is specified by a finite set €2 of elementary outcomes, the
function in E that is maximally equivocal is the function in E that is closest
to function P_ which gives the same probability 1/|Q2| to each elementary
outcome. (P— is called the equivocator.) Distance from the equivocator
is measured by cross entropy d(P,P-) = > _,P(w)logP(w)/P=(w) =
Y weo P(w)log(|QP(w)). Distance from the equivocator is minimised when
entropy — > .o P(w)log P(w) is maximised, and so this procedure is often
called the Maximum FEntropy Principle or mazxent for short. On a finite
domain, there will be a unique function Pg that is closest to P— in E, so
the agent has no choice about what degrees of belief to adopt—they are
objectively determined by her evidence. (On an infinite domain—such as
that determined by an infinite predicate language—there are cases in which
degrees of belief are not objectively determined; nevertheless, P¢ tends to
be very highly constrained, leaving little room for subjective choice.)

Note that this equivocation requirement yields a substantial difference
between subjective and objective Bayesian epistemology. If a doctor knows
nothing about a particular patient, she is perfectly entitled, on the sub-
jective Bayesian account, to fully believe that the patient does not have
particular ailment A. On the objective Bayesian account, however, the doc-
tor should equivocate—i.e., she should believe that the patient has A to
degree % This equivocation constraint is motivated by considerations of
risk. More extreme degrees of belief tend to be associated with riskier ac-
tions: with a full belief in = A the doctor is likely to dismiss the patient,



Logical Relations in a Statistical Problem 73

who may then deteriorate or perish, but with degree of belief % the doctor
is likely to seek further evidence. Now one should not take on more risk
than the evidence demands: if the evidence forces a full belief then so be it;
if not, it would be rash to adopt a full belief. Thus one should equivocate
as far as evidence allows. This line of argument is developed in [17].

The objective Bayesian approach fits into the progicnet programme as
follows. First, objective Bayesian epistemology provides a semantics for
the probabilistic logic framework of Schema (1.1): 7', ..., 0% K Y.
According to this semantics, the premisses chl, .., X are construed as
characterising the agent’s evidence £. Here ¢; * is understood as saying that
the physical probability of ¢; is in X; (perhaps as determined by appropriate
frequency information). This evidence imposes constraints x on an agent’s
degrees of belief, where x = {P(¢1) € X1,...,P(¢n) € X,}. The set
of probability functions compatible with this evidence is E = [P\]. An
agent with this evidence should adopt degrees of belief represented by a
function P¢ in E that is maximally equivocal. The question arises as to
what value Pg¢ gives to 1, and one can take Y = {Pg(¢)) : P¢ € E is
maximally equivocal}. On a finite domain Y will be a singleton. Thus
objective Bayesianism provides a natural semantics for Schema (1.1). Now
according to the progicnet programme, probabilistic networks might be used
to calculate Y. Indeed, as we shall now see, objective Bayesian nets can be
used to calculate Y.

6.2 Illustration in the Psychometric Example

Returning to the psychometric case study, the objective Bayesian approach
provides the following recipe. Equations (2.1) to (2.6) and the subject’s
performance on tests A and B constitute the evidence £. We should then
believe that the subject will pass C' to degree Pg(C'), where Pg is the max-
imally equivocal probability function out of all those that are compatible
with £.

In general, objective Bayesian nets can be used to calculate objective
Bayesian probabilities [16] and [15, §§5.6-5.8]. The idea here is that the ob-
jective Bayesian probability function P¢ can be represented by a Bayesian
net, now called an objective Bayesian net, and standard Bayesian network
algorithms can be invoked to calculate the required probabilities, such as
P¢(C). Because this probability function is a maximum entropy probabil-
ity function it will automatically satisfy certain probabilistic independencies
and the graph in the Bayesian network that represents these independencies
is rather straightforward to construct. Join two variables by an undirected
edge if they occur in the same constraint of £. Then separation in the
resulting undirected graph implies independence in Pg: if X separates Y
from Z in the graph then it is a fact that P¢ renders Y and Z probabilis-
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tically independent conditional on X. This undirected graph can easily be
transformed into a directed acyclic graph that is required in a Bayesian net.

The example of Subsection 2.1 is actually a very special case. Here
Equation (2.1) is a consequence of the objective Bayesian procedure: since
there are no known connections between different subjects in £, Pg will
render the features of different subjects probabilistically independent. In
this example we also have a causal picture in the evidence, namely that
depicted in Figure 2, where the latent variables F', G and H are causes of
the test results. When we have a causal graph, the graph in the objective
Bayesian network is just this graph [15, §5.8], and hence the factorisation
of Equation (2.2) is also a consequence of the objective Bayesian procedure.
The evidence can thus be viewed as the causal graph Figure 2 together with
the constraints Equations (2.3) to (2.9). Since we have the graph in the
objective Bayesian net, it remains to determine the conditional probabil-
ity distributions, i.e., the distributions Pg(F'), Pe(G), Pe(H), Pc(A|F, G),
Ps(B|G, H), Pg(C|H). Since the causal structure is known, these distribu-
tions can be determined iteratively: first determine the distribution Pg(F)
that is maximally equivocal, then P¢(G), and so on up to Pg(C|H) [15,
§5.8]. By iteratively maximising entropy we obtain:

Pe(f) =12 Pe(alf,g) =0, Pe(blg, ™) =/,
Pe(g) =12, Pe(alf,—g) =1,  Pg(b|-g,h") = 0.4,
Pe(h™) =1/N,  Peglal~f,g) =1/, Pe(c|h™) = (N 4 n)/2N,
Pe(al=f,—g) = 1.

With these probability distributions and the directed acyclic graph we have
a Bayesian network and can use standard Bayesian network methods to
answer probabilistic questions. For example, how strongly should we believe
that subject j will pass C' given that she has passed tests A and B?

Pe(cjlaj, bj) =
2, Pelclh)Pe(blgs, hy)Pe(alfj, 9;)Pe(f;)Pe(g;)Pe (hy)
 Xpgp, Pe(Vlgs h)Pe(alfi, 95)Pe (f;)Pe(g;)Pe (hy)
24,95, Pelclhy)Pe(blg;, hy)Pe(alfj, g5)
X4, 45 Pe(blgs hy)Pe(al 5, ;)
_ 2UNBN + 1)+ (N +1)(5N + 1)
6N(21N + 5)

=0.61 as N — oo.

With the more extensive evidence of Equations (2.1) to (2.9), the procedure
is just the same, though of course the conditional distributions and final
answer differ from those calculated above.
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From a computational point of view, the objective Bayesian approach
is relatively straightforward for two reasons. First, there is only a single
probability function P¢ under consideration. As we have seen, other ap-
proaches deal with sets of probability functions. Second, since this function
is obtained by maximising entropy, we get lots of independencies for free;
these independencies permit the construction of a relatively sparse Bayesian
net, which in turn permits relatively quick inferences.

Computationally feasibility is one reason for preferring the objective
Bayesian approach over the Bayesian statistical methods of Section 3, but
there are others. A second reason is that the whole approach is simpler un-
der the objective Bayesian account: instead of defining (higher-order) prob-
abilities over statistical models one only needs to define probabilities over
the variables of the domain. It may be argued that the move to higher-order
probabilities is only warranted when the evidence includes specific informa-
tion about these higher-order probabilities. Such information is generally
not available.

A third argument for preferring the objective Bayesian approach appeals
to epistemological considerations. Since Bayesian statistics defines probabil-
ities over statistical hypotheses, these probabilities must be interpreted epis-
temologically, in terms of degrees of belief—it makes little sense to talk of the
chance or frequency of a statistical model being true. Hence the Bayesian
statistical approach naturally goes hand in hand with Bayesian epistemol-
ogy. Typically, Bayesian statisticians advocate a subjective Bayesian ap-
proach to epistemology—probabilities should fit the evidence but are oth-
erwise a matter of subjective choice. As we have seen, however, there are
good reasons for thinking that this is too lax: such an approach condones
degrees of belief that are more extreme than the evidence warrants, and
degrees of belief that are too extreme subject the believer to unjustifiable
risks and so are irrational.

Hence Bayesian statistics should minimally be accompanied by a prin-
cipled way to determine reasonable priors, such as is provided by objective
Bayesian epistemology. While there is a growing movement of statisticians
who advocate such a move, it is well recognised that objective Bayesian
epistemology is much harder to implement on the uncountable domains of
Bayesian statistics than the finite domain considered here. This is because
there may be no natural equivocator on an uncountable domain (cf. the dis-
cussion of the wine-water paradox in [8]), unless we can provide an argument
to favour a particular parameterisation of the domain.

For lack of a preferred parameterisation, we have a dilemma: Bayesian
statistics needs to be accompanied by a Bayesian epistemology; if a subjec-
tive Bayesian epistemology is chosen then Bayesian statistics is flawed for
normative reasons; on the other hand if an objective Bayesian epistemology
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is chosen then there are implementational difficulties; moreover, the move to
higher-order probabilities should only be made where absolutely necessary.
Such a move is not absolutely necessary in the example of this paper. It
may be argued, therefore, that in the context of the case study considered
here, the objective Bayesian approach outlined in this section is more ap-
propriate than the Bayesian statistical approach of Section 3. Minimally,
it will provide a valuable addition to the statistical treatment considered
there.

7 Conclusion

In this paper we have sketched a number of different approaches to com-
bining logical and probabilistic inference. We showed how each of these
approaches can be used to answer questions in the context of a toy example
from psychometrics, how each approach can be subsumed under a unifying
framework, thereby making them amenable to a common underlying cal-
culus. But what exactly did we gain in doing so? We give a number of
reasons for saying that the formulation of framework and calculus, as part
of an overarching progicnet programme, amounts to progress.

First of all, we hope to have shown that the standard statistical treat-
ment of the psychometric example, in this case using Bayesian statistics,
can be supplemented in various ways by other approaches to logical and
probabilistic inference. The progicnet programme provides a way to unify
these approaches systematically. More specifically, and as illustrated in the
psychometric example, the progicnet framework allows us to supplement the
statistical inference that is standard in the psychometric context with some
powerful inference tools from logic, all subject to the same calculus. We
believe that there are many cases, in the sciences and in machine learning,
in which the context provides a lot of logical background knowledge. The
psychometric example is one of them, but many more such examples can
be found in data mining, bioinformatics, computational linguistics, and so-
ciological modelling. In all of these fields the existing statistical techniques
cannot optimally employ the logical background knowledge. The progicnet
framework may provide the means to use logical and statistical background
knowledge simultaneously, and in a variety of problem domains.

More specifically, let us reiterate the conclusions on the use of the dif-
ferent approaches, that were reached in the preceding sections.

Bayesian statistical inference allows for dealing with the standard in-
ferential problems of the psychometric example. In this paper it serves
as a backdrop against which the merits of the other approaches cov-
ered by the progicnet framework can be made precise. Note that this
is not to say that Bayesian statistical inference occupies a central place
in the progicnet framework more generally.
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Evidential probability is particularly suited if we learn further statisti-
cal information that conflicts with the given statistical model or in-
troduces further constraints on it. It provides us with the tools to
incorporate this new information and find trade-offs, where Bayesian
inference must remain silent.

Probabilistic argumentation can be employed to derive upper and lower
bounds on the probability assignments on the basis of the statistical
model and the logical relations between the variables in the model
only, without presupposing any prior probability assignments. This
is very useful for investigating the properties of the model and the
probabilistic implications of logical relations.

Objective Bayesianism offers a principled technique for reducing a set of
probability assignments, such as the statistical model of the example,
to a single probability assignment. For complicated models with many
parameters, this provides a powerful simplification, and thus efficient
inferential procedures.

Other reasons for using a common framework are more internal to the
philosophical debate. The field of probabilistic inference is rather disparate,
and discussions over interpretation and applications frequently interfere
with discussions to do with formalisation and validity. Perfectly valid infer-
ences in one approach may appear invalid in another approach, and even
while all approaches somehow employ Kolmogorov’s measure theoretic no-
tion of probability, what is being measured by probability, and consequently
the treatment of probability in the approaches, varies wildly. We hope that
by providing a common framework for probabilistic logic, we help to struc-
ture the discussions, and determine more clearly which disagreements are
meaningful and which are not.

Finally, the existence of a common framework also proves useful on a
more practical level. Now that we have described a common framework, we
can apply the common calculus of credal networks to it. As indicated in
Section 1, and roughly illustrated in Section 3 and 6, credal networks can
play an important part in keeping inferences manageable in probabilistic
logic. More generally, the application of these networks will lead to more
efficient inferences within each of the approaches involved. We must admit,
however, that in the confines of the present paper, we have not explained
the advantages of using networks in detail. For the exact use of credal
networks in the progicnet programme, we again refer the reader to the
central progicnet paper [6].
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