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We show that while standard first-order inductive logic is not decidable, a large 
class of inferences in objective Bayesian inductive logic is decidable. Decidability 
is achieved by reducing the general inference problem to a quantifier-free problem. 
We show that for any inference, if the quantifier-free reduction of the premisses is 
satisfiable, then the original inference is decidable. We go on to show that Bayesian 
networks offer the potential to provide a computationally tractable inference 
procedure for objective Bayesian inductive logic. We also consider inferences with 
infinitely many premisses and explore some properties of the logic.

© 2025 Published by Elsevier B.V.

1. Introduction

Is there a computable procedure for deciding whether any given inference from finitely many premisses is 
valid? Hilbert described this decision problem to be ‘the main problem of mathematical logic’ [13, p. 113]. 
Here, we consider the decision problem in the context of inductive logic.

In propositional deductive logic, the truth-table method provides an effectively computable procedure 
for deciding whether any inference from premisses φ1, . . . , φk to conclusion ψ is valid—i.e., for deciding 
whether the entailment relationship φ1, . . . , φk |= ψ holds. However, there is no such procedure for first
order deductive logic: in first-order deductive logic, the class of inferences from finitely many premisses is 
undecidable [34]; [24, Theorem 16.52]. There are decidable fragments of first-order deductive logic, such 
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as the special case in which all the predicate symbols are unary [22, §3]. Standard fragments can now be 
classified as to their decidability, and at the turn of the present century it was observed that ‘the work on 
the classical decision problem is by and large completed’ for first-order deductive logic [3, p. 8].

Inductive logic generalises deductive logic to the situation in which premiss and conclusion sentences may 
be less than certain: i.e., to entailment relationships of the form φX1

1 , . . . , φXk

k |≈ ψY , where X1, . . . , Xk, Y

are representations of the uncertainty that attaches to the corresponding sentences φ1, . . . , φk, ψ of the logic, 
and where |≈ is an inductive entailment relation [9]. Given that first-order inductive logic is a generalisation 
of first-order deductive logic, the prospects for decidability are dim. Indeed, thanks to the undecidability 
of first-order deductive logic, first-order inductive logic is undecidable when endowed with the ‘standard 
semantics,’ i.e., when X1, . . . , Xk, Y are sets of probabilities and one deems an entailment relationship to 
hold just when all probability functions that satisfy the premisses also satisfy the conclusion (§3).

In this paper, we consider objective Bayesian inductive logic (OBIL) [17,31,39], which provides an alterna
tive to the standard semantics. For OBIL, premisses inductively entail a conclusion, written φX1

1 , . . . , φXk

k |≈◦
ψY , just when the probability functions with maximal entropy, from all those probability functions that 
satisfy the premisses, satisfy the conclusion. Such functions can be regarded as probability functions that 
satisfy the premisses but which are maximally non-committal with respect to other propositions.

We show that a truth-table method can be used to determine the validity of a surprisingly large class of 
inferences of OBIL. Indeed, this class of inferences is decidable.

In §2 we outline the formal framework. In §3 we show that the standard semantics for probabilistic logic 
is not decidable but show how a truth-table method can be used to test for the validity of those inferences 
in OBIL that involve only quantifier-free sentences. In §4 we consider the more general case of quantified 
sentences and introduce a quantifier-free ‘support’ problem that is associated with the more general problem. 
In §5 we show that the general problem can often be reduced to the support problem. §6 shows that a large 
class of inferences in OBIL is therefore decidable. §7 provides a more computationally tractable method 
for solving the associated support problem, which appeals to Bayesian networks. §8 considers the extent 
to which these results can be generalised to inferences that involve infinitely many premisses. Finally, §10
develops a more detailed understanding of the class of decidable inferences identified in this paper.

2. Inductive logic

In this section, we provide the background on inductive logic to which we shall appeal throughout the 
paper.

2.1. Logic

We shall work in pure first-order logic, i.e., first-order logic without function symbols or equality. We 
take language ℒ to have finitely many relation symbols, countably many constant symbols and countably 
many variable symbols. By default, we shall use U1, . . . , Ul for the relation symbols, t1, t2, . . . for the con
stant symbols, and x1, x2, . . . for the variable symbols, but we shall occasionally use other symbols where 
convenient. The sentences Sℒ of ℒ are formed in the usual way from the atomic sentences Uti1 . . . tik using 
the standard connectives ¬,∧,∨,→,↔, quantifiers ∃,∀ and variables.

Suppose a1, a2, . . . is an ordering of the atomic sentences such that atomic sentences involving only 
t1, . . . , tn appear before those that involve tn+1, for each n ≥1. For any n, let ℒn be the finite sublanguage 
of ℒ that has t1, . . . , tn as its only constant symbols. The atomic sentences of ℒn are a1, . . . arn for some 
rn≥n.

Example 1. Suppose ℒ has just a binary relation symbol U and a unary relation symbol V . ℒ1 has the 
atomic propositions a1 = V t1 and a2 = Ut1t1, so r1 = 2. ℒ2 also involves a3 = V t2, a4 = Ut1t2, a5 =
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Ut2t1, a6 = Ut2t2, so r2 = 6. ℒ3 also involves a7 = V t3, a8 = Ut1t3, a9 = Ut2t3, a10 = Ut3t1, a11 =
Ut3t2, a12 = Ut3t3, so r3 = 12, and so on. For this language, rn = rn−1 + 2n = n(n + 1).

Definition 1 (Nφ). For any sentence φ ∈ Sℒ, let Nφ be the greatest index of all the constants that appear 
in φ. If φ has no constants, we adopt the convention that Nφ = 1.

A crucial role in the following analysis is played by the sentences that are called the n-states or state
descriptions of ℒ:

Definition 2 (n-states). For any n ≥1, the set Ωn of n-states is the set of sentences of the form ±a1∧· · ·∧±arn , 
where +ai is just ai and −ai is ¬ai, for i = 1, . . . , rn.

2.2. Probability

Probability functions on the language ℒ (or more accurately on Sℒ) are defined as follows:

Definition 3 (Probability). A probability function P on ℒ is a function P : Sℒ −→ R≥ 0 such that:

P1. If |= τ , then P (τ) = 1.
P2. If |= ¬(θ ∧ φ), then P (θ ∨ φ) = P (θ) + P (φ).
P3. P (∃xθ(x)) = supm P (

⋁︁m
i=1 θ(ti)).

Remark 1. Axiom P3, which is due to [7], requires the presupposition that every member of the domain 
is named by at least one constant symbol [28, p. 162]. This therefore restricts us to interpretations with 
countable domains.

Remark 2. A probability function is determined by the values it gives to the n-states�-see, e.g., [41, §2.6.3]. 
On the other hand, an assignment P of values to the n-states generates a probability function if the following 
conditions hold: 

∑︁
ω∈Ωn

P (ω) = 1 and P (ω) =
∑︁

ζ∈Ωn+1,ζ|=ω P (ζ) for all ω ∈ Ωn and n ≥1.

We denote the set of probability functions by P . Of particular importance will be the equivocator function, 
P= ∈ P , which gives the same probability to each n-state, for each n:

Definition 4 (Equivocator function). The equivocator function is the probability function P= defined by:

P=(ωn) = 1 
2rn = 1 

|Ωn|

for each n-state ωn ∈ Ωn and each n ≥1.

Definition 5 (Measure). The measure of a sentence θ is the probability given to it by the equivocator function. 
In particular, θ has positive measure if and only if P=(θ) > 0.

Probabilities on first-order languages are similar to probabilities on finite domains since the axioms P1 -- 
P3 have a number of simple and intuitive but very important consequences—see [28, Proposition 2.1], [29, 
Lemma 3.8] and [41, §2.3.2] for example:

Proposition 1. For sentences θ, φ, ψ ∈ Sℒ

1. P (¬θ) = 1− P (θ).
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2. If |= θ, then P (¬θ) = 0.
3. If θ |= φ, then P (θ) ≤ P (φ).
4. If θ ≡ φ, then P (θ) = P (φ).
5. P (φ) ∈ [0, 1].

2.3. Probabilistic logics

An inductive logic posits entailment relationships between premisses and conclusion sentences that may 
be uncertain. In a probabilistic inductive logic, this uncertainty is expressed using probabilities. We shall 
consider probabilistic logics that posit entailment relationships of the following form [9]:

φX1
1 , . . . , φXk

k |≈ ψY .

Here, φ1, . . . , φk, ψ ∈ Sℒ and X1, . . . , Xk, Y ⊆ [0, 1]. This entailment relationship should be interpreted as 
saying: φ1, . . . , φk having probabilities in X1, . . . , Xk respectively inductively entails that ψ has probability 
in Y . An absence of premisses, k = 0, provides the set of tautologies of the inductive logic.

Definition 6 (Feasible region). Let 𝒜 be the set of expressions of the form θW where θ ∈ Sℒ and W ⊆ [0, 1]. 
For any A ⊆ 𝒜, let P [A] be the set of probability functions satisfying all the expressions in A:

P [A] df = {P ∈ P : P (θ) ∈W for all θW ∈ A}.

Given premisses φX1
1 , . . . , φXk

k , we define the feasible region to be

E
df = P [φX1

1 , . . . , φXk

k ] df = P [{φX1
1 , . . . , φXk

k }].

In a probabilistic logic, models of a set of probabilistic expressions are probability functions specified by 
some function [ [·] ] : P𝒜 −→PP . This function assigns to every set of probabilistic expressions of the form 
θW a set of probability functions, and satisfies the following condition:

[ [A] ] ⊆ P [A] for any consistent A ⊆ 𝒜.

This function can be used to provide semantics for the entailment relation:

φX1
1 , . . . , φXk

k |≈ ψY if and only if [ [φX1
1 , . . . , φXk

k ] ] ⊆ P [ψY ].

What is sometimes called the standard semantics for probabilistic logic [9,26,10] considers the entire set 
of probability functions that satisfy the premisses, i.e.,

[ [φX1
1 , . . . , φXk

k ] ] = E = P [φX1
1 , . . . , φXk

k ].

In the standard semantics, then,

φX1
1 , . . . , φXk

k |≈ ψY if and only if E ⊆ P [ψY ].

Note that if E = ∅ then any conclusion ψY follows.
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2.4. OBIL

Objective Bayesian inductive logic (OBIL) provides an alternative to the standard semantics. The ob
jective Bayesian approach interprets probabilities as rational degrees of belief [39, Chapter 7]. It takes the 
premisses on the left-hand side of the entailment relationship to capture all the constraints on rational 
degrees of belief that are imposed by evidence, and it asks: what probabilities are given to the conclusion 
sentence ψ by the maximally non-committal probability functions that satisfy the premisses? The idea is to 
consider probability functions that best represent the premisses in the sense that they satisfy the premisses 
but go as little beyond the premisses as possible. Entropy is standardly used to measure the extent to 
which a probability function is non-committal, i.e., the extent to which it equivocates between the basic 
expressible possibilities. Hence, OBIL considers those probability functions that satisfy the premisses which 
have maximal entropy, in the following sense.

Definition 7 (n-entropy). The n-entropy of a probability function P is defined as

Hn(P ) df = −
∑︂
ω∈Ωn

P (ω) logP (ω) .

We adopt the usual convention that 0 · log 0 = 0. We shall sometimes use Pn to refer to an n-entropy 
maximiser, i.e., a probability function in E that maximises n-entropy.

Remark 3. We take the logarithm in the previous definition to have base 2, which is the natural base from 
an information-theoretic perspective. Using any other base b > 1 would instead give:

Hn,b(P ) := −
∑︂
ω∈Ωn

P (ω) logb P (ω) = −
∑︂
ω∈Ωn

P (ω) loge P (ω)
loge b 

= loge 2
loge b 

Hn(P ) .

Since loge(b) > 0, Hn(P ) ≥ Hn(Q) iff Hn,b(P ) ≥ Hn,b(Q). Since in this paper we are only interested in 
comparing n-entropies to one another, the choice of the base b > 1 is inconsequential for our purposes, and 
we suppress the base in the notation.

The n-entropies, which only take into account the probabilities on finitely many n-states, are then used 
to define a notion of comparative entropy on the infinite language ℒ as a whole:

Definition 8 (Comparative entropy). Probability function P ∈ P has greater entropy than Q ∈ P if and only 
if the n-entropy of P dominates that of Q for sufficiently large n, i.e., if and only if there is an N ∈ N such 
that for all n ≥N , Hn(P ) > Hn(Q).

The greater entropy relation defines a partial order ≺H on the probability functions on ℒ. We shall focus 
on functions in E = P [φX1

1 , . . . , φXk

k ] that are maximal with respect to this partial ordering:

Definition 9 (Maximal entropy functions). The set of maximal entropy functions on E, maxentE, is defined 
as

maxentE := {P ∈ E : ∀Q ∈ E, P ̸≺H Q} .

Where maxentE is non-empty, we shall often use P † or P †
E, to refer to some member of maxentE. In 

this case, we set [ [φX1
1 , . . . , φXk

k ] ] = maxentE in order to provide semantics for OBIL [41, §5.3]:
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Definition 10 (Objective Bayesian inductive entailment). Suppose maxentE ̸= ∅. Premisses φX1
1 , . . . , φXk

k

inductively entail ψY , denoted by φX1
1 , . . . , φXk

k |≈◦ ψY , if and only if P (ψ) ∈ Y for all P ∈ maxentE. I.e.,

φX1
1 , . . . , φXk

k |≈◦ ψY if and only if maxentE ⊆ P [ψY ].

Something needs to be said about the case in which maxentE is empty.1 Given the objective Bayesian 
semantics for OBIL, it is natural to avoid explosion—i.e., the claim that it is reasonable to believe any 
conclusion statement to any degree [39]. For the purposes of this paper, we shall say that if maxentE = ∅
but E ̸= ∅, the entailment relationship holds when P (ψ) ∈ Y for every P ∈ E. If E = ∅, we shall take the 
entailment relationship to hold when P (ψ) ∈ Y for P ∈ maxentP = {P=}.2 In sum, in OBIL,

[ [φX1
1 , . . . , φXk

k ] ] =

⎧⎪⎨
⎪⎩

maxentE : maxentE ̸= ∅
E : maxentE = ∅ ̸= E

maxentP : E = ∅.
(1)

We shall focus on the first of these three cases in this paper.
In the context of objective Bayesianism, constraints on rational degrees of belief are convex.3 Hence, in 

the context of OBIL, we shall take the X1, . . . , Xk, Y to be intervals of probabilities.4 Moreover, to simplify 
our exposition, we shall suppose that these intervals are closed intervals. This simplifies the exposition 
because it ensures that, for each n, a satisfiable set of quantifier-free premisses has an n-entropy maximiser 
Pn that is uniquely determined on the sentences of ℒn (because E is closed and convex and Hn is strictly 
concave).5

We write φci to abbreviate φ[ci,ci], which attaches a single probability ci ∈ [0, 1] to sentence φi, and we 
identify the interval [ci, ci] with ci. We abbreviate a statement of the form θ1 by θ, for θ ∈ Sℒ, and call 
such a statement ‘categorical’.

In the absence of any premisses E = P , so |≈◦ ψY holds if and only if P=(ψ) ∈ Y , since maxentP = {P=}.

Definition 11. A sentence ψ is an inductive tautology if |≈◦ ψ, i.e., if it has measure 1. ψ is an inductive 
contradiction if |≈◦ ¬ψ, i.e., if it has measure 0. ψ is inductively consistent if |̸≈◦ ¬ψ, i.e., if it has positive 
measure. Sentences ψ and θ are inductively equivalent if |≈◦ ψ ↔ θ.

3. Decidability and truth tables in OBIL

In this section, we see that the prospects for the decidability of a first-order probabilistic logic are dim. 
However, we go on to informally describe a truth-table method, originally introduced by [41], and we show 
that this method can be used to decide whether inferences that invoke quantifier-free sentences of ℒ are 
valid in OBIL. In later sections, we show that there is a surprisingly large class of inferences that involve 
quantified sentences and that are decidable by means of this truth-table method.

1 Note that since ≺H is a partial order on an infinite set, it may contain an infinite chain with no maximal element. For example, 
the premiss ∃x∀yUxy1 is satisfiable (E ̸= ∅) but maxentE = ∅ [20, Proposition 53].
2 There are more sophisticated approaches that one can take here. In the former case, one can restrict attention to probability 

functions in E that are sufficiently equivocal. In the latter case, one can consider probability functions that satisfy some maximal 
consistent subset of the premisses. See [39] and [16, §9] for further discussion.
3 For the rationale behind convexity, see [39, Chapter 3], [35] and [40].
4 Although we allow the possibility that one or more of these intervals is empty, such a possibility is of little interest because any 

proposition of the form θ∅ will be unsatisfiable.
5 If the premisses are not satisfiable then, as stipulated above, [ [φX1

1 , . . . , φXk

k ] ] = maxentP . maxentP = {P=}, so inferences are 
drawn using the equivocator function P=.
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3.1. Decidability and precision

Before proceeding, we should note that undecidability can arise in probabilistic logic in two ways. The 
kind of undecidability we are concerned with in this paper is undecidability that arises from the logical 
structure of the sentences that occur in the premisses of an inductive inference. But undecidability also 
arises trivially in a second way in probabilistic logic: when trying to determine the equality of two non
terminating decimals. Suppose for example that we have an entailment relationship

φX1
1 , . . . , φXk

k |≈ ψc

and the probabilistic logic in question gives a single model of the premisses, [ [φX1
1 , . . . , φXk

k ] ] = {P}. To 
decide whether the entailment relationship holds, we need to determine whether P (ψ) = c. Now suppose 
that we have a procedure for determining successive digits of P (ψ) and that the decimal expansion of c
is non-terminating. If indeed P (ψ) = c, the comparison between P (ψ) and c will not terminate in a finite 
time. Hence, there is a trivial—and rather uninteresting—sense in which there is no effective procedure for 
deciding whether an inductive entailment holds, if the probabilities in question include real numbers with 
non-terminating decimal expansions.

In order to focus on the first, logical kind of undecidability we eliminate this second, numerical kind of 
undecidability by imposing two restrictions. Firstly, we take all probability intervals in OBIL to be finitely 
represented:

Definition 12 (Finitely represented). A closed interval is finitely represented if it is represented as [l, u]
where l and u are terminating decimal fractions, i.e., are of the form 1.0 or 0.d1d2 . . . ds, where s ∈ N and 
di ∈ {0, 1, . . . 9} for i = 1, . . . , s. An expression of the form θZ , where θ ∈ Sℒ and Z is an interval, is finitely 
represented if the interval Z is finitely represented. An inference is finitely represented if its premisses and 
its conclusion are finitely represented.

This restriction is not enough on its own to eliminate numerical undecidability: if c is say 0.479, our 
procedure for generating successive digits of P (ψ) might yield 0.47900000 . . ., in which case it will still not 
be possible to determine that P (ψ) = c in a finite amount of time. Hence, we also presuppose a given level 
of precision with which to perform numerical comparisons. Thus if it is sufficient to perform comparisons 
to 20 decimal places, we need only determine that P (ψ) = 0.47900000000000000000 to 20 decimal places in 
order to decide that the entailment relationship holds.

Without further explicit mention, then, we consider only finitely represented inferences—entailment re
lationships of the form φX1

1 , . . . , φXk

k |≈◦ ψY in which the sets of probabilities X1, . . . , Xk, Y are finitely 
represented closed intervals—and we suppose some fixed finite level of precision with which to perform nu
merical comparisons. This will allow us to focus on logical decidability, i.e., decidability modulo comparison 
of real numbers.

3.2. Decidability and deductive logic

Any probabilistic logic generalises deductive logic in the following sense:

Proposition 2. In any probabilistic logic, if φ1, . . . , φk are jointly consistent then

φ1, . . . , φk |≈ ψ if φ1, . . . , φk |= ψ.

Proof. If [ [φ1, . . . , φk] ] = ∅, the inductive entailment relationship holds trivially.
Otherwise, suppose P ∈ [ [φ1, . . . , φk] ].
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If φ1, . . . , φk |= ψ then |= ¬(φ1 ∧ . . . ∧ φk) ∨ ψ, so by axiom P1,

P (¬(φ1 ∧ . . . ∧ φk) ∨ ψ) = 1.

Now φ1 ∧ . . . ∧ φk and ¬ψ are mutually exclusive, so by axiom P2,

P (¬(φ1 ∧ . . . ∧ φk)) + P (ψ) = P (¬(φ1 ∧ . . . ∧ φk) ∨ ψ) = 1.

But P ∈ [ [φ1, . . . , φk] ] ⊆ P [φ1, . . . , φk], since φ1, . . . , φk are jointly consistent. So P (φ1 ∧ . . . ∧ φk) = 1 and 
P (¬(φ1 ∧ . . . ∧ φk)) = 0. Thus P (ψ) = 1, i.e., P ∈ P [ψ]. Hence, φ1, . . . , φk |≈ ψ. □

In the case of the standard semantics for probabilistic logic, we can say more:

Proposition 3. With the standard semantics,

φ1, . . . , φk |≈ ψ if and only if φ1, . . . , φk |= ψ.

Proof. Consider first the claim that φ1, . . . , φk |= ψ implies φ1, . . . , φk |≈ ψ. Given Proposition 2, we need 
only consider the case in which φ1, . . . , φk are jointly inconsistent. In that case, [ [φ1, . . . , φk] ] = ∅ and any 
conclusion follows. In particular, φ1, . . . , φk |≈ ψ.

It remains to show that φ1, . . . , φk |≈ ψ implies φ1, . . . , φk |= ψ.
If the premisses are inconsistent then both the inductive and the deductive entailment relationships hold 

vacuously, so it is trivially the case that φ1, . . . , φk |≈ ψ implies φ1, . . . , φk |= ψ.
Consider next the case in which the premisses are consistent. If φ1, . . . , φk ̸|= ψ then there is some 

interpretation of ℒ under which the premisses are true and the conclusion false—i.e., a model of the premisses 
together with the negation of the conclusion. By the Löwenheim-Skolem Theorem, there is such a model 
with a countable domain. Without loss of generality, we can suppose that each member of this countable 
domain is named by at least one constant symbol: otherwise, add new constant symbols to the language to 
refer to previously unnamed members of the domain and revise the interpretation to specify the referents 
of the new names, leading to an expansion of the original model. This interpretation thus satisfies the 
requirements outlined in Remark 1.

This interpretation yields a truth assignment ν to the sentences of ℒ such that ν(φi) = 1 (i.e., ν |= φi) 
for i = 1, . . . , k, and ν(ψ) = 0 (i.e., ν |= ¬ψ).

Note that ν is also a probability function:

P1. If |= τ , then ν(τ) = 1.
P2. If |= ¬(θ∧χ), then there are two possible cases: either ν(θ) = ν(χ) = ν(θ∨χ) = 0 or ν models precisely 

one of θ and χ and gives ν(θ ∨ χ) = 1. Either way, ν(θ ∨ χ) = ν(θ) + ν(χ).
P3. If ν(θ(ti)) = 0 for all i then by induction on P2, ν (

⋁︁m
i=1 θ(ti)) = 0 for all m, and since each member 

of the domain is named by some constant symbol, ν (∃xθ(x)) = supm ν (
⋁︁m

i=1 θ(ti)) = 0. Otherwise 
ν(θ(tj)) = 1 for some j, ν (∃xθ(x)) = 1, and by induction on P2, ν (

⋁︁m
i=1 θ(ti)) = 1 for all m ≥ j, so 

supm ν (
⋁︁m

i=1 θ(ti)) = 1.

Since ν(φi) = 1 for each i = 1, . . . , k and ν(ψ) = 0, ν ∈ E but ν ̸∈ P [ψ]. Hence φ1, . . . , φk |̸≈ ψ, as 
required. □

This feature enables the use of the standard semantics to provide semantics for deductive logic as well 
as inductive logic [6]. It also has important consequences for decidability:
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Definition 13 (Decidable inferences). A class of inferences of a given logic is decidable if there is an effective 
procedure for deciding whether any given inference lies within the class and, if so, whether the inference is 
valid in the logic.6 Otherwise it is undecidable.

Corollary 1. Suppose ℒ contains at least one relation symbol of arity at least 2. Then for the standard seman
tics for probabilistic logic, the class of entailment relationships from finitely many premisses is undecidable.

Proof. Suppose for contradiction that the class of inductive entailment relationships of the form 
φX1

1 , . . . , φXk

k |≈ ψY were decidable, with respect to the standard semantics. Then there would be an 
effective procedure for deciding, in particular, whether |≈ ψ for any ψ ∈ Sℒ. By Proposition 3, this pro
cedure would decide whether |= ψ for any ψ ∈ Sℒ. But the class of logically valid sentences of first-order 
deductive logic is undecidable when there are relation symbols that are at least binary (see [34]; [24, Theorem 
16.52]; [3, p. 10]). This gives the required contradiction. □

On the other hand, it is possible to define a decidable probabilistic logic. Consider the trivial probabilistic 
logic, defined by setting [ [A] ] = ∅ for all A ∈ 𝒜. In the trivial probabilistic logic, every entailment relationship 
holds and the class of all inferences in this logic is clearly decidable. Notwithstanding this fact, Corollary 1
might lead to pessimism about the decidability of any reasonable probabilistic logic. The fact is that the 
class of inferences from finitely many premisses in first-order deductive logic is undecidable, and a first-order 
inductive logic generalises first-order deductive logic to cover cases in which the premisses are uncertain. It 
is hard to see how any reasonable generalisation could be decidable.7

3.3. Truth tables

The aim of this paper is to show that there is a wide class of inferences in OBIL that is decidable using 
a truth-table method. Truth tables are usually introduced in the context of propositional deductive logic, 
which is decidable. Indeed, the truth-table method provides perhaps the best known decision procedure 
for the class of deductive inferences of a finite propositional logic. The lines (rows) of the truth table run 
through all the truth assignments to the propositional variables that occur in the inference. The truth 
value of each premiss and the conclusion of the inference are calculated on each line, and the entailment 
relationship holds just when the conclusion is true at all lines of the truth table at which the premisses are 
true.

Consider for example the truth table for a simple deductive entailment claim:

a→ b, b |= a

a b a → b b a
T T T T T 
T F F F T 
F T T T F 
F F T F F 

On the third row, the premisses are true and the conclusion false, so the inference is invalid.

6 Here we appeal to the standard notion of ‘effective procedure’: informally, a mechanical procedure that terminates to give the 
correct answer up to an arbitrarily close approximation after a finite number of steps. This notion is usually formally explicated 
by appeal to recursive functions or Turing machines [24, Part I].
7 [33] shows, for example, that a probabilistic logic based on the theory of PAC learning is undecidable. See [1] for more general 

pessimism about the decidability of probabilistic logics.
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Exactly the same method can be used to decide whether an inference in first-order deductive logic (from 
finitely many premisses) is valid in the special case in which the premisses and conclusion are all quantifier
free sentences of ℒ. One can simply build a truth table around the atomic propositions ai1 , . . . , aim that 
occur in the inference and the premisses and conclusion. Thus by setting a = U1t4t6 and b = U2t9, the same 
truth table can be used to test the inference:

U1t4t6 → U2t9, U2t9 |= U1t4t6.

Again, the third line of the truth table tells us that the inference is invalid.
Moreover, as we shall see now, the same truth table can be used to determine whether the following 

inference holds in OBIL:

U1t4t6 → U2t9, U2t9 |≈◦ U1t4t6
1/2 . (2)

In OBIL, when an inference involves categorical (i.e., certain) and consistent quantifier-free premisses, the 
probability that attaches to a quantifier-free conclusion sentence is the proportion of all those lines of the 
truth table at which the premisses are true where the conclusion is also true [41, Chapter 1 and §6.1]. (Note 
that the question of the consistency of the premisses is decidable here, because the truth table can also be 
used to check that there is a truth assignment to the atomic propositions, i.e., a line of the truth table, at 
which all the premisses are true.) In the above truth table, there are two lines at which the premisses are 
true, one of which makes the conclusion true, so the probability that attaches to the conclusion sentence is 
1
2 . Thus, the entailment relationship (2) does indeed hold.

Recall that a probability function on Sℒ is determined by its values on the n-states. This fact allows us 
to extend the truth table method for OBIL to handle non-categorical quantifier-free premisses. The idea is 
to attach a probability to each line of the truth table: this is the probability that is induced by the maximal 
entropy function. Consider

a→ b, b2/5 |≈◦ a1/5,

where, as before, a is U1t4t6 and b is U2t9. We can build the following augmented truth table: The premiss 

P † a b a → b b a
1
5 T T T T T 
0 T F F F T 
1
5 F T T T F 
3
5 F F T F F 

a→ b forces the second line to have probability 0. The premiss b2/5 ensures that probability 2/5 is distributed 
between lines 1 and 3 of the truth table; the maximal entropy function will distribute this probability equally 
in the absence of further information concerning b. The remaining probability, 3/5, must attach to line 4. 
The probability that attaches to the conclusion a is the sum of the probabilities attached to lines 1 and 2, 
i.e., 1/5. Thus the entailment relationship does indeed hold.

This approach generalises as follows. Suppose that in the context of a particular inference we have pre
misses φX1

1 , . . . , φXk

k in which the premiss sentences φ1, . . . , φk are all quantifier-free. (Recall that X1, . . . , Xk

are assumed to be closed and convex.) Let ai1 , . . . , aim be the atomic propositions that occur in φ1, . . . , φk

and Ξ be the set of states of ai1 , . . . , aim . For any n ≥1 let Ξ̄ be the set of states of the atomic propositions, 
other than ai1 , . . . , aim , that are in ℒn; if there are no such atomic propositions, take Ξ̄ to contain just an 
arbitrary tautology. Let PΞ be a probability function on ℒ that satisfies the premisses, and maximises the 
entropy on Ξ,
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PΞ ∈ arg max
P∈E 
−
∑︂
ξ∈Ξ

P (ξ) logP (ξ),

if E ̸= ∅. Note that all such entropy maximisers agree on Ξ: on a finite domain, a closed, convex set of 
probability functions has a unique entropy maximiser because the entropy function is strictly concave. If 
E = ∅, let PΞ

df = P=. Thus PΞ is uniquely determined on Ξ, whether or not the constraints are satisfiable.
We are now in a position to identify a unique maximal entropy function on ℒ itself:

Proposition 4 (Quantifier-free entropy maximisation). Suppose premiss sentences φ1, . . . , φk are quantifier
free. Then [ [φX1

1 , . . . , φXk

k ] ] = {P †}, where the probability function P † is characterised by

P †(ω) df = PΞ(ξ)P=(ζ), (3)

for all ω ∈ Ωn and n ≥1, and where ξ ∈ Ξ and ζ ∈ Ξ̄ are states induced by ω, i.e., ω ≡ ξ ∧ ζ.

Proof. If the premisses are unsatisfiable, i.e., E = ∅, then by definition [ [φX1
1 , . . . , φXk

k ] ] = maxentP = {P=}. 
In this case, PΞ

df = P=, so P † = P=, as required.
If the premisses are satisfiable, [ [φX1

1 , . . . , φXk

k ] ] = maxentE. Now PΞ ∈ E, by construction. Consequently, 
P †, as defined above, is in E:

P †(φi) =
∑︂
ξ∈Ξ
ξ|=φi

P †(ξ) =
∑︂
ξ∈Ξ
ξ|=φi

PΞ(ξ) = PΞ(φi) ∈ Xi,

for i = 1, . . . , k.
Consider n large enough that the premiss sentences φ1, . . . , φk can all be expressed in ℒn. P † is an n

entropy maximiser, as can be seen as follows [41, Theorem 5.13]. By the chain rule for entropy [5, Theorem 
2.2.1], for any probability function Q ∈ E,

Hn(Q) = −
∑︂
ξ∈Ξ

Q(ξ) logQ(ξ)−
∑︂
ω∈Ωn
ξ∧ζ≡ω

Q(ω) logQ(ζ|ξ)

≤ −
∑︂
ξ∈Ξ

P †(ξ) logP †(ξ)−
∑︂
ω∈Ωn
ξ∧ζ≡ω

P †(ω) logP †(ζ|ξ)

= Hn(P †),

with equality if and only if Q coincides with P † on all sentences of ℒn. The above inequality holds because 
PΞ is the entropy maximiser on Ξ and P † is defined as P †(ω) = PΞ(ξ)P=(ζ), so

−
∑︂
ξ∈Ξ

Q(ξ) logQ(ξ) ≤ −
∑︂
ξ∈Ξ

PΞ(ξ) logPΞ(ξ) = −
∑︂
ξ∈Ξ

P †(ξ) logP †(ξ)

with equality if and only if Q coincides with PΞ on Ξ, and

−
∑︂
ω∈Ωn
ξ∧ζ≡ω

Q(ω) logQ(ζ|ξ) ≤ −
∑︂
ω∈Ωn
ξ∧ζ≡ω

P †(ω) logP †(ζ|ξ),

with equality if and only if Q(ζ|ξ) = P=(ζ|ξ) for all ξ ∈ Ξ and ζ ∈ Ξ̄. To see why this last inequality obtains, 
note first that P †(ζ|ξ) = P=(ζ) = |Ξ| 

|Ωn| for each ξ ∈ Ξ and ζ ∈ Ξ̄, so,
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−
∑︂
ω∈Ωn
ξ∧ζ≡ω

Q(ω) logQ(ζ|ξ) =
∑︂
ω∈Ωn
ξ∧ζ≡ω

Q(ω) log Q(ξ) 
Q(ω)

≤ log
∑︂
ω∈Ωn
ξ∧ζ≡ω

Q(ω)Q(ξ) 
Q(ω)

= log
∑︂
ω∈Ωn
ξ∧ζ≡ω

Q(ξ)

= log

⎛
⎝ |Ωn|
|Ξ| 

∑︂
ξ∈Ξ

Q(ξ)

⎞
⎠

= log |Ωn|
|Ξ| 

= log |Ωn|
|Ξ| 

(︄ ∑︂
ω∈Ωn

P †(ω)
)︄

= −
∑︂
ω∈Ωn

P †(ω) log |Ξ| |Ωn|

= −
∑︂
ω∈Ωn
ξ∧ζ≡ω

P †(ω) logP †(ζ|ξ),

where the second line of the above equation is an instance of Jensen’s inequality [5, Theorem 2.6.2].
We have seen that P † maximises n-entropy for sufficiently large n and that any function Q that maximises 

n-entropy for sufficiently large n agrees with P † on ℒn for each sufficiently large n, and so coincides with 
P † on ℒ. Hence, maxentE = {P †}. □

This result enables the use of a truth table to represent the maximal entropy probability function P †, given 
quantifier-free premisses φX1

1 , . . . , φXk

k . Each line of the truth table needs to be augmented by the probability 
P †(ξ) of the state ξ that is satisfied by the truth valuation on that line, which is found by first maximising 
entropy on Ξ to get PΞ and then equivocating beyond Ξ, i.e., by the construction P †(ω) = PΞ(ξ)P=(ζ) of 
Equation (3). (Note that if the premisses are not jointly satisfiable, [ [φX1

1 , . . . , φXk

k ] ] = maxentP = {P=}, 
and each line of the truth table is given the same probability.)

We thus have:

Proposition 5. If the premiss sentences φ1, . . . , φk are all quantifier-free then the truth-table method can be 
used to determine P † on Sℒ.

Proof. The (augmented) truth table determines P † via Equation (3), because a probability function is 
determined by its values on the n-states. □
Proposition 6 (Quantifier-free satisfiability). Whether quantifier-free premisses φX1

1 , . . . , φXk

k are jointly sat
isfiable is decidable.

Proof. The existence of a probability function that satisfies the premisses is equivalent to the existence of 
a solution for a system of linear inequalities with unknowns P (φi) =

∑︁
ξ|=φi

P (ξ). That this problem is 
decidable follows from the Tarski–Seidenberg theorem and the decidability of first order theory of closed 
real fields.
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To see this, take an inequality constraint of the form xi1 + . . . + xir ≤ ci, partly expressing the premiss 
φ

[bi,ci]
i . Remember that ci is finitely represented which implies ci ∈ Q, and hence ci is an algebraic number. 

That is, ci can be expressed as the root of a polynomial in one variable with integer coefficients and thus it 
is definable in the first order theory of closed real fields. Let κci(y) be the polynomial defining ci. Then the 
above constraints can be expressed by the formula

Ψ(x⃗) := ∃y(κci(y) = 0 ∧ xi1 + . . . + xir ≤ y),

and the existence of a solution for the system of linear inequalities Ψ1(x⃗), . . . ,Ψk(x⃗) can be expressed as 
the first order sentence

∃x⃗
k⋀︂

i=1
Ψi(x⃗),

in the first order language of closed real fields. □
Theorem 1 (Quantifier-free decidability). The class of quantifier-free inferences is decidable in OBIL.

Proof. Since the proof is somewhat long, we split it into parts.

Set-up of the problem. Take any inference in the class of quantifier-free inferences. Since the premiss sen
tences are quantifier free, the truth-table method can be used to fully determine P †. Since the conclusion 
sentence ψ is quantifier free, ψ ≡

⋁︁
ω∈Ωn
ω|=ψ

ω for sufficiently large n, so P †(ψ) =
∑︁

ω∈Ωn
ω|=ψ

P †(ω). Since P †(ψ)

can be effectively determined from the truth table and Equation (3), the key task then is to fill in the 
probability values in the truth table: i.e., to find P †(ξ) for each ξ ∈ Ξ.

By Proposition 6, whether the premisses are jointly satisfiable is decidable. If they are not satisfiable then 
P † = [ [φX1

1 , . . . , φXk

k ] ] = maxentP = {P=}, and each line of the truth table is given the same probability 
1/|Ξ|.

Otherwise, the task is to determine P †(ξ) for each ξ ∈ Ξ where P † is the function in E ̸= ∅ which 
maximises entropy. Given Proposition 4, we can focus on probability functions defined over Ξ, rather than 
on the whole language ℒ. We shall use X to denote the set of probability distributions defined over Ξ that 
satisfy the constraints imposed by the premisses. The task is to determine the unique probability function 
x† on Ξ such that maxentX = {x†}. Recall that we are working to some degree of precision, so the task is 
to determine, for any given ε > 0, some x∗ ∈ X such that |x∗ − x† |df = supξ∈Ξ | x∗(ξ)− x†(ξ) |< ε.

Proof sketch. Let us first sketch how to find such an approximation x∗. We shall consider a closed region 
X′ ⊆ X within which x† is known to lie and an effectively specifiable tessellation 𝒯 of X′ involving finitely 
many closed convex polytopes (henceforth called ‘tiles’).8 Given any δ > 0, one can find X′, a tessellation 
𝒯 of X′, and rational functions H+ and H− on 𝒯 such that

1. H+(τ) (respectively, H−(τ)) is an upper (respectively, lower) bound on the entropy of the entropy 

maximiser, x†
τ

df = arg maxx∈τ H(x) within the tile τ , and
2. for all tiles τ ∈ 𝒯 , H+(τ)−H−(τ) < δ.

Let τ∗ be some tile that maximises H+. Note that τ∗ can be found effectively because there are only finitely 
many tiles in 𝒯 . Then we have that:

8 A tessellation is a cover of Xi such that the intersection of two different tiles contains none of their interior points.



14 J. Landes et al. / Annals of Pure and Applied Logic 177 (2026) 103714 

H−(τ∗) ≤ H(x†) ≤ H+(τ∗)

and

H+(τ∗)−H−(τ∗) < δ

so

H+(τ∗)−H(x†) < δ.

Thus we can approximate H(x†) as close as we like by means of H+(τ∗). Now consider some effectively 
specifiable probability function x∗ ∈ τ∗. x∗ may not yet be close to x† in the sense that |x∗ − x† |< ε. 
However, δ can be reduced until x∗ provides a close enough approximation to x†.

In more detail, a suitable approximation x∗ to x† can be found as follows.

Determining X. If x=
df = P=⇂Ξ ∈ X, then x† = x=. Hence we first check whether x= satisfies all constraints 

(this is easily computable). If so, each line of the truth table is given the same probability 1/|Ξ| and we can 
simply set x∗ = x†.

If x= / ∈ X, the next step is to effectively determine X by computing the vertices of X. We note that

X = {x : 
∑︂
ξ∈Ξ

x(ξ) ≤ 1,
∑︂
ξ∈Ξ

x(ξ) ≥ 1,

x(ξ) ≥ 0, for all ξ ∈ Ξ,∑︂
ξ∈Ξ
ξ⊨φ1

x(ξ) ≤ X+
1 ,

∑︂
ξ∈Ξ
ξ⊨φ1

x(ξ) ≥ X−
1 ,

. . .∑︂
ξ∈Ξ
ξ⊨φk

x(ξ) ≤ X+
k ,

∑︂
ξ∈Ξ
ξ⊨φk

x(ξ) ≥ X−
k } 

with Xi = [X−
i , X+

i ]. We can use the Fourier–Motzkin elimination algorithm to compute this set [14]. The 
algorithm is effectively computable on a Turing machine since it only requires addition and multiplication 
of rational numbers.

We next repeatedly eliminate superfluous constraints by checking whether an application of the Fourier--
Motzkin elimination algorithm to all but one of the constraints gives the same result. If so, then the omitted 
constraint is superfluous and can be dropped. If not, then the constraint is relevant and cannot be dropped. 
Eventually, we arrive at a minimal set of constraints 𝒞 that cannot be further simplified.

Next, turn |Ξ|-many constraints in 𝒞 into equality constraints by replacing ≤,≥ by = to yield new sets 𝒞′
of constraints. In this way each equality constraint serves as the border that divides the space of probability 
functions into two disjoint regions; one in which the inequality is satisfied, and one in which it is violated. 
The set X will then be the region enclosed by these borders. Vertices of X will be where these borders 
intersect at a point.

In order to find these vertices, we check whether each such set 𝒞′ of constraints has a unique solution via 
the Fourier–Motzkin elimination algorithm. Consider those 𝒞′ that do have a unique solution. The unique 
solutions of these subsets of constraints are the vertices of X, since 𝒞 is minimal. X is then effectively 
characterised as the set of convex combinations of these vertices.
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If the feasible region X consists of a single element, then this element is x† and we can simply take x∗ = x†. 
In the following, then, we assume that the feasible region has at least two elements. By the convexity of the 
feasible region, this entails that the feasible region contains uncountably many points. 

Iterative approach. Our approach is to iteratively produce an ever smaller region Xi of X which contains 
x†. Initially, i = 1 and we set X1 = X.

For all i ∈ N we split Xi into a tessellation 𝒯i of finitely many closed, convex polytopes such that: (i) all 
vertices of each tile have rational coordinates, and (ii) for every tile τ ∈ 𝒯i, |τ | df = supx,y∈τ |x− y| < 1/2i|Ξ|.

We define an upper bound H+
i associated with Xi, that satisfies the requirements introduced above, as 

follows. Consider the L1 bound on entropy [5, Theorem 17.3.3]: if

∥x− y ∥1df =
∑︂
x∈Ξ
| x(ξ)− y(ξ)| ≤ 1

2 ,

then

|H(x)−H(y)| ≤ − ∥ x− y ∥1 log ∥x− y ∥1
|Ξ| .

Applying this to x, y ∈ τ , since supx,y∈τ |x− y| < 1 
2i|Ξ| , we have that

∑︂
ξ∈Ξ

| x(ξ)− y(ξ)| ≤ |Ξ| 
2i|Ξ| = 1 

2i ≤
1
2 ,

so

|H(x)−H(y)| ≤ − 1 
2i log 1 

2i|Ξ| = i + m

2i log 2,

since |Ξ| = 2m. Let xc
τ be the centre of mass of tile τ , assuming uniform density. xc

τ can be effectively 
determined as a convex combination of the vertices of τ . Thus, the centre of mass of a convex and non
empty set with a dimension of at least 1 lies in the interior (with respect to the norm topology of the 
dimension of the convex set) of this set.

For any i, then,

H(x†
τ ) ≤ H(xc

τ ) + |H(x†
τ )−H(xc

τ )|

≤ H(xc
τ ) + i + m

2i log 2.

Thus we can let

H+
i (τ) df = h+

i (xc
τ ) + i + m

2i log 2,

where an upper estimate h+
i (xc

τ ) of H(xc
τ ) is found by calculating H(xc

τ ) to d + i decimal places (e.g., by 
using a Taylor approximation) and incrementing the final digit, and where d is the number of decimal places 
needed to represent numbers at the required accuracy ε. Note that the upper bound improves as i increases, 
but this procedure does not tell us exactly how good the upper bound is.

Next, define the lower bound H−
i . For each tile τ ∈ 𝒯i, H−

i (τ) is defined by computing a lower estimate 
h−
i (xc

τ ) of H(xc
τ ), e.g., by calculating H(xc

τ ) to t + i decimal places and decrementing the final digit:

H−
i (τ) df = h−

i (xc
τ ).

Again, the lower bound improves as i increases, but this procedure does not tell us how good the lower 
bound is.
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Note that H+
i (τ) and H−

i (τ) become arbitrarily close, since for all large enough i and all τ ∈ 𝒯i

H+
i (τ)−H−

i (τ) = h+
i (xc

τ ) + i + m

2i log 2− h−
i (xc

τ )

= h+
i (xc

τ )− h−
i (xc

τ ) + i + m

2i log 2

< δ.

For tiles σ, τ ∈ 𝒯i, define a partial order ≻i by:

σ ≻i τ ⇐⇒ H−
i (σ) > H+

i (τ).

If σ ≻i τ then clearly H(x†
σ) > H(x†

τ ) and the overall entropy maximiser x† cannot lie in τ .
Let Xi+1

df =
⋃︁
{τ ∈ 𝒯i : there is no σ ∈ 𝒯i such that σ ≻i τ}, i.e., the union of all τ that are maximal 

with respect to ≻i. Xi+1 is a subset of Xi within which x† is guaranteed to lie. We can then define a new, 
finer tessellation 𝒯i+1 of Xi+1 such that 𝒯i+1 is a refinement of 𝒯i restricted to Xi+1, and we can define 
approximations H−

i+1, H
+
i+1 on 𝒯i+1 using the definitions provided above. Iterating, we refine the tessellation 

and compute new bounds. By construction, x† ∈ Xi, for each i.
We claim that after finitely many iterations we find a set Xn such that supx∈Xn

|x−x†| < ε, the required 
precision. Hence, any x∗ ∈ Xn approximates x† sufficiently closely. To be concrete, we can take x∗ = xc

τ for 
some τ ∈ 𝒯n, as this element of Xn is effectively specifiable. 

Termination of the algorithm. We can see that |x−x†| < ε for all x ∈ Xi and sufficiently large i, as follows.
For every i ∈ N, let 𝒮i(x) ⊆ 𝒯i be the set of tiles in 𝒯i that contain x. Furthermore, let ℛi = 𝒮i(x†). 

Notice that if x† is an interior point of a tile in τ ∈ 𝒯i then ℛi is the singleton {τ}, while if x† lies on the 
boundary of a tile in 𝒯i then ℛi will have as elements all the tiles that share that part of the boundary.

Since the diameters of the tiles go to zero as i increases and since the tiles in ℛi are adjacent, there is 
some N ∈ N such that for all i ≥N and all x, y that feature in tiles in ℛi,

|x− y| < ϵ.

That is, for all i ≥ N the region consisting of the set of tiles of 𝒯i that contain the entropy maximiser has 
diameter less than our given precision ϵ, and thus for any i ≥ N any point in a tile in ℛi (and in particular 
x†) can be suitably approximated by any other point in (some tile in) ℛi, given our threshold of precision.

Consider 𝒯N and some σ ∈ 𝒯N such that σ ̸∈ ℛN . We next show that there is some M ≥ N such that 
σ ∩XM+1 = ∅. That is, after M + 1−N more iterations, all the points in σ have been eradicated from the 
feasible region XM+1.

To see this, let δ df = H(x†)−H(x†
σ). By the construction of the upper bound H+

i , there is some M1 ∈ N

such that for all i ≥M1, all x ∈ Xi, and all tiles τx ∈ 𝒮i(x),

|H+
i (τx)−H(xc

τx)| < δ

2 .

By the construction of the lower bound H−
i , there is some M2 ∈ N such that for all i ≥M2 and all tiles 

τ † ∈ ℛi = 𝒮i(x†),

|H−
i (τx†)−H(xc

τ†)| <
δ

2 .

Let M = max{M1,M2, N} and consider the tessellation 𝒯M . Suppose tiles τ1, . . . , τm are the refinements 
of σ ∈ 𝒯N in 𝒯M , that is σ ∩XM =

⋃︁m
j=1 τj .
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Now consider an arbitrary such tile τj, where j ∈ {1, . . . ,m} and any tile τ † ∈ ℛM . We have that: 

H+
M (τj) < H(xc

τj ) + δ

2 ≤ H(x†
σ) + δ

2 = H(x†)− δ

2 < H−
M (τ †).

So τ † ≻M τj and τj∩XM+1 = ∅. Since this holds for all j = 1, . . . ,m, it is indeed the case that σ∩XM+1 = ∅, 
as claimed above.

Denote this particular choice of M by Mσ and note that the tessellation 𝒯N is finite. Consider L =
max{Mσ +1 | σ ∈ 𝒯N , σ ̸∈ ℛN}. Then for all such tiles σ, σ∩XL = ∅. Hence, 𝒯L = ℛL. By construction, for 
all x, y in (tiles in) ℛL we have that |x−y| < ϵ, so any point in XL can be taken as a suitable approximation 
x∗ to x†, as required. □

This result is perhaps surprising in the light of recent research that suggests that, for many important 
optimisation problems, determining the optimiser is in fact undecidable [21]. Note that while the algorithm 
that we provide in the above proof offers an effective procedure to obtain the entropy maximiser, and 
thus can be used to demonstrate decidability, we do not suggest that it is efficient enough to be used in 
practice to fill in a truth table. In practice, standard convex optimisation methods, such as gradient ascent 
methods [4] or Lagrange multiplier methods (see the Appendix), work perfectly well to find the entropy
maximising values that are required for the truth-table method. Moreover, the truth-table method is itself 
not the most efficient method for determining the probability that attaches to the conclusion sentence in 
an OBIL inference, because the number of rows of a truth table increases exponentially in the number of 
atomic propositions in the inference. In §7 we introduce an inference procedure that employs probabilistic 
graphical models and that is potentially much more efficient.

As an aside, we note that while the above result requires that the premiss and conclusion sentences are 
quantifier-free, the truth-table method can also be used to determine the probability P †(ψ) of a conclusion 
sentence ψ ∈ Sℒ that contains quantifiers. That this is the case will follow from a later result, Theorem 4; 
here it suffices to provide a couple of illustrative examples:

Example 2. 

U1t4t6 → U2t9, U2t9
2/5 |≈◦ ∃xU1t4x

since, by axiom P3, 

P †(∃xU1t4x) = sup 
m→∞

P †(
m ⋁︂
i=1

U1t4ti)

= lim 
m→∞

P †(
m ⋁︂
i=1

U1t4ti)

= lim 
m→∞

P †(¬
m ⋀︂
i=1
¬U1t4ti)

= lim 
m→∞

1− P †(
m ⋀︂
i=1
¬U1t4ti)

= 1− lim 
m→∞

P †(
m ⋀︂
i=1
¬U1t4ti)

= 1− lim 
m→∞

4
5

(︃
1
2

)︃m−1

= 1
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where the penultimate equation is obtained by equivocating beyond the truth table.

Furthermore,

Example 3. 

U1t4t6 → U2t9, U2t9
2/5 |≈◦ ∀y∃xU1yx

because

P †(∀y∃xU1yx) = lim 
m→∞

P †(
m ⋀︂
i=1
∃xU1tix) = lim 

m→∞
1m = 1.

The key goal of the rest of the paper is extend the above decidability result to a much richer class of 
inferences. We next introduce a generalisation of a concept from [41, §5.5]:

Definition 14 (Finitely generated consequences). A set A ⊆ 𝒜 of statements has finitely generated conse
quences if there are quantifier-free sentences φ1, . . . , φk and closed intervals X1, . . . , Xk ⊆ [0, 1] such that 
[ [A] ] = [ [φX1

1 , . . . , φXk

k ] ]. φX1
1 , . . . , φXk

k are generating statements for A.

Definition 15 (Finitely reducible). A set A ⊆ 𝒜 of statements is finitely reducible if it has finitely generated 
consequences and there is an effectively computable procedure for determining the generating statements 
for A. A class of inferences is finitely reducible iff

1. it is effectively determinable whether any given inference lies within the class of inferences,
2. each inference in the class has premisses with finitely generated consequences, and
3. there is an effectively computable procedure for determining the generating statements for the premisses 

of each inference in the class.

The task of the following sections is to show that there is a large class of inferences of OBIL that has 
finitely reducible consequences. By determining the generating statements for the premisses and using the 
truth-table method, this large class of inferences is then decidable.

4. The support inference

In this section, we consider premisses φX1
1 , . . . , φXk

k with φ1, . . . , φk being arbitrary sentences of ℒ (not 
assumed to be quantifier-free), and X1, . . . , Xk closed subintervals of the unit interval as usual. We shall 
associate quantifier-free sentences φ̌1, . . . , φ̌k with the premiss sentences φ1, . . . , φk. In the next section, we 
shall specify conditions under which these yield generating statements for the premisses.

Definition 16 (Support). Suppose ai1 , . . . , aim include all the atomic propositions that appear in sentence φ

of ℒ, and let Ξφ
df = {±ai1 ∧ . . . ∧ ±aim} be the set of states of these atomic propositions. If φ contains no 

atomic propositions, we take Ξφ
df = {a1,¬a1}.

The support φ̌ of φ is the disjunction of states in Ξφ that are inductively consistent with φ, i.e., the 
disjunction of ξ ∈ Ξφ such that |̸≈◦ ¬(ξ ∧ φ). Equivalently,

φ̌
df =

⋁︂
{ξ ∈ Ξφ : P=(ξ ∧ φ) > 0}.

If φ is a tautology, then so is φ̌. If φ is a contradiction, then so is φ̌.
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Example 4. If φ = ∃x(U1t1 ∧ U2t1x) then φ̌ = U1t1. Note that φ does not mention an atomic proposition 
containing U2.

Example 5. If φ = U1t1 ∨ (∀xU2x ∧ ¬U1t1) then φ̌ = U1t1 because

P=(∀xU2x) = lim 
m→∞

P=(
m ⋀︂
i=1

U2ti) = lim 
m→∞

2−m = 0 .

Definition 17 (Support inference). Given an inference

φX1
1 , . . . , φXk

k |≈◦ ψY ,

we shall consider an associated support inference,

φ̌X1
1 , . . . , φ̌Xk

k |≈◦ ψ̌Y .

One can think of the support inference as a quantifier-free simulation of the original inference. We show 
in this section that if the support premisses φ̌X1

1 , . . . , φ̌Xk

k are satisfiable then they are generating statements 
for the original premisses φX1

1 , . . . , φXk

k , i.e., the original inference has finitely generated consequences. In 
the next subsection, we shall demonstrate that this is the case when X1, ..., Xk are point values in [0, 1]
(Theorem 2). We subsequently generalise the key result to the situation in which X1, ..., Xk are non-empty 
subintervals of [0, 1] (Theorem 3).

It turns out that the construction of the support inference from the original inference is effectively 
computable (Proposition 10). The premisses of the support inference are quantifier-free, so, as we shall 
see in Theorem 5, the support inference is decidable by means of the truth-table method outlined in the 
previous section.

In what follows, in order to clearly distinguish the support inference from the original inference we shall 
adopt some notational conventions:

Original inference Support inference 
Premisses φX1

1 , . . . , φXk

k φ̌X1
1 , . . . , φ̌Xk

k

Feasible region E
df = P [φX1

1 , . . . , φXk

k ] Ě
df = P [φ̌X1

1 , . . . , φ̌Xk

k ]
n-entropy maximiser Pn P̌n

Maximal entropy function P † ∈ maxentE P̌ † ∈ maxent Ě

We now introduce a concept that is key to the results of this paper.

Definition 18 (Support-satisfiability). Premisses φX1
1 , . . . , φXk

k are said to have satisfiable support or to be 
support-satisfiable if and only if Ě ̸= ∅, i.e., if and only if there exists a probability function P ∈ P such that 
for all i = 1, . . . , k, P (φ̌i) ∈ Xi. An inference has satisfiable support or is support-satisfiable if its premisses 
have satisfiable support.

As we shall see in Proposition 13, premisses have satisfiable support as long as they do not force an 
inductive tautology to have probability less than one, or equivalently, an inductive contradiction to have 
probability greater than zero. Recall from Definition 11 that the inductive tautologies include not just the 
deductive tautologies but all the sentences with measure 1, e.g., ∃xUx. Similarly, the inductive contradictions 
are the measure-zero sentences, e.g., ∀xUx.

If an inference has satisfiable support then the support problem, being quantifier-free, admits a unique 
maximal entropy function P̌ † ∈ maxent Ě (Proposition 4) and the class of such inferences with quantifier
free conclusions is decidable (Theorem 1). The main task of the paper is to show that this phenomenon 
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carries over to the original inference itself: if the original inference has satisfiable support then it is reducible 
to the support inference, P † = P̌ † (Theorem 3), and moreover, the class of all inferences with satisfiable 
support is decidable (Theorem 5).

This is perhaps surprising, because the feasible regions of the two inferences can be very different, even 
where the original inference is support-satisfiable:

Example 6 (E and Ě). Consider the single premiss φ0.5 = (Ut1 ∨ ∀xV x)0.5. Then φ̌ = Ut1, so P ∈ Ě if 
and only if P (Ut1) = 0.5. But P (Ut1) = 0.5 does not entail that P (φ) = 0.5. So, Ě ̸⊆ E. Furthermore, for 
Q ∈ P with Q(Ut1) = 0 and Q(∀xV x) = 0.5, we have that Q ∈ E. However, Q / ∈ Ě. So, E ̸⊆ Ě.

In the remainder of this section, we explore some properties of the support propositions φ̌. In particular, 
in Proposition 7 we see that φ̌ is logically equivalent to φNφ

df =
⋁︁
{ωNφ

∈ ΩNφ
: P=(ωNφ

∧ φ) > 0}, so any 
probability function gives these two propositions the same probability. Before proceeding to Proposition 7, 
we require a definition and two lemmas.

Definition 19 (Constant exchangeability). Let θ(x1, x2, . . . , xl) be a formula of ℒ that does not contain 
constants. A probability function P on 𝒮ℒ satisfies constant exchangeability if and only if for all such θ and 
all sets of pairwise distinct constants t1, t2, . . . , tl, and t′1, t

′
2, . . . , t

′
l,

P (θ(t1, t2, . . . , tl)) = P (θ(t′1, t′2, . . . , t′l)) .

Equivalently, constant exchangeability holds if and only if for all n ∈ N and all n-states ω, ν ∈ Ωn, if ω can 
be obtained from ν by a permutation of the first n constants then P (ω) = P (ν).

Lemma 1. Suppose probability function P satisfies constant exchangeability. If the following identity holds 
for all quantifier-free sentences then it holds for all sentences φ,ψ ∈ Sℒ:

P (φ ∧ ψ|λ) = P (φ|λ) · P (ψ|λ), (4)

where λ is any contingent conjunction of closed literals that contains all the atomic propositions that occur 
in both φ and ψ.

Proof. The result follows by a straightforward adaptation of the proof of [29, Corollary 6.2] and proceeds 
by induction on the quantifier complexity of φ ∧ ψ when written in prenex normal form.

The result holds by assumption when φ ∧ ψ is quantifier free. For the induction step it is sufficient to 
consider

∃x1, . . . , xrθ(x1, . . . , xr, t⃗) ∧ ∃x1, . . . , xsη(x1, . . . , xs, t⃗′) (5)

where all constants appearing in both ⃗t and t⃗′ are included in {t1, . . . , tl}. To see that this is sufficient notice 
that if (4) holds for sentences of this form then,

P (∃x⃗θ ∧ ∀y⃗η | λ) = P (∃x⃗θ | λ)− P (∃x⃗θ ∧ ¬∀y⃗η | λ)

= P (∃x⃗θ | λ)− P (∃x⃗θ ∧ ∃y⃗¬η | λ)

= P (∃x⃗θ | λ)− (P (∃x⃗θ | λ) · P (∃y⃗¬η | λ))

= P (∃x⃗θ | λ)− (P (∃x⃗θ | λ) · (1− P (∀y⃗η | λ)))

= P (∃x⃗θ | λ)− P (∃x⃗θ | λ) + P (∃x⃗θ | λ) · P (∀y⃗η | λ)

= P (∃x⃗θ | λ) · P (∀y⃗η | λ)
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and,

P (∀x⃗θ ∧ ∀y⃗η | λ) = 1− P (∃x⃗¬θ ∨ ∃y⃗¬η | λ)

= 1− P (∃x⃗¬θ | λ)− P (∃y⃗¬η | λ) + P (∃x⃗¬θ ∧ ∃y⃗¬ η | λ)

= 1− P (∃x⃗¬θ | λ)− P (∃y⃗¬η | λ) + P (∃x⃗¬θ | λ) · P (∃y⃗¬η | λ)

= P (∀x⃗θ | λ) + P (∀y⃗η | λ)− 1 + (1− P (∀x⃗θ | λ)) · (1− P (∀y⃗η | λ))

= P (∀x⃗θ | λ) · P (∀y⃗η | λ) .

To show (4) for sentences of the form in (5), let u1, u2, u3, . . . be distinct constants containing those in t⃗
and u′

1, u
′
2, u

′
3, . . . distinct constants containing those in t⃗′ such that {u1, u2, u3, . . .} and {u′

1, u
′
2, u

′
3, . . .} are 

disjoint except for the constants shared between t⃗ and t⃗′.
By [29, Lemma 6.1],

lim 
n→∞

P

⎛
⎝
⎛
⎝ ⋁︂

i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , t⃗)

⎞
⎠↔ ∃x1, . . . , xrθ(x1, . . . , xr, t⃗) |λ

⎞
⎠ = 1

and

lim 
n→∞

P

⎛
⎝
⎛
⎝ ⋁︂

i1,...,is≤n

η(u′
i1 , u

′
i2 , . . . , u

′
is , t⃗

′)

⎞
⎠↔ ∃x1, . . . , xsη(x1, . . . , xs, t⃗′) |λ

⎞
⎠ = 1.

Then for every ϵ > 0 there is N large enough such that for all n ≥ N

P

⎛
⎝
⎛
⎝ ⋁︂

i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , t⃗)

⎞
⎠↔ ∃x1, . . . , xrθ(x1, . . . , xr, t⃗) |λ

⎞
⎠ > 1− ϵ 

4

and

P

⎛
⎝
⎛
⎝ ⋁︂

i1,...,is≤n

η(u′
i1 , u

′
i2 , . . . , u

′
is , t⃗

′)

⎞
⎠↔ ∃x1, . . . , xsη(x1, . . . , xt, t⃗′) |λ

⎞
⎠ > 1− ϵ 

4

by [29, Lemma 3.7],

P
(︂
∃x1, . . . , xrθ(x1, . . . , xr, t⃗) ∧ ∃x1, . . . , xsη(x1, . . . , xs, t⃗′) |λ

)︂
−

P

⎛
⎝ ⋁︂

i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , t⃗) ∧
⋁︂

i1,...,is≤n

η(u′
i1 , u

′
i2 , . . . , u

′
is , t⃗

′) |λ

⎞
⎠ <

ϵ 
2 .

But

P

⎛
⎝ ⋁︂

i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , t⃗) ∧
⋁︂

i1,...,is≤n

η(u′
i1 , u

′
i2 , . . . , u

′
is , t⃗

′) |λ

⎞
⎠

equals
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P

⎛
⎝ ⋁︂

i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , t⃗) |λ

⎞
⎠ · P

⎛
⎝ ⋁︂

i1,...,is≤n

η(u′
i1 , u

′
i2 , . . . , u

′
is , t⃗

′) |λ

⎞
⎠

by the induction hypothesis, and taking n large enough we have:

P

⎛
⎝ ⋁︂

i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , t⃗) |λ

⎞
⎠ · P

⎛
⎝ ⋁︂

i1,...,is≤n

η(u′
i1 , u

′
i2 , . . . , u

′
is , t⃗

′) |λ

⎞
⎠−

P
(︁
∃x1, . . . , xrθ(x1, . . . , xr, t⃗) |λ

)︁
· P

(︂
∃x1, . . . , xsη(x1, . . . , xs, t⃗′) |λ

)︂
<

ϵ 
2

and thus

P
(︂
∃x1, . . . , xrθ(x1, . . . , xr, t⃗) ∧ ∃x1, . . . , xsη(x1, . . . , xs, t⃗′) |λ

)︂
− P

(︁
∃x1, . . . , xrθ(x1, . . . , xr, t⃗) |λ

)︁
· P

(︂
∃x1, . . . , xsη(x1, . . . , xs, t⃗′) |λ

)︂
<
ϵ 
2 + ϵ 

2 = ϵ,

which gives the required result. □
In particular, Lemma 1 applies to the equivocator function:

Corollary 2. For all φ,ψ ∈ Sℒ,

P=(φ ∧ ψ|λ) = P=(φ|λ) · P=(ψ|λ),

where λ is any contingent conjunction of closed literals that contains all the atomic propositions that occur 
in both φ and ψ.

Consequently, for all φ ∈ Sℒ and all ω ∈ ΩNφ
,

P=(φ|ω) = P=(φ ∧ φ|ω) = P=(φ|ω)2 ∈ {0, 1} .

Proof. The first part follows immediately if φ or ψ has measure zero; the second part is also trivial for 
measure-zero φ. So suppose otherwise.

Consider φ,ψ ∈ Sℒ and λ as in Lemma 1 and let M := max{Nφ, Nψ, Nλ}. Since λ is contingent we do 
not divide by zero in the following equation,

P=(φ ∧ ψ|λ) = |{ω ∈ ΩM : ω ⊨ φ ∧ ψ ∧ λ}|/|ΩM |
|{ω ∈ ΩM : ω ⊨ λ}|/|ΩM | 

.

Let us now split M -states ω into four conjunctions, one mentioning the atomic propositions of λ, one men
tioning those unique to φ, one mentioning those unique to ψ and one mentioning the remainder, ωφ, ωψ, ω

+. 
For all ω ∈ ΩM we shall consider here we hence have ω ≡ λ ∧ ωφ ∧ ωψ ∧ ω+.9

Also put

Ωφ∧λ := {ν ∈ Ξωφ
: ν ∧ λ ⊨ φ ∧ λ}

9 Note that φ ≡ λ is possible. If φ had measure zero, so would be the measure of λ and we could not conditionalise on λ. If 
λ ⊨ φ, then ωλ is an empty conjunction, a tautology.
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Ωψ∧λ := {ν ∈ Ξωψ
: ν ∧ λ ⊨ ψ ∧ λ}

Ωφ∧ψ∧λ := {ν ∈ Ξωφ∧ωψ
: ν ∧ λ ⊨ φ ∧ ψ ∧ λ} .

Let us now observe that |Ωφ∧ψ∧λ| = |Ωφ∧λ||Ωψ∧λ|. Let lφ, lχ, lω+ denote the number of conjuncts in these 
conjunctions and |ωφ| := 2lφ , |ωψ| := 2lψ , |ω+| := 2lω+ . Then,

P=(φ ∧ ψ|λ) = |{ω ∈ ΩM : ω ⊨ φ ∧ ψ ∧ λ}|/|ΩM |
|{ω ∈ ΩM : ω ⊨ λ}|/|ΩM | 

= |ω
+| · |Ωφ∧ψ∧λ|/|ΩM | 

|ω+| · |ωφ| · |ωψ|/|ΩM |

= |ω
+|2 · |Ωφ∧λ| · |ωψ| · |Ωψ∧λ| · |ωφ|/|ΩM |

|ω+|2 · |ωφ|2 · |ωψ|2/|ΩM | 

= |ω
+| · |Ωφ∧λ| · |ωψ|/|ΩM |
|ω+| · |ωφ| · |ωψ|/|ΩM | 

· |ω
+| · |Ωψ∧λ| · |ωφ|/|ΩM |
|ω+| · |ωφ| · |ωψ|/|ΩM | 

= |{ω ∈ ΩM : ω ⊨ φ ∧ λ}|/|ΩM |
|{ω ∈ ΩM : ω ⊨ λ}|/|ΩM | 

· |{ω ∈ ΩM : ω ⊨ ψ ∧ λ}|/|ΩM |
|{ω ∈ ΩM : ω ⊨ λ}|/|ΩM | 

=P=(φ|λ)P=(ψ|λ) .

Since φ,ψ were arbitrary, this holds for all quantifier-free sentences φ,ψ and all such λ. Consequently, 
the assumptions of Lemma 1 hold for P=.

Letting ψ = φ and recalling that λ may be a state completes the proof. □
Example 7. Note that φ = ∃xUx ∧ V t1 and ψ = ∃xUx ∧ ¬V t1 share the atomic proposition V t1. In 
particular, they do not share an atomic proposition mentioning U , since the literal Ux mentions a variable. 
So, Ξψ = {V t1}. Observe furthermore that, P=(φ ∧ ψ) = 0 < 0.25 = P=(φ) · P=(ψ). But for both λ = V t1
and λ = ¬V t1 we have P=(φ ∧ ψ|λ) = 0 = P=(φ|λ) · P (ψ|λ). Note that λ may contain further literals such 
as V t2, ¬Ut1 and Ut2.

Some properties of probability 1 sentences will be useful:

Lemma 2. For any ψ, χ ∈ Sℒ:

1. If P (ψ) = 1, then P (α ∧ ψ) = P (α) for all α ∈ Sℒ.
2. If P (ψ ↔ χ) = 1, then P (ψ) = P (χ).
3. If P (ψ ↔ χ) = 1 and P (ψ) > 0, then P (·|ψ) = P (·|χ).
4. If P (ψ ↔ χ) = 1, then P (α ∧ ψ) = P (α ∧ χ) for all α ∈ Sℒ.

Proof. (1) We have that:

P (α) = P (α ∧ ψ) + P (α ∧ ¬ψ) ≤ P (α ∧ ψ) + P (¬ψ) = P (α ∧ ψ) .

Since P (α) ≥ P (α ∧ ψ) must also hold, we find that P (α ∧ ψ) = P (α).
(2) Since P (ψ ∧ ¬χ) = 0 = P (¬ψ ∧ χ),

P (ψ) = P (ψ ∧ χ) + P (ψ ∧ ¬χ) + P (¬ψ ∧ χ) = P (χ) + P (ψ ∧ ¬χ) = P (χ) .
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(3) We first observe that

P (α ∧ ψ) = P (α ∧ ψ ∧ χ) + P (α ∧ ψ ∧ ¬χ) + P (α ∧ ¬ψ ∧ χ)

= P (α ∧ χ) + P (α ∧ ψ ∧ ¬χ) = P (α ∧ χ) .

Since P (ψ) = P (χ) by (2), P (α|ψ) = P (α|χ).
(4) Let us first assume that P (ψ) = 0. Then

1 = P (ψ ↔ χ) = P (ψ ∧ χ) + P (¬ψ ∧ ¬χ) = P (¬ψ ∧ ¬χ) (1)= P (¬χ) .

So, P (χ) = 0. This establishes that P (ψ ∧ α) = 0 = P (χ ∧ α) for all α ∈ Sℒ.
Finally, assume that P (ψ) > 0. P (α|ψ) = P (α|χ) for all α ∈ Sℒ by (3). Hence, for all α ∈ Sℒ

P (ψ ∧ α) = P (α|ψ)P (ψ) = P (α|χ)P (ψ) = P (α|χ)P (χ) = P (χ ∧ α) ,

where the penultimate equality follows from P (ψ ↔ χ) = 1 entailing P (ψ) = P (χ) (2). □
Proposition 7. For all φ ∈ Sℒ and n ≥ Nφ, the following two sentences are logically equivalent:

φ̌ :=
⋁︂
{ξ ∈ Ξφ : P=(ξ ∧ φ) > 0} φn :=

⋁︂
{ω ∈ Ωn : P=(ω ∧ φ) > 0} . (6)

Since φ̌ and φn are logically equivalent, each probability function must give them the same probability. 
We can thus switch freely between them in the sense of the above Lemma. φ̌ is the most economical 
representative of this class of equivalent propositions insofar as it involves fewest atomic propositions. This 
provides computational advantages that we shall exploit in §7.

Proof. If φ has zero measure, both disjunctions are empty and the result follows trivially.
Let us now assume that φ has positive measure and that n ≥ Nφ.
If P=(φ ∧ ξ) = 0, then P=(ω ∧ ξ) ≤ P=(φ ∧ ξ) = 0 for all n-states ω with ω ⊨ ξ. So, if ξ ∈ Ξφ then no 

n-state ω ∈ Ωn entailing ξ is such that P=(φ ∧ ω) > 0.
Now let P=(φ ∧ ξ) > 0 and ω+ be the conjunction of the conjuncts ω ⊨ ξ that are not entailed by ξ, so 

ω ≡ ω+ ∧ ξ. Then,

0 < P=(φ ∧ ξ ∧ ω+) P=(ξ)>0= P=(φ ∧ ω+|ξ) · P=(ξ)
Cor. 2= P=(φ|ξ) · P=(ω+|ξ) · P=(ξ)

= P=(φ ∧ ξ) · 2m

|Ωn|
,

where m is the number of atomic propositions that feature in ξ.
Note that P=(φ ∧ ξ) · 2m

|Ωn| does not depend on ω+: it is a constant. And since

0 < P=(φ ∧ ξ) =
∑︂
ω+

ξ∧ω+∈Ωn

P=(φ ∧ ξ ∧ ω+) = P=(φ ∧ ξ) · 2m

|Ωn|
,

this constant cannot be zero. This shows that for all ω+, P=(φ∧ ξ ∧ ω+) > 0. This in turn implies that the 
n-state ξ ∧ ω+ entails 

⋁︁
{ω ∈ Ωn : P=(ω ∧ φ) > 0}, as claimed. □
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Lemma 3. For all φ,ψ ∈ Sℒ,

(i) ˇφ ∧ ψ = φ̌ ∧ ψ̌

(ii) ˇφ ∨ ψ = φ̌ ∨ ψ̌

(iii) ¬̌φ = ¬φ̌

(iv) P=(φ̌) = P=(φ) .

Proof. (i) Let M = max{Nφ, Nψ}. By [16, Lemma 27], for all n ≥M and ω ∈ Ωn, we have P=(φ ∧ ψ|ω) =
P=(φ|ω) · P=(ψ|ω). Hence P=(ω ∧ φ ∧ ψ) > 0 if and only if P=(φ ∧ ω) > 0 and P=(ψ ∧ ω) > 0. Then 
{ω ∈ ΩM : P=(ω∧φ∧ψ) > 0} = {ω ∈ ΩM : P=(ω ∧φ) > 0}∩ {ω ∈ ΩM : P=(ω∧ψ) > 0}. Since for distinct 
ωi, ωj ∈ ΩM , ⊨ ¬(ωi ∧ ωj), we have:

ˇφ ∧ ψ =
⋁︂
{ω ∈ ΩM : P=(ω ∧ φ ∧ ψ) > 0}

=
⋁︂
{ω ∈ ΩM : P=(ω ∧ φ) > 0} ∧

⋁︂
{ω ∈ ΩM : P=(ω ∧ ψ) > 0}

= φ̌ ∧ ψ̌ .

(ii) Notice that

{ω ∈ ΩM : P=(ω ∧ (φ ∨ ψ)) > 0} = {ω ∈ ΩM : P=((ω ∧ φ) ∨ (ω ∧ ψ)) > 0}

= {ω ∈ ΩM : P=(ω ∧ φ) > 0} ∪ {ω ∈ ΩM : P=(ω ∧ ψ) > 0}

and so,

ˇφ ∨ ψ =
⋁︂
{ω ∈ ΩM : P=(ω ∧ (φ ∨ ψ)) > 0}

=
⋁︂
{ω ∈ ΩM : P=(ω ∧ φ) > 0} ∨

⋁︂
{ω ∈ ΩM : P=(ω ∧ ψ) > 0}

= φ̌ ∨ ψ̌ .

(iii) See [16, Proposition 40]. 
(iv) Observe that

P=(φ) =
∑︂
ξ∈Ξφ

P=(ξ∧φ)>0

P=(ξ ∧ φ)

≤
∑︂
ξ∈Ξφ

P=(ξ∧φ)>0

P=(ξ)

= P=(φ̌)

and then similarly find that

P=(¬φ) ≤ P=(¬̌φ) (iii)= P=(¬φ̌)

Since ⟨φ,¬φ⟩ and ⟨φ̌,¬φ̌⟩ are partitions it must be the case that P=(φ) = P=(φ̌). □
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5. The reduction theorem

The main purpose of this section is to show that, where the premisses have satisfiable support, 
φX1

1 , . . . , φXk

k |≈◦ ψY if and only if φ̌X1
1 , . . . , φ̌Xk

k |≈◦ ψ̌Y (Theorem 4). The latter problem is quantifier-free 
and decidable.

In the remainder of the paper, we shall move freely between the representation of P̌ † of Equation (3) 
and the following representation of P̌ †, which follows directly from Proposition 4:

Observation 1. If Ě ̸= ∅ for quantifier-free premisses, then maxent Ě = {P̌ †} with

P̌ †(·) df =
∑︂

ω∈ΩM

P̌M (ω) · P=(·|ω) ,

where M = max{Nφi
: i = 1, . . . , k}, and P̌M is any M -entropy maximiser in Ě.

The use of this latter representation will allow us to assess the entropy of P̌ † more directly and will allow 
us to apply results of [16]. Note that P̌ † equivocates beyond M , in the sense of the following definition:

Definition 20 (Equivocation beyond N). Given some N ∈ N, we say that a probability function P ∈ P

equivocates beyond N if and only if for all n ≥ N and all ωn ∈ Ωn, P (ωn) = P (ωN ) · |ΩN |
|Ωn| , where ωN is the 

restriction of ωn to ℒN , that is the unique N -state such that ωn ⊨ ωN .

We now show that equivocation beyond the support problem fixes conditional probabilities of quantified 
sentences.

Lemma 4. If P equivocates beyond N , then for all ωN ∈ ΩN such that P (ωN ) > 0 and for all sentences 
φ ∈ Sℒ, P (φ|ωN ) = P=(φ|ωN ).

Proof. First note that P (ν|ωN ) = P=(ν|ωN ) for all N -states ν ∈ ΩN with P (ν) > 0. Since these probability 
functions also both equivocate beyond N , they agree on all quantifier-free sentences. By Remark 2, they 
are thus equal. □
5.1. Point-valued premisses

In this subsection we consider inferences of the form

φX1
1 , . . . , φXk

k |≈◦ ψY ,

where Xi = ci ∈ [0, 1] for i = 1 . . . k. For the rest of this subsection let E = {φc1
1 , . . . , φck

k } and M =
max{Nφi

: i = 1, . . . , k}.

Example 8 (Support-satisfiability of a single premiss). If P=(φ) > 0, then the premiss φ1 is support
satisfiable, since P=(φ) = P=(φ̌) (Lemma 3 (iv)) and P=(φ̌|φ̌) = 1.

If 0 < P=(φ) < 1, then the premiss φc for 0 < c < 1 is support-satisfiable, since Q(φ̌) := c · P=(φ̌|φ̌) +
(1− c) · P=(φ̌|¬φ̌) = c + 0 = c.

Consequently, given categorical premisses φ1
1, . . . , φ

1
k, if P=(φ) > 0 for φ :=

⋀︁k
i=1 φi, then the inference 

is support-satisfiable.

Proposition 8. If Ě ̸= ∅, then P̌ † ∈ E.
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In particular, if the premisses are support satisfiable then they are also satisfiable.

Proof. For all premiss sentences φi,

P̌ †(φi) =
∑︂

ω∈ΩM

P̌M (ω) · P=(φi|ω)

=
∑︂

ω∈ΩM
P=(ω∧φi)>0

P̌M (ω) · P=(φi|ω)

=
∑︂

ω∈ΩM
P=(ω∧φi)>0

P̌M (ω) · 1

=
∑︂

ω∈ΩM
ω|=φ̌i

P̌ †(ω)

=P̌M (φ̌i)

=ci ,

where the third equality follows from [16, Proposition 28] (P=(φi|ω) = P=(ω|ω)). □
Proposition 9 (Entropy of P̌ †). For all n ≥M ,

Hn(P̌ †) = HM (P̌ †) + log(|Ωn|)− log(|ΩM |) .

Proof.
Hn(P̌ †) =−

∑︂
ω∈ΩM

∑︂
ζ∈Ωn
ζ⊨ω

P̌M (ω) · P=(ζ|ω) · log(P̌M (ω) · P=(ζ|ω))

=−
∑︂

ω∈ΩM

P̌M (ω) ·
∑︂
ζ∈Ωn
ζ⊨ω

|ΩM |
|Ωn| 

·
[︃
log(P̌M (ω)) + log

(︃
|ΩM |
|Ωn| 

)︃]︃

=−
∑︂

ω∈ΩM

P̌M (ω) ·
[︃
log(P̌M (ω)) + log

(︃
|ΩM |
|Ωn| 

)︃]︃

= log(|Ωn|)− log(|ΩM |)−
∑︂

ω∈ΩM

P̌M (ω) · log(P̌M (ω))

=HM (P̌ †) + log(|Ωn|)− log(|ΩM |) . □
Lemma 5. Let P ∈ E \ Ě. Then there are constants g1, g2 > 0, a strictly positive sequence vn diverging to 

infinity, and some N such that Hn(P ) < g1 +
(︂
1− g2·vn

log(|Ωn|)

)︂
log(|Ωn|) for all n ≥ N .

Proof. Since P / ∈ Ě there has to be at least one premiss φi such that P (φ̌i) / ∈ Xi and P (φi) ∈ Xi. 
Considering ¬φ[1−X+

i ,1−X−
i ]

i if necessary, there then exists some i such that P (φ̌i) is less than the minimum 
of the interval Xi, X−

i . So,

X−
i ≤ P (φi) =

∑︂
ω∈ΩM

P (ω ∧ φi) =
∑︂

ω∈ΩM
P=(φi∧ω)>0

P (ω ∧ φi) +
∑︂

ω∈ΩM
P=(φi∧ω)=0

P (ω ∧ φi)
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Table 1
Example of the Sn,l and the Nl. The shaded cells indicate the element in the sequence 
(Sn,l)n∈N after which |Sn,l|

|Ωn| < 1
l . Since N2 = 2 we have S1 = Ω1 and S2 = Ω2. The bold 

font indicates that this cell is part of Sn, for these cells Sn = Sn,l. The sequence (Sn,3)n∈N
is skipped and does not appear in Sn.

l Sn,l Nl ∀n ≥ Nl Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7

2 Sn,2 N2 = 2 |Sn,2|
|Ωn| < 1

2 S1,2 S2,2 S3,2 S4,2 S5,2 S6,2 S7,2

3 Sn,3 N3 = 3 |Sn,3|
|Ωn| < 1

3 S1,3 S2,3 S3,3 S4,3 S5,3 S6,3 S7,3

4 Sn,4 N4 = 3 |Sn,4|
|Ωn| < 1

4 S1,4 S2,4 S3,4 S4,4 S5,4 S6,4 S7,4

5 Sn,5 N5 = 6 |Sn,5|
|Ωn| < 1

5 S1,5 S2,5 S3,5 S4,5 S5,5 S6,5 S7,5

6 Sn,6 N6 = 100 |Sn,6|
|Ωn| < 1

6 S1,6 S2,6 S3,6 S4,6 S5,6 S6,6 S7,6

7 Sn,7 N7 = 101 |Sn,7|
|Ωn| < 1

7 S1,7 S2,7 S3,7 S4,7 S5,7 S6,7 S7,7

= P (φ̌i) +
∑︂

ω∈ΩM
P=(φi∧ω)=0

P (ω ∧ φi) .

Since P (φ̌i) < X−
i , there is thus some ω ∈ ΩM such that P (ω∧φi) > 0 and P=(ω∧φi) = 0. Let χ = ω∧φi. 

In particular, 0 < P (χ).
From [16, Lemma 32] it follows that for any ϵ ∈ (0, 1) there is some Nϵ ∈ N such that for all n ≥ Nϵ there 

exists some set S′
n of n-states with |S′

n| 
|Ωn| < ϵ such that for all n ≥ Nϵ, P concentrates at least probability 

(1− ϵ) · P (χ) on S′
n.

So, for all natural numbers l ≥ 2 there is Nl ∈ N such that for all n ≥ Nl, there exists some set Sn,l of 
n-states with |Sn,l|

|Ωn| <
1
l and P concentrates at least probability (1 − 1

l ) · P (χ) on Sn,l. (We shall refer to 
this as Condition ∗l.) We assume without loss of generality that Nl ≤ Nl+1 for all l. Clearly, no such set 
Sn,l can be empty. Let us now define a sequence Sn of n-states

Sn :=
{︄

Ωn, if 1 ≤ n ≤ N2

Sn,l, if Nl < n ≤ Nl+1 for all l ≥ 2 .

Our assumption of Nl ≤ Nl+1 uniquely determines the value of l given fixed n.

Example 9 (Illustrating the definition of Sn). 

S3 = S3,2 N2 = 2 < 3 = n ≤ 3 = N3

S4 = S4,4 N4 = 3 < 4 = n ≤ 6 = N5

S5 = S5,4 N4 = 3 < 5 = n ≤ 6 = N5

S6 = S6,4 N4 = 3 < 6 = n ≤ 6 = N5

S7 = S7,5 N5 = 6 < n = 7 ≤ 100 = N6

Sg = Sg,5 N5 = 6 < g ≤ 100 = N6 for all 8 ≤ g ≤ 100

S101 = S101,6 N6 = 100 < 101 = n ≤ 101 = N7 .

Intuitively, Sn starts with Ωn and then moves to Sn,2 as soon as |Sn,2|
|Ωn| < 1

2 and P concentrates at 
least probability 0.5 · P (χ) on Sn,2 (see Table 1). (Call this Condition ∗2.) We move to Sn,l+1 as soon as 
|Sn,l+1|
|Ωn| < 1 

l+1 and P concentrates at least probability (1− 1 
l+1 ) · P (χ) on Sn,l+1. (Condition ∗l + 1.) Note 

that we might skip some l. In the above example, cells with a bold font can never appear on the left of an 
orange cell. So, the ratio of |Sn| and |Ωn| is never zero but falls below every strictly positive upper bound; (︂

|Sn| 
|Ωn|

)︂
n∈N

converges to zero. We define furthermore the level l of the sequence Sn, for n ≥ N2 + 1, by
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Λn := max
l∈N 
{l : Nl < n} .

So, Sn = Sn,Λn
. Intuitively, Λn tells us how far in the sequences of the Sn,l we need to go in order to define 

Sn. The ratio of Sn and Ωn is thus less than 1 
Λn

and P concentrates at least probability (1− 1 
Λn

) · P (χ) on 
Sn (Condition ∗l for ever larger l.)

Notice that |Sn| 
|Ωn| → 0 as n → ∞. Thus, dividing as much of the probability mass among n-states in 

Ωn \ Sn and as little as possible among n-states in Sn increases n-entropy. By assumption, Sn should get 
at least (1 − 1 

Λn
) · P (χ) of probability mass. Thus the greatest entropy would be achieved by dividing the 

minimum permissible probability mass of (1− 1 
Λn

) · P (χ) equally among n-states in Sn and the remaining 
probability mass equally among Ωn \ Sn:

Hn(P ) ≤−
∑︂

ωn∈Ωn\Sn

P (¬χ) + 1 
Λn

P (χ)
|Ωn| − |Sn| 

log
(︄
P (¬χ) + 1 

Λn
P (χ)

|Ωn| − |Sn| 

)︄

−
∑︂

ωn∈Sn

(1− 1 
Λn

) · P (χ)
|Sn| 

log
(︄

(1− 1 
Λn

) · P (χ)
|Sn| 

)︄

≤−
∑︂

ωn∈Ωn

P (¬χ) + 1 
Λn

P (χ)
|Ωn| 

log
(︄
P (¬χ) + 1 

Λn
P (χ)

|Ωn| 

)︄

−
∑︂

ωn∈Sn

(1− 1 
Λn

) · P (χ)
|Sn| 

log
(︄

(1− 1 
Λn

) · P (χ)
|Sn| 

)︄

=− (P (¬χ) + 1 
Λn

P (χ)) · log
(︄
P (¬χ) + 1 

Λn
P (χ)

|Ωn| 

)︄

− (1− 1 
Λn

) · P (χ) · log
(︄

(1− 1 
Λn

) · P (χ)
|Sn| 

)︄
.

Let g0 := −(P (¬χ) + 1 
Λn

P (χ)) · log(P (¬χ) + 1 
Λn

P (χ))− (1− 1 
Λn

) ·P (χ) · log((1− 1 
Λn

) ·P (χ)). Note that g0
is positive but less than the constant g1 := − log(P (¬χ)) + 1 > 0 (since −x log(x) < 1 for all x ∈ [0, 1]),10
which only depends on P (χ) (and thus also on P (¬χ)) but not on 1 

Λn
nor on n. For the others terms, which 

depend on n, we find

(P (¬χ) + 1 
Λn

P (χ)) · log(|Ωn|) + (1− 1 
Λn

) · P (χ) · log(|Sn|)

= log(|Ωn|) · [P (¬χ) + 1 
Λn

P (χ) + (1− 1 
Λn

) · P (χ) · log(|Sn|) 
log(|Ωn|)

]

= log(|Ωn|) · [P (¬χ) + P (χ)( 1 
Λn

+ (1− 1 
Λn

) log(|Sn|) 
log(|Ωn|)

)] .

Letting un := |Sn| 
|Ωn| we find that for all large enough n ∈ N,

(P (¬χ) + 1 
Λn

P (χ)) · log(|Ωn|) + (1− 1 
Λn

) · P (χ) · log(|Sn|)

= log(|Ωn|) · [P (¬χ) + P (χ)( 1 
Λn

+ (1− 1 
Λn

) log(|Sn|) 
log(|Ωn|)

)]

10 If a different base of the logarithm is chosen, the upper bound of −x log(x) for all x ∈ [0, 1] may change. In the following only 
the existence of a fixed upper bound matters. The choice of the base of the logarithm thus remains inconsequential.
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= log(|Ωn|) · [P (¬χ) + P (χ)( 1 
Λn

+ (1− 1 
Λn

) log(un|Ωn|)
log(|Ωn|) 

)]

= log(|Ωn|) · [P (¬χ) + P (χ)( 1 
Λn

+ (1− 1 
Λn

)
(︃

1 + log(un) 
log(|Ωn|)

)︃
)]

= log(|Ωn|) · [P (¬χ) + P (χ)(1 + (1− 1 
Λn

) log(un) 
log(|Ωn|)

)]

= log(|Ωn|) · [1 + P (χ)(1− 1 
Λn

) log(un) 
log(|Ωn|)

]

= log(|Ωn|) · [1− P (χ)(1− 1 
Λn

) log(u−1
n ) 

log(|Ωn|)
] .

Overall, with vn := log(u−1
n ) and g2 := P (χ)/2,

Hn(P ) < g1 +
(︃

1− g2
vn

log(|Ωn|)

)︃
log(|Ωn|) .

Since un is a null sequence, vn diverges to infinity; from some point onwards all vn exceed any fixed lower 
bound. □
Theorem 2 (Support-satisfiability theorem: point-valued case). If the premisses φc1

1 , . . . , φck
k have satisfiable 

support then P ≺H P̌ † for all P ∈ E \ {P̌ †}. Hence,

maxentE = {P̌ †}.

Proof. By Proposition 8 we have P̌ † ∈ E. Next we show that for all other probability functions in P ∈
E \ {P̌ †}, P ≺H P̌ †.

Consider a probability function P ∈ E \ {P̌ †}, and let M = max{Nφ1 , . . . , Nφk
} as before. Then P must 

satisfy one of the three mutually exclusive and exhaustive cases below:

1. P⇂M = P̌ †⇂M ,
2. P⇂M ̸= P̌ †⇂M and for all 1 ≤ i ≤ k, P (φ̌i) = P̌ †(φ̌i) or
3. there exists a premiss sentence φi such that P (φ̌i) ̸= P̌ †(φ̌i).

The first case is that P⇂M and P̌ † agree on ΩM . The second case is that the restrictions of both P⇂M and 
P̌ † to ΩM are in Ě but they differ on ΩM . In the third case, P⇂M is not a solution to the support problem, 
i.e., the restriction of P to ΩM is not in Ě. We go on to show that in all cases P̌ † has greater entropy than 
P , P ≺H P̌ †.

We first provide some intuition for thinking that P ≺H P̌ † in these three cases. 
In the first case, P⇂M and P̌ † have the same M -entropy (they agree on ΩM). However, P̌ † is maximally 
equivocal beyond M and hence P̌ † has strictly greater j-entropy than P for all j greater than some threshold 
L ≥M . 
In the second case, P̌ † has greater M -entropy than P⇂M , since P̌ † is M -entropy maximiser for the finite 
constraints. Since P̌ † is also maximally equivocal beyond M , the M + j-entropy of P̌ † must be strictly 
greater than the M + j-entropy of P for all j ≥ 1. 
In the third case, P might have greater M -entropy than P̌ †. However, P must concentrate some probability 
on sets of M + j-states that are very small compared to |ΩM+j | ([16, Lemma 32]). This entails that Hn(P )
grows at most like log(|Ωn|)− vn with vn diverging to infinity. Since Hn(P̌ †) grows like 1 · log(|Ωn|)− c for 
some constant c, the n-entropy of P̌ † is eventually greater than the n-entropy of P .
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Case 1: P⇂M = P̌ †⇂M . Since P ̸= P̌ †, there has to exist some L ∈ N with L ≥ M such that P⇂L+j ̸=
P̌ †⇂L+j for all j ≥ 0. Since P̌ † equivocates beyond M , it straightforwardly follows that HL+j(P ) < HL+j(P̌ †)
for all j ≥ 0. Hence, P ≺H P̌ †.

Case 2: P⇂M ̸= P̌ †⇂M and for all 1 ≤ i ≤ k, P (φ̌i) = P̌ †(φ̌i). Since P̌ † has greatest M -entropy among all 
those functions that agree with P on all φi, HM (P̌ †) > HM (P ). It now suffices to observe that for all j ≥ 1, 
(Proposition 9)

HM+j(P ) ≤ HM (P ) + log(|ΩM+j |)− log(|ΩM |)

< HM (P̌ †) + log(|ΩM+j |)− log(|ΩM |)

= HM+j(P̌ †) .

Hence, P ≺H P̌ †.
Case 3: There exists some 1 ≤ i ≤ k such that P (φ̌i) ̸= P̌ †(φ̌i).
This follows directly from Lemma 5 since n-entropy of P grows less quickly than the n-entropy of P †: 

for all P ∈ E \ Ě we find for all large enough n ∈ N

Hn(P †)−Hn(P )

≥ HM (P †) + log(|Ωn|)− log(|ΩM |)− g1 −
(︃

1− g2vn
log(|Ωn|)

)︃
log(|Ωn|)

= HM (P †)− log(|ΩM |)− g1 + g2vn .

Since vn diverges to infinity, Hn(P †) > Hn(P ) for all large enough n ∈ N. □
5.2. Interval-valued premisses

We now drop the assumption that only single probabilities can attach to premisses sentences and consider 
the general case where intervals ∅ ̸= Xi ⊆ [0, 1] are attached to the premisses. We treat point-valued 
premisses, i.e., premisses in which Xi = ci, by setting Xi = [ci, ci]. Without loss of generality we may 
assume that no premiss is of the form φ0, since we can equivalently replace it by (¬φ)1.

Definition 21 (P †
c⃗ ). Let the premisses φc1

1 , . . . , φck
k be support-satisfiable. Let P †

c⃗ = P̌ †
c⃗ denote the unique 

maximal entropy function (uniqueness follows from Theorem 2).

Definition 22 (P †
X⃗

). Given support-satisfiable premisses φX1
1 , . . . , φXk

k , let P †
X⃗

be a probability function in

{P †
c⃗ : c⃗ ∈ X⃗ such that φc1

1 , . . . , φck
k are support-satisfiable}

with maximal M -entropy, where M = max{Nφi
: i = 1, . . . , k}.

Note that P †
c⃗ equivocates beyond M .

Theorem 3 (Support-satisfiability theorem). If the premisses φX1
1 , . . . , φXk

k are support-satisfiable then P †
X⃗

is 
the unique P †

c⃗ with maximal M -entropy and P ≺H P †
X⃗

for all other probability functions in P ∈ E \ {P †
X⃗
}. 

Hence,

maxentE = {P †
X⃗
}.
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Proof. Since Ě ̸= ∅ there is some function in E such that P (φ̌i) ∈ Xi which equivocates beyond M . The 
n-entropy for n ≥M of such a function is (Proposition 9):

Hn(P ) = HM (P ) + log(|Ωn|)− log(|ΩM |) .

From Theorem 2 we obtain that for all other Q ∈ E with Q(φ̌i) = P (φ̌i) for all i, Q ≺H P .
From Lemma 5 we obtain that for Q ∈ E \ Ě the n-entropy is eventually strictly less than the n-entropy 

of such a P .
Denote the functions in Ě which equivocate beyond M by E+,

E+ := {P : P (φ̌i) ∈ Xi for all 1 ≤ i ≤ k and P equivocates beyond M} ̸= ∅ .

Then every function in Q ∈ E \ E+ has less entropy than some function P ∈ E+.
Next let us consider R,S ∈ E+ such that HM (R) = HM (S). Then define Q := R + S

2 
and note that 

Q(φ̌i) = R(φ̌i) + S(φ̌i)
2 

∈ Xi for all i since the Xi are convex. So, Q ∈ E+, R ≺H Q and S ≺H Q. Since 

n-entropies of the probability functions P in E+ are, for large n, determined by their M -entropies, the 
maximal entropy function in E+ (and hence in E) is unique, if it exists.

Note that every function in E+ is represented by the |ΩM | probabilities it assigns to the M -states. The 
set of these |ΩM |-tuples representing the probability functions in E+ is compact since (i) it is bounded 
(probabilities lie in the unit interval) and (ii) it is closed (the intervals Xi are closed, hence the condition 
defining E+ is closed). Thus every convergent sequence of probability functions (Pn)n∈N with Pn ∈ E+

has a limit in E+. So, the supremum of HM (P ) with P ∈ E+ exists, is unique and obtains for a unique 
probability function P † ∈ E+ ⊂ E. This function has maximal entropy. □
5.3. Reduction to the finite problem

We now arrive at the main result of this section.

Theorem 4 (Reduction theorem). If the premisses φX1
1 , . . . , φXk

k have satisfiable support then

φX1
1 , . . . , φXk

k |≈◦ ψY if and only if φ̌X1
1 , . . . , φ̌Xk

k |≈◦ ψ̌Y .

Proof. Theorem 2 and Theorem 3 have already established that the original problem and the support 
problem have the same solution, P †. It only remains to show that P †(ψ) = P †(ψ̌), dropping the cumbersome 
index X⃗.

We first make a small observation. For all ψ ∈ Sℒ and all ωM ∈ ΩM ,

P †(ψ ∧ ωM ) > 0⇐⇒ P †(ψ|ωM ) > 0 & P †(ωM ) > 0

⇐⇒ P=(ψ|ωM ) > 0 & P †(ωM ) > 0

=⇒ P=(ψ ∧ ωM ) > 0

⇐⇒ P=(ψ̌ ∧ ωM ) > 0 .

Using the fact that P † equivocates beyond M (Theorem 3) we thus note,

P †(ψ) =
∑︂

ωM∈ΩM

P †(ψ ∧ ωM ) =
∑︂

ωM∈ΩM

P †(ψ∧ωM )>0

P †(ψ ∧ ωM )
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=
∑︂

ωM∈ΩM

P †(ψ∧ωM )>0

P=(ψ|ωM ) · P †(ωM )

≤
∑︂

ωM∈ΩM

P †(ψ̌∧ωM )>0

P=(ψ̌|ωM ) · P †(ωM )

Lemma 4= 
∑︂

ωM∈ΩM

P †(ψ̌∧ωM )>0

P †(ψ̌|ωM ) · P †(ωM )

=
∑︂

ωM∈ΩM

P †(ψ̌∧ωM )>0

P †(ψ̌ ∧ ωM )

= P †(ψ̌) .

Replacing ψ by ¬ψ and exploiting that ¬̌ψ = ¬ψ̌ ((iii) of Lemma 3) we obtain P †(¬ψ) ≤ P †(¬ψ̌). This 
entails that P †(ψ) = P †(ψ̌). □
6. Decidability

In this section, we establish that the class of support-satisfiable inferences is decidable.
First, we present an important lemma.

Lemma 6 (Computability of the measure of φ). For any sentence φ ∈ Sℒ, P=(φ) is computable and P=(φ) ∈
{0, 1 

|ΩN | ,
2 

|ΩN | , . . . , 1}, where N = Nφ.

Proof. First, note that for any sentence φ ∈ Sℒ,

P=(φ) =
∑︂

ω∈ΩN

P=(φ ∧ ω) =
∑︂

ω∈ΩN

P=(φ|ω)P=(ω) .

By Corollary 2, we observe that for all ω ∈ ΩN ,

P=(φ|ω) = P=(φ ∧ φ|ω) = P=(φ|ω)2 ∈ {0, 1} .

So, P=(ω ∧ φ) ∈ {0, 1 
|ΩN |} and consequently P=(φ) ∈ {0, 1 

|ΩN | ,
2 

|ΩN | , . . . , 1}. To conclude the proof, it hence 

suffices show that we can compute whether P=(ω ∧ φ) is zero or 1 
|ΩN | for all φ ∈ Sℒ and every ω ∈ ΩN .

We shall show this by induction on the number of quantifiers in the prenex normal form of φ.
Base Case. The claim follows immediately for quantifier-free sentences φ, which are logically equivalent 

to a disjunction of N -states:

P=(ω ∧ φ) = P=(ω ∧
⋁︂

ω′∈ΩN
ω′|=φ 

ω′) =
{︄

P=(ω ∧ ω) = P=(ω) = 1 
|ΩN | : ω |= φ

0 : ω ̸|= φ

Induction step. Now suppose that φ has q ≥ 1 quantifiers and assume that the induction hypothesis, 
i.e., the statement of the lemma for φ, holds for any sentence in prenex normal form with fewer than q
quantifiers.

Suppose first that φ is in prenex normal form and φ = ∀xθ(x). Consider for ω ∈ ΩN

χ := ω ∧ ∀xθ(x) .
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By P3,

P=(χ) = P=(ω ∧ ∀xθ(x)) = lim 
n→∞

P=(ω ∧
n ⋀︂

i=1
θ(ti))

≤ P=(ω ∧
j+1⋀︂
i=1 

θ(ti)) ≤ P=(ω ∧
j⋀︂

i=1
θ(ti)) ,

for all j ≥ 0.
ω ∧ θ(ti) is not in prenex normal form, but by moving the quantifiers of θ(ti) to the front of the sentence 

ω∧θ(ti), we obtain a (deductively) logically equivalent sentence ψω(ti) that is in prenex normal form and has 
the same number of quantifiers. Since the two sentences are deductively logically equivalent, P=(ψω(ti)) =
P=(ω ∧ θ(ti)).

By the induction hypothesis, for all ω ∈ ΩN , and all i = 1, . . . , N + 1,

P=(ψω(ti)) ∈ {0,
1 

|ΩN+1|
,

2 
|ΩN+1|

, . . . , 1}

is computable. In fact, P=(ω) = 1/|ΩN | and the probability of a conjunction cannot exceed the probability 
of either conjunct, so

P=(ψω(ti)) = P=(ω ∧ θ(ti)) ∈ {0,
1 

|ΩN+1|
,

2 
|ΩN+1|

, . . . ,
1 
|ΩN |

}

and this value is computable.
If P=(ω ∧ θ(ti)) < 1/|ΩN |, for any i = 1, . . . , N + 1 then P=(ω ∧

⋀︁N+1
i=1 θ(ti)) < 1/|ΩN |, and since 

P=(χ) ≤ P=(ω ∧
⋀︁N+1

i=1 θ(ti)) and P=(χ) ∈ {0, 1 
|ΩN |}, we must have P=(χ) = 0.

On the other hand, if P=(ω∧ θ(ti)) = 1/|ΩN | for all i = 1, . . . , N +1, then P=(ω∧
⋀︁N+1

i=1 θ(ti)) = 1/|ΩN |. 
We show that this implies P=(χ) = 1. Since P= satisfies the principle of Constant Exchangeability (CX) 
(Definition 19), we have that for all j ≥ 1,

P=(ω ∧ θ(tN+j) ∧
N⋀︂
i=1

θ(ti)) = P=(ω ∧ θ(tN+1) ∧
N⋀︂
i=1

θ(ti)) = 1 
|ΩN |

.

By the definition of conditional probability,

P=(θ(tN+j) ∧
N⋀︂
i=1

θ(ti)|ω) =
P=(ω ∧ θ(tN+j) ∧

⋀︁N
i=1 θ(ti))

P=(ω) = |ΩN |
|ΩN |

= 1.

Since P=(·|ω) is a probability function, by Lemma 2(1) we can add θ(tN+j) ∧
⋀︁N

i=1 θ(ti), for any j, as a 
conjunct to any sentence and the conditional measure remains unchanged. So, for all s ≥ 2,

1 = P=(θ(tN+1) ∧
N⋀︂
i=1

θ(ti)|ω)

= P=(θ(tN+1) ∧ θ(tN+2) ∧
N⋀︂
i=1

θ(ti)|ω)

= P=(
s ⋀︂

j=1
θ(tN+j) ∧

N⋀︂
i=1

θ(ti)|ω)
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= lim 
n→∞

P=(
n ⋀︂

i=1
θ(ti)|ω)

= lim 
n→∞

P=(ω ∧
⋀︁n

i=1 θ(ti))
P=(ω) 

= |ΩN | · lim 
n→∞

P=(ω ∧
n ⋀︂

i=1
θ(ti))

P3= |ΩN | · P=(χ) .

Thus, P=(χ) = 1 
|ΩN | .

The case of an existential quantifier, φ = ∃xθ(x), is proved by noting that

P=(ω ∧ ∃xθ(x)) = P=(ω)− P=(ω ∧ ∀x¬θ(x)) ,

which is (computably) verifiably equal to zero or 1 
|ΩN | . □

In particular, we can compute φ̌ because we can compute the measure of φ ∧ ω for all ω ∈ ΩNφ
.

This result gives the following immediate corollary.

Proposition 10. Determining the support problem from the original problem is effectively computable.

Our key result is that the support-satisfiable inferences are finitely reducible (Definition 15), and hence 
decidable:

Theorem 5 (Support-satisfiable Decidability). The class of support-satisfiable inferences is decidable in OBIL.

Proof. We shall show that the class of support-satisfiable inferences is finitely reducible (Definition 15). Since 
testing for support-satisfiability is decidable (Proposition 6), it follows that the class of support-satisfiable 
inferences is decidable.

Given an inference φX1
1 , . . . , φXk

k |≈◦ ψY , one can effectively construct the support inference φ̌X1
1 , . . . , φ̌Xk

k |≈◦
ψ̌Y by Proposition 10. By Proposition 6, we can effectively test for satisfiability of the premisses of the sup
port inference, thereby determining whether the original inference is within the class of support-satisfiable 
inferences.

If it is support-satisfiable, then by the Reduction Theorem (Theorem 4),

φX1
1 , . . . , φXk

k |≈◦ ψY if and only if φ̌X1
1 , . . . , φ̌Xk

k |≈◦ ψ̌Y .

The support inference is decidable by Theorem 1. □
We have the following corollaries:

Corollary 3 (Decidability of premiss-free inferences). The class of inferences from no premisses is decidable. 
In particular, it is decidable whether any given sentence is an inductive tautology.

This stands in marked contrast to the situation with deductive logic: as we observed in §1, there is no 
effective procedure for deciding whether any given sentence is a deductive tautology.

Corollary 4 (Decidability of inferences from an inductively consistent premiss). If φ is inductively consistent, 
i.e., P=(φ) > 0, then the premiss φ1 is support-satisfiable (Example 8). Hence, it is decidable whether 
φ |≈◦ ψY for any sentence ψ ∈ Sℒ and any interval Y .
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If 0 < P=(φ) < 1, then the premiss φc for 0 < c < 1 is support-satisfiable (Example 8). Hence, it is 
decidable whether φc |≈◦ ψY for all sentences ψ ∈ Sℒ and all intervals Y .

Consequently, given categorical premisses φ1
1, . . . , φ

1
k, if P=(φ) > 0 for φ :=

⋀︁k
i=1 φi, any inference is 

decidable. I.e., the class of inferences from inductively consistent categorical premisses is decidable. In fact 
in this case, P †(ψ) = P=(ψ|φ1 ∧ . . . ∧ φk) [16, Theorem 34].

7. Objective Bayesian networks

The truth-table method introduced in §3 serves to highlight the decidability of the class of finitely 
reducible inferences. The truth-table method is not particularly computationally tractable, however: the 
number of rows in a truth table increases exponentially with the number of atomic propositions that feature 
in an inference. Furthermore, the fact that computing the maximum entropy function on a finite domain has 
a high worst-case complexity [28, Chapter 10] has raised worries about the practical feasibility of entropy 
maximisation [30, p. 463].11 While the focus of this paper is on decidability rather than computational 
complexity, it is worth observing that there is a method for inference that is tractable in many cases. This is 
the graphical modelling approach of objective Bayesian networks. Hitherto, this approach has been applied 
to the case of finite propositional inductive logic [18,37,38]. Finite reducibility allows its use also for predicate 
inductive logic. In this section, we briefly sketch the approach and provide an example.

Suppose, as above, that the task is to verify an entailment relationship of the form

φX1
1 , . . . , φXk

k |≈◦ ψY , (7)

and that the premisses φX1
1 , . . . , φXk

k are support-satisfiable. Let ai1 , . . . , aim be the atomic propositions that 
occur in φ̌1, . . . , φ̌k and let Ξ be the set of states of ai1 , . . . , aim . As before, P † is the maximal entropy function 
in P [φX1

1 , . . . , φXk

k ], which can be found by maximising entropy subject to φ̌X1
1 , . . . , φ̌Xk

k and equivocating 
beyond Ξ. The atomic propositions ai1 , . . . , aim will be the nodes in our Bayesian network:

Definition 23 (Objective Bayesian network). An objective Bayesian network or OBN for φX1
1 , . . . , φXk

k con
sists of (i) a directed acyclic graph ℋ whose nodes are the atomic propositions ai1 , . . . , aim , and (ii) the 
probability distribution, induced by P †, of each node conditional on its parents in ℋ, such that for each 
ξ ∈ Ξ,

P †(ξ) =
m ∏︂
j=1

P †(aξij | par
ξ
ij

),

where aξij is the state of aij (i.e., aij or ¬aij ) that is consistent with ξ, and parξij is the state of its parents 
that is consistent with ξ.

Thus an objective Bayesian network for φX1
1 , . . . , φXk

k is a means of representing the maximal entropy 
function in P [φX1

1 , . . . , φXk

k ]. The OBN directly represents P † on Ξ and this is extended to the whole of ℒ
by equivocating elsewhere, as per Proposition 4.

An OBN can be constructed by means of the following procedure:

1. Construct an undirected graph 𝒢 that represents independencies of P †: for i = 1, . . . , k, connect atomic 
propositions that occur in the same support sentence φ̌i by undirected edges. 𝒢 can be thought of 

11 Tractable entropy optimisation is an active subfield of optimisation theory [2,8,11,12,23,27].
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as a Markov network structure for P †: for any sets X,Y, Z of atomic propositions, if Z separates X
from Y in 𝒢 then P † is guaranteed to render X and Y probabilistically independent conditional on Z, 
X ⊥⊥ P †Y | Z [36, §5.6]; [19, Appendix A].

2. Construct a minimal triangulation 𝒢T of 𝒢 and transform this into a directed acyclic graph ℋ that 
represents the independencies captured by 𝒢T . This transformation can be performed as follows—see 
[36, §5.7] and [25] for further discussion. (i) Order the vertices of 𝒢T with vertex set V according to 
maximum cardinality search: at each step select a vertex which is adjacent to the largest number of 
previously numbered vertices. (ii) Let D1, . . . , Dl be the cliques of 𝒢T , ordered according to the highest 
labelled vertex. (iii) Let Ej := Dj ∩ (

⋃︁j−1
i=1 Di) and Fj := Dj \ Ej . (iv) Add an arrow from each vertex 

in Ej to each vertex in Fj . (v) Add further arrows to ensure there is an arrow between each pair of 
vertices in Dj such that the resulting directed graph ℋ is acyclic.

3. Solve an optimisation problem to determine the associated conditional probability parameters P (aξij |
parξij ) that maximise entropy:

H(P ) = −
m ∑︂
j=1 

∑︂
ξ∈Ξ

(︄
m ∏︂
l=1 

P (aξil | par
ξ
il
)
)︄
· log(P (aξij | par

ξ
ij

)),

subject to the constraints imposed by the premisses [36, §5.7].

In the worst case, an OBN of φX1
1 , . . . , φXk

k requires as many parameters as there are lines in the truth 
table for φX1

1 , . . . , φXk

k . This worst case occurs when there is some support premiss that mentions every 
atomic sentence that occurs in the inference.

More typically, however, each support sentence will mention only a small subset of the atomic propositions 
ai1 , . . . , aim . In such a scenario, the OBN will require far fewer parameters than there are lines of the 
corresponding truth table. It is in this sense that OBNs can be more computationally tractable than the 
truth table method.

Let us consider an example, based around the following premisses:

∃xUt1x, (V t2 ∨ ∀xRx)0.9 , V t1 → Ut1t3, (V t1 ∨ (∃xUxt3 → V t2))[0.95,1]

The language of this inference is the language ℒ of Example 1. We can enumerate the atomic propositions 
as follows:

a1 : V t1, a2 : Ut1t1, a3 : V t2, a4 : Ut1t2,

a5 : Ut2t1, a6 : Ut2t2, a7 : V t3, a8 : Ut1t3, . . .

Then the support of each premiss sentence is as follows:

i φi φ̌i

1 ∃xUt1x a1 ∨ ¬a1
2 V t2 ∨ ∀xRx a3
3 V t1 → Ut1t3 a1 → a8
4 V t1 ∨ (∃xUxt3 → V t2) a1 ∨ a3

Note in particular for φ1, i.e., ∃xUt1x, we have that φ̌1 is a1 ∨ ¬a1 because φ1 mentions no atomic 
propositions and P=(a1 ∧ ∃xUt1x) = P=(¬a1 ∧ ∃xUt1x) = 1/2 > 0. Strictly speaking, φ̌3 is defined as 
(a1 ∧ a8) ∨ (¬a1 ∧ a8) ∨ (¬a1 ∧ ¬a8) but we abbreviate this sentence by the logically equivalent a1 → a8. 
Similarly for φ̌4.
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To construct the corresponding OBN we first construct the undirected graph 𝒢. We take a1, a3 and a8 as 
nodes because they are the atomic propositions that feature in the supports. We include an edge between 
a1 and a8 because they both feature in the third support premiss, and an edge between a1 and a3 because 
they both feature in the fourth support premiss:

◟︄◞︄ 

◜︄◝︄
a3 ◟︄◞︄ 

◜︄◝︄
a1 ◟︄◞︄ 

◜︄◝︄
a8

Separation in 𝒢 provably corresponds to a conditional probabilistic independence of the maximal entropy 
function P †, so we can conclude that P † renders a3 and a8 probabilistically independent conditional on a1.

We next transform 𝒢 into a directed acyclic graph ℋ that preserves as many of the conditional indepen
dencies of 𝒢 as possible. For example, we can set ℋ to be:

◟︄◞︄ 

◜︄◝︄
a3 →◟︄◞︄ 

◜︄◝︄
a1 →◟︄◞︄ 

◜︄◝︄
a8

D-separation in ℋ also implies that P † renders a3 and a8 probabilistically independent conditional on a1.12

We parameterise the OBN by finding the values of the following parameters that maximise entropy:

P (a3), P (a1|a3), P (a1|¬a3), P (a8|a1), P (a8|¬a1).

A simple numerical optimisation subject to the constraints P (a3) = 0.9, P (a1 → a8) = 1 and P (a1 ∨ a3) ∈
[0.95, 1] yields:

P (a3) = 0.9, P (a1|a3) = 1/3, P (a1|¬a3) = 1/2, P (a8|a1) = 1, P (a8|¬a1) = 1/2.

The OBN can then be used to perform inference. For example,

∃xUt1x, (V t2 ∨ ∀xRx)0.9 , V t1 → Ut1t3, (V t1 ∨ (∃xUxt3 → V t2))[0.95,1]

|≈◦ (¬(V t1 ∨ V t3) ∧ ∃xUxx ∧ Ut1t3)0.1625 .

To see this, note that the support of the conclusion sentence is ¬a1 ∧¬a7 ∧ a8 and that a7 is not mentioned 
by any of the premisses so P † renders a7 probabilistically independent of a1 and a8 and P †(a7) = 1/2. 
Hence,

P †(¬a1 ∧ ¬a7 ∧ a8) = 1/2 · P (a8|¬a1) (P (¬a1|a3) · P (a3) + P (¬a1|¬a3) · P (¬a3))

= 1/2 · 1/2 (2/3 · 9/10 + 1/2 · 1/10) = 0.1625 .

The main advantage of this OBN over the truth table method is a reduction in the number of parameters 
required to specify the maximal entropy function. The truth table for the premisses can be written down 
as follows:

12 Subset Z D-separates subsets X from Y of nodes if each path between a node in X and a node in Y contains either (i) some 
node ai in Z at which the arrows on the path meet head-to-tail (−→ ai −→) or tail-to-tail (←− ai −→), or (ii) some node aj

at which the arrows on the path meet head-to-head (−→ aj ←−) and neither aj nor any of its descendants are in Z. The key 
result is that if Z D-separates X from Y in ℋ then the maximal entropy function renders X and Y probabilistically independent 
conditional on Z [36, Theorem 5.3].
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P † a3 a1 a8 a1 ∨ ¬a1 a3 a1 → a8 a1 ∨ a3
0.025 F F F T F T F 
0.025 F F T T F T F 

0 F T F T F F T 
0.05 F T T T F T T 
0.3 T F F T T T T 
0.3 T F T T T T T 
0 T T F T T F T 

0.3 T T T T T T T 

We see then that although the support problem only involves three atomic propositions, the truth table 
requires 8 parameters while the OBN requires only 5. Typically, this reduction in the number of parameters 
becomes more marked as the number of atomic propositions in the premisses increases.

8. Infinitely many premisses

Thus far, we have considered inductive inferences involving finitely many premisses. In this section, we 
consider inferences involving infinitely many premisses and show that it is possible to obtain a reduction 
theorem. Handling infinite objects is often a difficult endeavour in practice. Our main point here is that there 
are some cases which we can treat as if they were finite, namely those that are finitely support-satisfiable 
(Theorem 6). However, some complications can also arise, as we point out in Examples 11 and 12 as well 
as Observations 2 and 3. As we shall see, some results in Section 9 also hold for infinitely many premisses.

Consider the inductive inference:

(φXi
i )i∈I |≈ ψY

where I is an index set of arbitrary size. We again define the set of probability functions consistent with 
the premisses to be:

E = P [(φXi
i )i∈I ].

As before, the maximal entropy functions are:

maxentE := {P ∈ E : there is no Q ∈ E with P ≺H Q},

and we define objective Bayesian inductive entailment in the usual way. We consider the support of φ as 
defined in Definition 16,

φ̌
df =

⋁︂
{ξ ∈ Ξφ : P=(ξ ∧ φ) > 0}.

Notational conventions remain in line with those adopted earlier: 

Original inference Support inference 
Premisses (φXi

i )i∈I (φ̌Xi

i )i∈I

Feasible region E
df = P [(φXi

i )i∈I ] Ě
df = P [(φ̌Xi

i )i∈I ]
n-entropy maximisers Pn P̌n

Models P † ∈ maxentE P̌ † ∈ maxent Ě

Definition 24. We let M be the supremum of the indices of the constants that appear in the premisses: 
M := sup{Nφi

: i ∈ I}. Note that M may be infinite.

Definition 25 (Finite support-satisfiability). The premisses are finitely support-satisfiable if and only if
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1. they are support-satisfiable, Ě ̸= ∅, and
2. there exists a K ∈ N with the following property: for all P ∈ Ě, there exists a Q ∈ Ě such that 

Q(φ̌i) = P (φ̌i) for all i ∈ I and Q equivocates beyond K.

Let K∗ denote the minimal such K. Note that for finitely many premisses, the second condition follows 
from the first, so the above definition extends Definition 18.

As the following example shows, there are some cases in which the premisses are finitely satisfiable, but 
where every constant appears in at least one φ̌i.

Example 10 (Finite support-satisfiability of infinitely many premisses). If φi := U1t1∨ (∀xU2x∧U3ti) for all 
i ∈ N, then the premisses (φi)i∈N are finitely support-satisfiable. Here φ̌i = [(U1t1 ∧U3ti)∨ (U1t1 ∧¬U3ti)]
and Ě = {P ∈ P : P (U1t1) = 1}, K∗ = 1. However, every constant is mentioned by an atomic proposition 
in at least one premiss sentence, M = sup{Nφ1 , . . . } =∞.

Example 11 (Infinitely many categorical premisses). Let the premisses be (Ut2i)i∈N . Unlike in the finite 
case, it is not possible to collect all these categorical premisses as a single premiss.

Example 12. Let the premisses be (Uti)i∈N . Then Ě = E ̸= ∅, because it contains a probability function 
with P (∀xUx) = 1. Note that the premisses are not finitely support-satisfiable, since no Q ∈ E equivocates 
beyond some fixed K ∈ N.

Theorem 6 (The maximal entropy function). If the premisses (φXi
i )i∈I are finitely support-satisfiable, then 

P̌ † is the unique function that has maximal K∗-entropy and that equivocates beyond K∗. P ≺H P̌ † for all 
other probability functions P ∈ E \ {P̌ †}. Thus, maxentE = {P̌ †}.

Proof. This is analogous to the proofs of Theorem 2 and 3. None of the above proofs use the fact that the 
number of premisses is finite; only support-satisfiability and equivocation beyond some N ∈ N is assumed 
in these proofs. The second condition of Definition 25 guarantees that there is a fixed number K∗ for which 
it is sufficient to maximise K∗-entropy. □
Definition 26 (Finitely presented support). An inference has finitely presented support iff the support infer
ence is represented by means of finitely many finitely represented, quantifier-free premisses, i.e., if and only if 
premisses θW1

1 , . . . , θWk

k are provided where θ1, . . . , θk are quantifier-free, W1, . . . ,Wk are finitely represented 
and Ě = {P ∈ P : P (θi) ∈Wi, i = 1, . . . , k}.

Note that an inference with finitely presented, satisfiable support is finitely support-satisfiable.
Effectively computable decision procedures for infinitely many premisses are hard to come by, since we 

need to ensure that the conclusions are compatible with all, i.e., infinitely many, premisses. In order to isolate 
a class of decidable inferences with infinitely many premisses we hence assume a given finite presentation of 
the support premisses—this does not need to be effectively computed since it is given. Putting Definition 26
together with Theorem 5 we obtain:

Corollary 5. The class of inferences with finitely presented, satisfiable support is decidable in OBIL.

Inferences with infinitely many premisses may not be well-behaved in other respects:

Observation 2 (Non-compactness 1). Given categorical premisses φi := Uti for i ∈ N, we have that 
P †(∀xUx) = 1. However, all finite subsets of premisses (J ⊂ I) are finitely support-satisfiable and have a 
maximal entropy function P †

J with P †
J(·) = P=(·|

⋀︁
j∈J φj). Thus, P †

J(∀xUx) = 0.
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Observation 3 (Non-compactness 2). The premisses ∃x¬Ux,Ut1, Ut2, . . . are not satisfiable. However, every 
finite subset has a well-defined maximal entropy function P † with P †(∃x¬Ux) = 1.

9. Preservation of inductive tautologies

Learning new information changes what we are in a position to infer. On finite domains, maximum entropy 
inference from consistent premisses preserves measure one and measure zero propositions. In other words, 
any inductive tautology and any inductive contradiction (the empty event) are assigned probability one and 
zero, respectively, after learning consistent information. This inferential property was called Preservation 
of Inductive Tautologies (PIT) by [16, Section 7]. PIT states that inductive tautologies (i.e., probability 1 
inferences in the absence of any premisses) are preserved on learning new information. In OBIL, PIT can 
be stated as

{ψ ∈ Sℒ : |≈◦ ψ1} ⊆ {ψ ∈ Sℒ : φX1
1 , φX2

2 , . . . |≈◦ ψ1}.

Proposition 11. If the premisses are finitely support-satisfiable then OBIL satisfies PIT:

{ψ ∈ Sℒ : |≈◦ ψ1} ⊆ {ψ ∈ Sℒ : φX1
1 , φX2

2 , . . . |≈◦ ψ1}.

Proof. Let φ be an inductive tautology and P † be the maximal entropy function for given support-satisfiable 
premisses which equivocates beyond some number. Then the assumptions of Lemma 4 hold. Recall that we 
showed in Lemma 6 that P=(φ ∧ ω) ∈ {0, 1 

|ΩN |}. So, for all large enough n we find

P †(φ) =
∑︂

ωn∈Ωn

P †(φ ∧ ωn)

=
∑︂

ωn∈Ωn

P †(ωn)>0

P †(φ ∧ ωn)

=
∑︂

ωn∈Ωn

P †(ωn)>0

P †(φ|ωn) · P †(ωn)

Lemma 4= 
∑︂

ωn∈Ωn

P †(ωn)>0

P=(φ|ωn) · P †(ωn)

=
∑︂

ωn∈Ωn

P †(ωn)>0

P=(φ ∧ ωn)
P=(ωn) · P

†(ωn)

Lemma 6= 
∑︂

ωn∈Ωn

P †(ωn)>0

P=(ωn)
P=(ωn) · P

†(ωn)

=
∑︂

ωn∈Ωn

P †(ωn)>0

P †(ωn)

= 1 . □
Note that PIT holds for a class of premisses if and only if inductive contradictions are preserved by 

premisses in that class:
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{ψ ∈ Sℒ : |≈◦ ψ0} ⊆ {ψ ∈ Sℒ : φX1
1 , φX2

2 , . . . |≈◦ ψ0}.

We can also say something about when these inclusions are strict:

Theorem 7. If the premisses are finitely support-satisfiable, then

{ψ ∈ Sℒ : |≈◦ ψ1} ⊆ {ψ ∈ Sℒ : φX1
1 , φX2

2 , . . . |≈◦ ψ1}
{ψ ∈ Sℒ : |≈◦ ψ0} ⊆ {ψ ∈ Sℒ : φX1

1 , φX2
2 , . . . |≈◦ ψ0} .

The inclusions are strict if and only if there exists some N and some N -state ωN ∈ ΩN such that P †(ωN ) =
0.

Proof. The non-strict inclusion relationships follow directly from PIT (Proposition 11).
If there exists some ωN ∈ ΩN such that P †(ωN ) = 0, then ¬ωN follows inductively from the premisses 

and ωN is ruled out by the premisses.
For the converse, consider an arbitrary ψ ∈ Sℒ such that 0 < P=(ψ) < 1. Then there exists some 

ω′
N ∈ ΩN such that P=(ψ ∧ ω′

N ) > 0. We may assume that N > M (or K∗ in the case of infinitely many 
premisses).

We assume that P †(ωN ) > 0 for all ωN ∈ ΩN . We now show that P †(ψ) > 0 using the fact that P † is 
unique and equivocates beyond M (K∗ in the case of infinitely many premisses) (Theorem 6):

P †(ψ) ≥ P †(ψ ∧ ω′
N ) = P †(ψ|ω′

N ) · P †(ω′
N ) Lemma 4= P=(ψ|ω′

N ) · P †(ω′
N )

> 0 .

Replacing ψ by ¬ψ we note that 0 < P=(ψ) < 1 entails that 0 < P †(ψ) < 1.
If P †(ωN ) > 0 for all ωN ∈ ΩN , there are hence no new inductive tautologies and no new inductive 

impossibilities. □
Note that inductive non-contradictions that are consistent with the premisses may be given zero proba

bility in OBIL:

Corollary 6 (Failure of open-mindedness). There exist finitely many support-satisfiable premisses, an M
state ωM and P ∈ E such that P (ωM ) > 0 but P †(ωM ) = 0.

Proof. Let

φc1
1 := ([Rt1 ∧Rt2] ∨ ∀xUx) 1

3

φc2
2 := ([Rt1 ∧ ¬Rt2] ∨ ∀xUx) 1

3

φc3
3 := ([¬Rt1 ∧Rt2] ∨ ∀xUx) 1

3 .

Then P †(¬Rt1 ∧ ¬Rt2) = 0, since P †(∀xUx) = 0. However, every probability function with P (∀xUx) =
1
3 = P (∀xUx ∧ ¬Rt1 ∧ ¬Rt2) satisfies all the premisses (P assigns the conjunctions in the square brackets 
of the φi probability zero). So, as claimed P (Ut1 ∧ Ut2 ∧ ¬Rt1 ∧ ¬Rt2) ≥ 1

3 > 0. □
Note that this differs from the case in which the premisses are quantifier-free, where Open-Mindedness 

does hold [28, Chapter 7]: if there exists a probability function satisfying quantifier-free premisses which 
gives some state positive probability, then so does the maximal entropy function.
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10. Support-satisfiability

Having shown that OBIL is decidable for finitely many support-satisfiable premisses or finitely presented, 
satisfiable support, we now investigate the notion of support-satisfiability. Firstly, we contrast the notion of 
support-satisfiability with satisfiability in more detail. We then show that this contrast has a pronounced 
effect on maximal entropy functions.

10.1. Support-satisfiability and satisfiability

In the following, we suppose without loss of generality that there is a single categorical premiss φ1. In the 
absence of any categorical premisses, one may simply let φ1 := Ut1 ∨¬Ut1. If there are multiple categorical 
premisses, φ1 can be taken to be their conjunction.

Proposition 12 (Connection between support-satisfiability and satisfiability). Suppose the premisses take the 
form φc1

1 , . . . , φck
k with c1 = 1, k ≥ 1, c2, . . . , ck ∈ (0, 1). The premisses are support-satisfiable if and only if

1. the premisses are satisfiable and
2. there exists a probability function P ∈ E such that whenever P=(φ1 ∧ ±φ2 ∧ . . . ∧ ±φk) = 0, then 

P (φ1 ∧ ±φ2 ∧ . . . ∧ ±φk) = 0.

In words, condition 2 says that there exists a probability function P ∈ E assigning every measure zero 
conjunction of premiss sentences or their negations probability zero. Note that every probability function Q
solving the support problem must also assign such a conjunction probability zero since there is no M -state 
which has positive measure taken together with such a conjunction, where M := max{Nφ1 , . . . , Nφk

}.

Proof. Let us first recall that support-satisfiability entails satisfiability (Proposition 8).
In case of k = 1, there are no premisses given with non-extreme probability. φ1

1 being support-satisfiable 
(P (φ̌1) = 1 is satisfiable), entails that φ̌1 is not a contradiction. Hence, there is no such conjunction in 2 
and 2 follows trivially.

Now consider the case k ≥ 2.
Assume that the premisses are support satisfiable with maximal entropy function P †. P † is a convex com

bination of probability functions of the form P=(·|ωM ), where M := max{Nφ1 , . . . , Nφk
}. These functions 

all assign zero measure sentences zero probability, since they assign all measure one sentences probability 1 
[16, Theorem 45]. Hence, so does P †, which is in E.

Consider the converse implication. Suppose condition 1 holds and let P ∈ E satisfy condition 2. For 
the remainder of this proof and all i ∈ {2, . . . , k} we use φ1

i to denote φi and φ0
i to denote ¬φi. Note 

first that the φ1
1 ∧ φϵ2

2 ∧ . . . ∧ φϵk
k are pairwise inconsistent. Note also that φ̌1

1 ∧ φ̌2
ϵ2 ∧ . . . ∧ φ̌k

ϵk is a 
contradiction if and only if φ̌1

1 ∧ φ̌2
ϵ2 ∧ . . . ∧ φ̌k

ϵk has measure zero (this sentence is quantifier-free) if and 
only if φ1

1 ∧ φ2
ϵ2 ∧ . . . ∧ φϵk

k has measure zero (Lemma 3 (iv) shows that P=(φ) = P=(φ̌)).
Then define a function Q on the M -states as follows:

Q(φ̌1
ϵ1 ∧ φ̌2

ϵ2 ∧ . . . ∧ φ̌k
ϵk) := P (φϵ1

1 ∧ φϵ2
2 ∧ . . . ∧ φϵk

k ) ,

and let Q equivocate between those M -states which entail the same φ̌1
ϵ1 ∧ φ̌2

ϵ2 ∧ . . . ∧ φ̌k
ϵk . In particular, 

Q(¬φ̌1∧ φ̌2
ϵ2 ∧ . . .∧ φ̌k

ϵk) = 0 for all ϵ2, . . . , ϵk since P (¬φ1) = 0. In particular, Q(φ̌1) = 1 and Q(¬φ̌1) = 0.
We next observe

∑︂
ω∈ΩM

Q(ω) =
∑︂

ϵ⃗∈{0,1}k−1

Q(φ̌1 ∧ φ̌2
ϵ2 . . . ∧ φ̌k

ϵk)
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=
∑︂

ϵ⃗∈{0,1}k−1

P (φ1 ∧ φϵ2
2 ∧ . . . ∧ φϵk

k )

= P (φ1) = 1 .

This means that Q is a probability function on ΩM . In other words, there exists some P ∈ P which 
agrees with Q on ΩM .

Let us now extend Q to the subsets of ΩM as usual: for all S ⊆ ΩM let Q(S) :=
∑︁

ω∈S Q(ω). We note 
that for all 2 ≤ i ≤ k,

Q(φ̌i) =
∑︂

ϵ⃗∈{0,1}k−2

Q(φ̌1
1 ∧ φ̌2

ϵ2 ∧ . . . ∧ ˇφi−1
ϵi−1 ∧ φ̌i ∧ ˇφi+1

ϵi+1 ∧ φ̌k
ϵk)

=
∑︂

ϵ⃗∈{0,1}k−2

P (φ1
1 ∧ φ2

ϵ2 ∧ . . . ∧ φ
ϵi−1
i−1 ∧ φi ∧ φ

ϵi+1
i+1 ∧ φϵk

k )

= P (φi)

= ci .

Hence, Q is a probability function on ΩM satisfying Q(φi) = ci for all 1 ≤ i ≤ k. Hence, the premisses are 
support-satisfiable. □

There are sets of premisses that are jointly satisfiable, and where every premiss sentence has positive 
measure, but that are not support-satisfiable:

Observation 4. Satisfiability of the premisses does not entail their support-satisfiability.

This emphasises that the second condition of the equivalence in Proposition 12 cannot be omitted.

Proof. Consider premisses φc1
1 := (Ut1 ∨ ∀xV x).9, φc2

2 := (¬Ut1 ∨ ∀xV x).9 [16, Example 43]. Clearly, these 
two premisses are jointly satisfiable. Support-satisfiability holds if and only if P (Ut1) = 0.9 and P (¬Ut1) =
0.9 are jointly satisfiable. This is obviously not the case. □

Support-satisfiability with non-extreme cis entails that all premiss sentences have non-extreme measures:

Observation 5. If Xi = ci ∈ (0, 1) for some i ∈ I and the premisses are support-satisfiable, then P=(φi) ∈
(0, 1) for this i ∈ I.

Proof. Let us suppose for contradiction that P=(φi) = 1 (replace φi by ¬φi if necessary). This means that 
φ̌i is the disjunction of all N -states (i.e., a tautology) and ¬φ̌i is the empty disjunction (a contradiction). 
Support-satisfiability requires that P (φ̌i) = ci ∈ (0, 1) and P (¬φ̌i) = 1 − ci ∈ (0, 1). However, P (φ̌i) = 1
and P (¬φ̌i) = 0. Contradiction. □

This shows that while sets of support-satisfiable premisses are such that every premiss sentence and its 
negation must have positive measure, a conjunction of premiss sentences may have measure zero.

10.2. Support-satisfiability and inductive tautologies

The question arises as to why finitely many premisses that are support-satisfiable are so well-behaved 
in OBIL. After all, we know that there is (i) a satisfiable premiss (φ = ∃x∀yUxy) that does not yield 
a maximal entropy function [16, Proposition 53] and (ii) a premiss without a maximal entropy function 
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which nevertheless yields a well-defined unique maximal entropy function after adding a further categorical 
measure-one premiss [15, Proposition 5].

We now give another characterisation of the key notion of support-satisfiability for finitely many pre
misses. This observation exploits our above result on the preservation of inductive tautologies. This charac
terisation will be used to elucidate similarities between OBIL and entropy maximisation on finite domains.

Proposition 13 (Characterisation of support-satisfiability). Let the premisses φX1
1 , . . . , φXk

k be satisfiable. 
The following are equivalent:

1. Ě = ∅.
2. For all P ∈ E there exists a sentence φ ∈ Sℒ such that P (φ) ∈ (0, 1) and P=(φ) ∈ {0, 1}.

Proof. Let us first assume the negation of the first condition, i.e., Ě ̸= ∅. Applying Proposition 11 we 
conclude that P † exists and satisfies PIT. So, P=(φ) ∈ {0, 1} entails that P †(φ) / ∈ (0, 1). So, the second 
condition fails (P † ∈ E). Hence, the second condition implies the first.

Now assume the first condition. Since the premisses are satisfiable (E ̸= ∅) but not support-satisfiable 
(Ě = ∅), for all P ∈ E there must exist a premiss φi such that P (φi) ̸= P (φ̌i). Swapping φi with ¬φi if 
necessary, we may assume that P (φi) > P (φ̌i). We now note that

P (φi) =
∑︂

ωN∈ΩN
P=(ωN∧φi)>0

P (ωN ∧ φ) +
∑︂

ωN∈ΩN
P=(ωN∧φi)=0

P (ωN ∧ φ)

= P (φ̌i) +
∑︂

ωN∈ΩN
P=(ωN∧φi)=0

P (ωN ∧ φ) .

Since P (φi) > P (φ̌i), the last term must have non-zero probability. Since all sentences ωN ∧φ have measure 
zero, at least one measure zero sentence is assigned non-zero probability by P . □

A failure of condition 2 in Proposition 13 is equivalent to PIT. If condition 2 fails then by Proposition 13, 
condition 1 fails, i.e., support satisfiability holds, and by Proposition 11 this implies PIT. On the other 
hand, if condition 2 holds, then it holds for the maximal entropy function in particular (if it exists), so an 
inductive tautology is not preserved, i.e., PIT fails. If there is no maximal entropy function of E, then OBIL 
uses every function of E for inference and PIT fails, too.

We see, then, that satisfiable premisses naturally sub-divide into two mutually exclusive cases. The first 
case comprises the non-support-satisfiable premisses where all probability functions in the feasible region 
give some inductive tautologies probability less than 1 and give some inductive contradictions positive 
probability (P=(φ) = 0 < P (φ) and P=(¬φ) = 1 > P (¬φ)). The second case comprises support-satisfiable 
premisses which possess a unique maximal entropy function P † that satisfies PIT (inductive tautologies and 
inductive contradictions remain as such).

Let us compare this with maximum entropy reasoning on quantifier-free languages. There, the only induc
tive tautologies are deductive tautologies and the only inductive contradictions are deductive contradictions. 
Hence, every satisfiable set of premisses is as in the second case. The first case can only arise when quantifiers 
are introduced.

11. Conclusion

The undecidability of first-order deductive logic carries over to first-order inductive logic under the 
standard semantics (Proposition 3). It is therefore interesting and surprising that a large class of inferences 
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in first-order objective Bayesian inductive logic is decidable: namely the class of support-satisfiable inferences 
(Theorem 5).13 In particular, in OBIL the class of inferences from no premisses is decidable (Corollary 3); 
this does not hold of first-order deductive logic, and hence it does not hold of first-order inductive logic with 
the standard semantics (by Proposition 3).

The main question for further research concerns the extent to which this decidable class of inferences can 
be expanded. We saw that the class of quantifier-free inferences is decidable (Theorem 1). Moreover, any 
class of inferences from unsatisfiable premisses is trivially decidable, as long as one can effectively determine 
that the premisses are unsatisfiable. This is because the equivocator function is used for inference whenever 
the premisses are unsatisfiable. (Examples of such classes include the class of inferences from unsatisfiable 
premisses that involve only unary predicates [22], and the class of inferences from unsatisfiable Σ2 premisses 
[32].) Hence any class of inferences involving premisses that are quantifier-free, support-satisfiable or decid
ably unsatisfiable is decidable. In addition, there are decidable inferences from premisses that are satisfiable 
but not support-satisfiable. For example, the class of inferences with a single premiss of the form ∀xUxc is 
decidable [16, Example 17]. A key task for further research is to find other decidable subclasses of the class 
of inferences that are satisfiable but do not have satisfiable support.
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Appendix A. Lagrange multipliers for determining entropy maximisers

In this appendix, we sketch how the maximal entropy function P̌ † can be obtained using Lagrange
multiplier optimisation methods.

Recall that P̌ † is the (unique) maximal entropy function with respect to the support problem, 
maxent{φ̌X1

1 , . . . , φ̌Xk

k } = {P̌ †} (Theorems 2 and 3). For ease of exposition, we take X1 = c1, . . . , Xk = ck
where c1, . . . , ck ∈ [0, 1], but the approach can be straightforwardly generalised to the case in which 
X1, . . . , Xk are intervals by using inequality constraints instead of equality constraints. Throughout this 
appendix we work with the natural logarithm for convenience.

Fix n ≥max{Nφ̌1 , . . . , Nφ̌k
}. Let xω

df = P̌ †(ω) for each ω ∈ Ωn.
The task is to use Lagrange multipliers to solve an optimisation problem to find the xω subject to k + 1

constraints. We have an additivity constraint with multiplier μ ∈ R:

13 Recall that we focus throughout on decidability modulo comparison of real numbers, by assuming that inferences are finitely 
represented and that numerical comparisons are made to some given fixed precision.
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∑︂
ω∈Ωn

xω = 1 . (8)

We also have k premiss constraints with multipliers λi ∈ R for 1 ≤ i ≤ k:
∑︂
ω|=φ̌i

xω = ci . (9)

Call these latter constraints f1, . . . , fk. The Lagrange function L is

L = −
∑︂
ω∈Ωn

xω log xω + μ(−1 +
∑︂
ω∈Ωn

xω) +
k∑︂

i=1 
λi(−ci +

∑︂
ω|=φ̌i

xω) . (10)

The Lagrange equations are obtained by taking partial derivatives of L with respect to the unknown xω, 
for each ω ∈ Ωn:

∂Hn

∂xω
+ μ +

k∑︂
i=1 

λi
∂fi
∂xω

= 0 .

Here,

∂Hn

∂xω
= −1− log xω

and

∂fi
∂xω

=
{︄

1 : ω |= φ̌i

0 : otherwise.

So we have:

log xω = −1 + μ +
∑︂

i:ω|=φ̌i

λi (11)

and thus

xω = e−1+μ · e
∑︁

i:ω|=φ̌i
λi . (12)

Since probabilities sum to one, we find

1 =
∑︂
ω∈Ωn

xω =
∑︂
ω∈Ωn

e−1+μ · e
∑︁

i:ω|=φ̌i
λi = e−1+μ ·

∑︂
ω∈Ωn

e
∑︁

i:ω|=φ̌i
λi . (13)

Let us now consider the k constraints arising from the premisses (9),

ci =
∑︂
ω|=φ̌i

xω =
∑︂
ω|=φ̌i

e−1+μ · e
∑︁

i:ω|=φ̌i
λi =

∑︁
ω|=φ̌i

e
∑︁

i:ω|=φ̌i
λi∑︁

ω∈Ωn
e
∑︁

i:ω|=φ̌i
λi

. (14)

This is a set of k equations in the unknowns λ1, . . . , λk. Once these λ are determined we can use (13) to 
determine μ and thus the xω from (12).
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Substituting (11) into (10) gives using (13) in the last step

L = −
∑︂
ω∈Ωn

xω[−1 + μ +
∑︂

i:ω|=φ̌i

λi] + μ(−1 +
∑︂
ω∈Ωn

xω) +
k∑︂

i=1 
λi(−ci +

∑︂
ω|=φ̌i

xω)

= 1− μ−
∑︂
ω∈Ωn

xω

∑︂
i:ω|=φ̌i

λi +
k∑︂

i=1 
λi(−ci +

∑︂
ω|=φ̌i

xω)

= 1− μ−
k∑︂

i=1 
λici

= 1 

log
(︂∑︁

ω∈Ωn
e
∑︁

i:ω|=φ̌i
λi

)︂ − k∑︂
i=1 

λici .

Since the original problem of maximising n-entropy is a convex minimisation problem (minimise −Hn) and 
Hn is continuous, maximising n-entropy is equivalent to maximising the above equation, called the dual 
problem. This dual problem is a convex optimisation problem [4, p. 215].

We have hence three ways of maximising n-entropy:

1. Numerically solve the problem of maximising Hn(P ).
2. Solve (14) for the unknown λi.
3. Solve the dual optimisation problem.

In practice, the choice of method will depend on circumstances.

1. Maximising Hn(P ) is a convex optimisation problem, that hence has a unique solution. One may use 
one of the many gradient descent (hill climbing) algorithms to find arbitrarily good approximations of 
P̌ † and Hn(P̌ †). The number of unknowns to be determined is |Ωn|. Such algorithms are hence likely 
to perform well if |Ωn| is small.

2. (14) is a system of k multilinear equations. Since a solution of this system provides a solution to the 
original problem, this system must have at least one solution. The number of unknowns to be determined 
is k, the number of premisses. A solution is such more likely to be found quickly if k is small.

3. Solving the dual problem is again a convex optimisation, which can again be tackled by a gradient 
descent algorithm (hill climbing). The number of unknowns to be determined is k, such algorithms are 
hence likely to perform well if k is small.

What is the n-entropy of P̌ †? Write xω = z0
∏︁

i:ω|=φ̌i
zi, where z0

df = eμ−1 and zi
df = eλi . Then,

Hn(P̌ †) = −
∑︂
ω∈Ωn

xω log xω

= −
∑︂
ω∈Ωn

xω log

⎛
⎝z0

∏︂
i:ω|=φ̌i

zi

⎞
⎠

= −
∑︂
ω∈Ωn

xω

⎛
⎝log z0 +

∑︂
i:ω|=φ̌i

log zi

⎞
⎠
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= −
∑︂
ω∈Ωn

xω

⎛
⎝μ− 1 +

∑︂
i:ω|=φ̌i

λi

⎞
⎠

= −(μ− 1)
∑︂
ω∈Ωn

xω −
k∑︂

i=1 
λi

∑︂
ω|=φ̌i

xω

= 1− μ−
k∑︂

i=1 
λiP̌

†(φ̌i)

= 1− μ−
k∑︂

i=1 
λici .

Thus, the n-entropy of P̌ † can be straightforwardly determined from the values of the Lagrange multipliers.

Data availability

No data was used for the research described in the article.
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