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1. Introduction

Is there a computable procedure for deciding whether any given inference from finitely many premisses is
valid? Hilbert described this decision problem to be ‘the main problem of mathematical logic’ [13, p. 113].
Here, we consider the decision problem in the context of inductive logic.

In propositional deductive logic, the truth-table method provides an effectively computable procedure
for deciding whether any inference from premisses ¢1,...,¢r to conclusion v is valid—i.e., for deciding
whether the entailment relationship ¢1,...,¢r E % holds. However, there is no such procedure for first-
order deductive logic: in first-order deductive logic, the class of inferences from finitely many premisses is
undecidable [34]; [24, Theorem 16.52]. There are decidable fragments of first-order deductive logic, such
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as the special case in which all the predicate symbols are unary [22, §3]. Standard fragments can now be
classified as to their decidability, and at the turn of the present century it was observed that ‘the work on
the classical decision problem is by and large completed’ for first-order deductive logic [3, p. 8].

Inductive logic generalises deductive logic to the situation in which premiss and conclusion sentences may
be less than certain: i.e., to entailment relationships of the form go{(l ey cp?’“ kY, where Xi,..., X, Y
are representations of the uncertainty that attaches to the corresponding sentences @1, .. ., @k, ¥ of the logic,
and where ke is an inductive entailment relation [9]. Given that first-order inductive logic is a generalisation
of first-order deductive logic, the prospects for decidability are dim. Indeed, thanks to the undecidability
of first-order deductive logic, first-order inductive logic is undecidable when endowed with the ‘standard
semantics,” i.e., when X1q,..., Xy,Y are sets of probabilities and one deems an entailment relationship to
hold just when all probability functions that satisfy the premisses also satisfy the conclusion (§3).

In this paper, we consider objective Bayesian inductive logic (OBIL) [17,31,39], which provides an alterna-
tive to the standard semantics. For OBIL, premisses inductively entail a conclusion, written g@fl, ceny gpi( kRS
Y)Y, just when the probability functions with maximal entropy, from all those probability functions that
satisfy the premisses, satisfy the conclusion. Such functions can be regarded as probability functions that
satisfy the premisses but which are maximally non-committal with respect to other propositions.

We show that a truth-table method can be used to determine the validity of a surprisingly large class of
inferences of OBIL. Indeed, this class of inferences is decidable.

In §2 we outline the formal framework. In §3 we show that the standard semantics for probabilistic logic
is not decidable but show how a truth-table method can be used to test for the validity of those inferences
in OBIL that involve only quantifier-free sentences. In §4 we consider the more general case of quantified
sentences and introduce a quantifier-free ‘support’ problem that is associated with the more general problem.
In §5 we show that the general problem can often be reduced to the support problem. §6 shows that a large
class of inferences in OBIL is therefore decidable. §7 provides a more computationally tractable method
for solving the associated support problem, which appeals to Bayesian networks. §8 considers the extent
to which these results can be generalised to inferences that involve infinitely many premisses. Finally, §10
develops a more detailed understanding of the class of decidable inferences identified in this paper.

2. Inductive logic

In this section, we provide the background on inductive logic to which we shall appeal throughout the
paper.

2.1. Logic

We shall work in pure first-order logic, i.e., first-order logic without function symbols or equality. We
take language £ to have finitely many relation symbols, countably many constant symbols and countably
many variable symbols. By default, we shall use Uy, ..., U; for the relation symbols, t1,%s, ... for the con-
stant symbols, and z1,zs,... for the variable symbols, but we shall occasionally use other symbols where
convenient. The sentences SL of £ are formed in the usual way from the atomic sentences Ut;, ...t;, using
the standard connectives =, A, V, —, <>, quantifiers 3,V and variables.

Suppose ai,as,... is an ordering of the atomic sentences such that atomic sentences involving only
t1,...,ty appear before those that involve t, 1, for each n>1. For any n, let £,, be the finite sublanguage
of £ that has ¢1,...,t, as its only constant symbols. The atomic sentences of L,, are aq,...a,, for some

Tn >N.

Example 1. Suppose £ has just a binary relation symbol U and a unary relation symbol V. £; has the
atomic propositions a; = Vit; and as = Utity, so 71 = 2. Ly also involves az = Viy, ag = Utits, a5 =
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Utgtl, ag = UtQtQ, SO g = 6. £3 also involves ay = Vt3, ag = Utltg, ag = Ut2t3, ajp = Ut3t1, a1 =
Utsta, a12 = Utsts, so r3 = 12, and so on. For this language, r, = r,—1 +2n =n(n + 1).

Definition 1 (N, ). For any sentence ¢ € SL, let N, be the greatest index of all the constants that appear
in ¢. If ¢ has no constants, we adopt the convention that N, = 1.

A crucial role in the following analysis is played by the sentences that are called the n-states or state-
descriptions of L:

Definition 2 (n-states). For any n>1, the set €, of n-states is the set of sentences of the form +aj A- - -A+a,. ,
where +a; is just a; and —a; is —a;, for i =1,...,7,.

2.2. Probability

Probability functions on the language £ (or more accurately on SL) are defined as follows:

Definition 3 (Probability). A probability function P on L is a function P : S£ — Ry such that:

P1. If = 7, then P(7) = 1.

P2. If = =(6 A p), then P(OV )

P3. P (3z6(x)) = sup,, P (Vi 0(t;)).
Remark 1. Axiom P3, which is due to [7], requires the presupposition that every member of the domain
is named by at least one constant symbol 28, p. 162]. This therefore restricts us to interpretations with
countable domains.

Remark 2. A probability function is determined by the values it gives to the n-states—see, e.g., [41, §2.6.3].
On the other hand, an assignment P of values to the n-states generates a probability function if the following
conditions hold: 3 .o P(w)=1and P(w) =3 ccq, ., cmw L(C) for all w € Oy and n>1.

We denote the set of probability functions by P. Of particular importance will be the equivocator function,
P_ € P, which gives the same probability to each n-state, for each n:

Definition 4 (Equivocator function). The equivocator function is the probability function P— defined by:

11
Pten) = 50 = o

for each n-state w, € €, and each n>1.

Definition 5 (Measure). The measure of a sentence 6 is the probability given to it by the equivocator function.
In particular, 6 has positive measure if and only if P_(6) > 0.

Probabilities on first-order languages are similar to probabilities on finite domains since the axioms P1 —
P3 have a number of simple and intuitive but very important consequences—see [28, Proposition 2.1], [29,
Lemma 3.8] and [41, §2.3.2] for example:

Proposition 1. For sentences 0, p, v € SL

1. P(-60) =1 — P(6).
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If =0, then P(—0) = 0.

If 0 = o, then P(0) < P(p).
If 0 = ¢, then P(0) = P(y).
P(p) €10,1].

G N

2.8. Probabilistic logics

An inductive logic posits entailment relationships between premisses and conclusion sentences that may
be uncertain. In a probabilistic inductive logic, this uncertainty is expressed using probabilities. We shall
consider probabilistic logics that posit entailment relationships of the following form [9]:

RN Sl R
Here, ¢1,...,¢0k,% € SL and X1,..., Xk, Y C [0,1]. This entailment relationship should be interpreted as
saying: 1, ..., @, having probabilities in X, ..., X} respectively inductively entails that ¢ has probability

in Y. An absence of premisses, k = 0, provides the set of tautologies of the inductive logic.

Definition 6 (Feasible region). Let A be the set of expressions of the form " where § € S£ and W C [0, 1].
For any A C A, let P[A] be the set of probability functions satisfying all the expressions in A:

PIA] L {PeP:PO) W for all 0" € A}.
Given premisses @f R goi(’“, we define the feasible region to be

dr

df
E S Plpf, ..., onf ] S P{or, ..., on* .

In a probabilistic logic, models of a set of probabilistic expressions are probability functions specified by

some function [-] : A — PP. This function assigns to every set of probabilistic expressions of the form

0" a set of probability functions, and satisfies the following condition:

[A] C P[A] for any consistent A C A.
This function can be used to provide semantics for the entailment relation:

(pfl,...,gokx’“ ke oY if and only if [[(pfl,...,gokx"']] CPRY].

What is sometimes called the standard semantics for probabilistic logic [9,26,10] considers the entire set
of probability functions that satisfy the premisses, i.e.,

[ e T=E =Pl ,..., 00 ).
In the standard semantics, then,
w{(l,...,g@kX’f kY if and only if E C P[ypY].

Note that if E = () then any conclusion Y follows.
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2./. OBIL

Objective Bayesian inductive logic (OBIL) provides an alternative to the standard semantics. The ob-
jective Bayesian approach interprets probabilities as rational degrees of belief [39, Chapter 7]. It takes the
premisses on the left-hand side of the entailment relationship to capture all the constraints on rational
degrees of belief that are imposed by evidence, and it asks: what probabilities are given to the conclusion
sentence ¥ by the maximally non-committal probability functions that satisfy the premisses? The idea is to
consider probability functions that best represent the premisses in the sense that they satisfy the premisses
but go as little beyond the premisses as possible. Entropy is standardly used to measure the extent to
which a probability function is non-committal, i.e., the extent to which it equivocates between the basic
expressible possibilities. Hence, OBIL considers those probability functions that satisfy the premisses which
have maximal entropy, in the following sense.

Definition 7 (n-entropy). The n-entropy of a probability function P is defined as

H,(P)= — Y P(w)logP(w) .
wWEN,

We adopt the usual convention that 0 -log0 = 0. We shall sometimes use P™ to refer to an n-entropy
mazximiser, i.e., a probability function in E that maximises n-entropy.

Remark 3. We take the logarithm in the previous definition to have base 2, which is the natural base from
an information-theoretic perspective. Using any other base b > 1 would instead give:

log, P(w) log,2
log.b  log, b

H,y(P):=— Y  Pw)log, P(w)=— Y Pw)

weR, WEN,

Ho(P) .

Since log,(b) > 0, H,(P) > H,(Q) iff H,(P) > H,4(Q). Since in this paper we are only interested in
comparing n-entropies to one another, the choice of the base b > 1 is inconsequential for our purposes, and
we suppress the base in the notation.

The n-entropies, which only take into account the probabilities on finitely many n-states, are then used
to define a notion of comparative entropy on the infinite language £ as a whole:

Definition 8 (Comparative entropy). Probability function P € P has greater entropy than Q € P if and only
if the n-entropy of P dominates that of () for sufficiently large n, i.e., if and only if there is an N € N such
that for all n>N, H,(P) > H,(Q).

The greater entropy relation defines a partial order <y on the probability functions on £. We shall focus
on functions in E = P[p;?, ... ,(pf"] that are maximal with respect to this partial ordering:

Definition 9 (Mazimal entropy functions). The set of maximal entropy functions on E, maxent E, is defined
as

maxentE:={P € E : VQ e E,P £y Q} .

Where maxent E is non-empty, we shall often use P or P]E, to refer to some member of maxentE. In
this case, we set [, ..., 9p*] = maxent E in order to provide semantics for OBIL [41, §5.3]:
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Definition 10 (Objective Bayesian inductive entailment). Suppose maxentE # (). Premisses @{(1, .. .,@?’“
inductively entail ¥, denoted by ¢, ..., @kx’“ K Y, if and only if P(¢)) € Y for all P € maxentE. Le.,

oL, @f’“ K Y if and only if maxentE C P[¢Y].

Something needs to be said about the case in which maxentE is empty.! Given the objective Bayesian
semantics for OBIL, it is natural to avoid explosion—i.e., the claim that it is reasonable to believe any
conclusion statement to any degree [39]. For the purposes of this paper, we shall say that if maxentE = )
but E # (), the entailment relationship holds when P(¢)) € Y for every P € E. If E = (), we shall take the
entailment relationship to hold when P(¢)) € Y for P € maxent P = {P_}.? In sum, in OBIL,

maxent E : maxentE # ()
[, entl = E : maxentE=0#E (1)
maxentP : E =0.

We shall focus on the first of these three cases in this paper.

In the context of objective Bayesianism, constraints on rational degrees of belief are convex.® Hence, in
the context of OBIL, we shall take the X1,..., X}, Y to be intervals of probabilities.* Moreover, to simplify
our exposition, we shall suppose that these intervals are closed intervals. This simplifies the exposition
because it ensures that, for each n, a satisfiable set of quantifier-free premisses has an n-entropy maximiser
P" that is uniquely determined on the sentences of £, (because E is closed and convex and H, is strictly
concave).”

We write ¢ to abbreviate ol which attaches a single probability ¢; € [0,1] to sentence y;, and we
identify the interval [¢;, ¢;] with ¢;. We abbreviate a statement of the form 6 by 6, for € SL, and call
such a statement ‘categorical’.

In the absence of any premisses E = P, so ¥ holds if and only if P_(v)) € Y, since maxent P = { P_}.

Definition 11. A sentence 1 is an inductive tautology if R 1, i.e., if it has measure 1. ¢ is an inductive
contradiction if F —p, i.e., if it has measure 0. ¢ is inductively consistent if F —p, i.e., if it has positive
measure. Sentences ¢ and 6 are inductively equivalent if ) + 6.

3. Decidability and truth tables in OBIL

In this section, we see that the prospects for the decidability of a first-order probabilistic logic are dim.
However, we go on to informally describe a truth-table method, originally introduced by [41], and we show
that this method can be used to decide whether inferences that invoke quantifier-free sentences of £ are
valid in OBIL. In later sections, we show that there is a surprisingly large class of inferences that involve
quantified sentences and that are decidable by means of this truth-table method.

1 Note that since <y is a partial order on an infinite set, it may contain an infinite chain with no maximal element. For example,
the premiss JzVyUzy' is satisfiable (E # @) but maxent E = @ [20, Proposition 53].

2 There are more sophisticated approaches that one can take here. In the former case, one can restrict attention to probability
functions in E that are sufficiently equivocal. In the latter case, one can consider probability functions that satisfy some maximal
consistent subset of the premisses. See [39] and [16, §9] for further discussion.

3 For the rationale behind convexity, see [39, Chapter 3], [35] and [40].

4 Although we allow the possibility that one or more of these intervals is empty, such a possibility is of little interest because any
proposition of the form 6° will be unsatisfiable.

5 If the premisses are not satisfiable then, as stipulated above, [cpf(l R gakx‘“}] = maxent P. maxent P = {P-}, so inferences are
drawn using the equivocator function P—.
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3.1. Decidability and precision

Before proceeding, we should note that undecidability can arise in probabilistic logic in two ways. The
kind of undecidability we are concerned with in this paper is undecidability that arises from the logical
structure of the sentences that occur in the premisses of an inductive inference. But undecidability also
arises trivially in a second way in probabilistic logic: when trying to determine the equality of two non-
terminating decimals. Suppose for example that we have an entailment relationship

X
N SRY

and the probabilistic logic in question gives a single model of the premisses, [[@f(l,...,<pkx"']] = {P}. To
decide whether the entailment relationship holds, we need to determine whether P(i) = ¢. Now suppose
that we have a procedure for determining successive digits of P(¢) and that the decimal expansion of ¢
is non-terminating. If indeed P(3)) = ¢, the comparison between P(1) and ¢ will not terminate in a finite
time. Hence, there is a trivial—and rather uninteresting—sense in which there is no effective procedure for
deciding whether an inductive entailment holds, if the probabilities in question include real numbers with
non-terminating decimal expansions.

In order to focus on the first, logical kind of undecidability we eliminate this second, numerical kind of
undecidability by imposing two restrictions. Firstly, we take all probability intervals in OBIL to be finitely
represented:

Definition 12 (Finitely represented). A closed interval is finitely represented if it is represented as [I,u]
where [ and u are terminating decimal fractions, i.e., are of the form 1.0 or 0.dyds ...ds, where s € N and
d; €{0,1,...9} fori =1,...,s. An expression of the form §Z, where § € SL and Z is an interval, is finitely
represented if the interval Z is finitely represented. An inference is finitely represented if its premisses and
its conclusion are finitely represented.

This restriction is not enough on its own to eliminate numerical undecidability: if ¢ is say 0.479, our
procedure for generating successive digits of P(v¢)) might yield 0.47900000.. ., in which case it will still not
be possible to determine that P(1)) = ¢ in a finite amount of time. Hence, we also presuppose a given level
of precision with which to perform numerical comparisons. Thus if it is sufficient to perform comparisons
to 20 decimal places, we need only determine that P(1) = 0.47900000000000000000 to 20 decimal places in
order to decide that the entailment relationship holds.

Without further explicit mention, then, we consider only finitely represented inferences—entailment re-
lationships of the form 4,05(1,...7@?‘ K Y in which the sets of probabilities Xi,..., X}, Y are finitely
represented closed intervals—and we suppose some fixed finite level of precision with which to perform nu-
merical comparisons. This will allow us to focus on logical decidability, i.e., decidability modulo comparison
of real numbers.

3.2. Decidability and deductive logic
Any probabilistic logic generalises deductive logic in the following sense:
Proposition 2. In any probabilistic logic, if p1,...,pr are jointly consistent then

P1yy Pk lef@h,s@k ):1/1

Proof. If [i1, ..., o] = 0, the inductive entailment relationship holds trivially.
Otherwise, suppose P € 1, ..., 9]
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If o1,..., 0k =9 then = = (o1 A... Ag) V1, so by axiom P1,

P(~(p1 A Api) V) = 1.

Now 1 A ... A pg and =) are mutually exclusive, so by axiom P2,

P(=(p1 Ao Apr)) + P() = P(=(p1 Ao A i) Vi) = 1.

But P € [¢1,...,0k] € Plp1,..., 0], since ¢1,..., ¢k are jointly consistent. So P(¢1 A ... A i) =1 and
P(=(p1 A...Apg)) =0. Thus P(v) =1, i.e., P € P[¢]. Hence, ¢1,...,0k R ¥. O

In the case of the standard semantics for probabilistic logic, we can say more:

Proposition 3. With the standard semantics,

01,0k Y if and only if p1,..., ¢k E .

Proof. Consider first the claim that ¢1,..., ¢ = 9 implies @1, ..., pr R ¢. Given Proposition 2, we need
only consider the case in which ¢4, ...,y are jointly inconsistent. In that case, [p1,..., 9] = @ and any
conclusion follows. In particular, @1, ..., ¢k 1.

It remains to show that ¢1,...,pr R ¢ implies p1,...,0r = 1.

If the premisses are inconsistent then both the inductive and the deductive entailment relationships hold
vacuously, so it is trivially the case that ¢1,..., ¢ k¢ implies ¢1,..., 0k E 9.

Consider next the case in which the premisses are consistent. If ¢1,...,pr = 1 then there is some
interpretation of £ under which the premisses are true and the conclusion false—i.e., a model of the premisses
together with the negation of the conclusion. By the Léwenheim-Skolem Theorem, there is such a model
with a countable domain. Without loss of generality, we can suppose that each member of this countable
domain is named by at least one constant symbol: otherwise, add new constant symbols to the language to
refer to previously unnamed members of the domain and revise the interpretation to specify the referents
of the new names, leading to an expansion of the original model. This interpretation thus satisfies the
requirements outlined in Remark 1.

This interpretation yields a truth assignment v to the sentences of £ such that v(¢;) =1 (ie., v = ¢;)
fori=1,...,k and v(¢) =0 (ie., v E ).

Note that v is also a probability function:

Pl. If 7, then v(7) = 1.

P2. If E —(0 A x), then there are two possible cases: either v(0) = v(x) = v(6V x) = 0 or v models precisely
one of 6 and x and gives v(8 V x) = 1. Either way, v(6 V x) = v(0) + v(x).

P3. If v(6(¢;)) = 0 for all i then by induction on P2, v (\/;~, 6(t;)) = 0 for all m, and since each member
of the domain is named by some constant symbol, v (3z0(z)) = sup,, v (\i~, 0(t;)) = 0. Otherwise
v(0(t;)) = 1 for some j, v (3z6(z)) = 1, and by induction on P2, v (\/[~, 6(t;)) = 1 for all m > j, so
by v (VI O(t)) = 1.

Since v(p;) = 1 for each i = 1,...,k and v(¢p) = 0, v € E but v ¢ P[¢)]. Hence ¢1,...,0r B ¥, as
required. O

This feature enables the use of the standard semantics to provide semantics for deductive logic as well
as inductive logic [6]. It also has important consequences for decidability:
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Definition 13 (Decidable inferences). A class of inferences of a given logic is decidable if there is an effective
procedure for deciding whether any given inference lies within the class and, if so, whether the inference is
valid in the logic.® Otherwise it is undecidable.

Corollary 1. Suppose L contains at least one relation symbol of arity at least 2. Then for the standard seman-
tics for probabilistic logic, the class of entailment relationships from finitely many premisses is undecidable.

Proof. Suppose for contradiction that the class of inductive entailment relationships of the form
gafl, .. .,<ka"' ke ¢Y were decidable, with respect to the standard semantics. Then there would be an
effective procedure for deciding, in particular, whether k 1 for any 1) € SL. By Proposition 3, this pro-
cedure would decide whether = ¢ for any ¢ € SL. But the class of logically valid sentences of first-order
deductive logic is undecidable when there are relation symbols that are at least binary (see [34]; [24, Theorem
16.52]; [3, p. 10]). This gives the required contradiction. O

On the other hand, it is possible to define a decidable probabilistic logic. Consider the trivial probabilistic
logic, defined by setting [A] = () for all A € A. In the trivial probabilistic logic, every entailment relationship
holds and the class of all inferences in this logic is clearly decidable. Notwithstanding this fact, Corollary 1
might lead to pessimism about the decidability of any reasonable probabilistic logic. The fact is that the
class of inferences from finitely many premisses in first-order deductive logic is undecidable, and a first-order
inductive logic generalises first-order deductive logic to cover cases in which the premisses are uncertain. It
is hard to see how any reasonable generalisation could be decidable.”

3.8. Truth tables

The aim of this paper is to show that there is a wide class of inferences in OBIL that is decidable using
a truth-table method. Truth tables are usually introduced in the context of propositional deductive logic,
which is decidable. Indeed, the truth-table method provides perhaps the best known decision procedure
for the class of deductive inferences of a finite propositional logic. The lines (rows) of the truth table run
through all the truth assignments to the propositional variables that occur in the inference. The truth
value of each premiss and the conclusion of the inference are calculated on each line, and the entailment
relationship holds just when the conclusion is true at all lines of the truth table at which the premisses are
true.

Consider for example the truth table for a simple deductive entailment claim:

a—bbEa

oA
g Ao

CEIEEE
CEIEER

S[8]= AL

On the third row, the premisses are true and the conclusion false, so the inference is invalid.

8 Here we appeal to the standard notion of ‘effective procedure’: informally, a mechanical procedure that terminates to give the
correct answer up to an arbitrarily close approximation after a finite number of steps. This notion is usually formally explicated
by appeal to recursive functions or Turing machines [24, Part I].

7 [33] shows, for example, that a probabilistic logic based on the theory of PAC learning is undecidable. See [1] for more general
pessimism about the decidability of probabilistic logics.
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Exactly the same method can be used to decide whether an inference in first-order deductive logic (from
finitely many premisses) is valid in the special case in which the premisses and conclusion are all quantifier-
free sentences of £. One can simply build a truth table around the atomic propositions a;,,...,a;  that
occur in the inference and the premisses and conclusion. Thus by setting a = U;tytg and b = Usty, the same
truth table can be used to test the inference:

U1t4t6 — Ugtg, U2t9 ': U1t4t6.

Again, the third line of the truth table tells us that the inference is invalid.
Moreover, as we shall see now, the same truth table can be used to determine whether the following
inference holds in OBIL:

U1t4t6 — Ijgtg7 Ugtg ﬁ)ﬁ U1t4t61/2 . (2)

In OBIL, when an inference involves categorical (i.e., certain) and consistent quantifier-free premisses, the
probability that attaches to a quantifier-free conclusion sentence is the proportion of all those lines of the
truth table at which the premisses are true where the conclusion is also true [41, Chapter 1 and §6.1]. (Note
that the question of the consistency of the premisses is decidable here, because the truth table can also be
used to check that there is a truth assignment to the atomic propositions, i.e., a line of the truth table, at
which all the premisses are true.) In the above truth table, there are two lines at which the premisses are
true, one of which makes the conclusion true, so the probability that attaches to the conclusion sentence is
5. Thus, the entailment relationship (2) does indeed hold.

Recall that a probability function on SL is determined by its values on the n-states. This fact allows us
to extend the truth table method for OBIL to handle non-categorical quantifier-free premisses. The idea is
to attach a probability to each line of the truth table: this is the probability that is induced by the maximal
entropy function. Consider

a— b, b K al/?,

where, as before, a is Uytste and b is Ustg. We can build the following augmented truth table: The premiss

=

SRR
SR
oA e

forlcaen|= O ol )

oA e

SRl

a — b forces the second line to have probability 0. The premiss b%/> ensures that probability 2 /5 is distributed
between lines 1 and 3 of the truth table; the maximal entropy function will distribute this probability equally
in the absence of further information concerning b. The remaining probability, 3/5, must attach to line 4.
The probability that attaches to the conclusion a is the sum of the probabilities attached to lines 1 and 2,
i.e., 1/5. Thus the entailment relationship does indeed hold.

This approach generalises as follows. Suppose that in the context of a particular inference we have pre-
misses tp{(l ey <p,€X"‘ in which the premiss sentences ¢1, . . ., @ are all quantifier-free. (Recall that X1, ..., Xk
are assumed to be closed and convex.) Let a;,,...,a;, be the atomic propositions that occur in ¢4, ..., @k
and = be the set of states of a;,,...,a;,, . For any n>1 let Z be the set of states of the atomic propositions,
other than a;,,...,a;,, that are in £,; if there are no such atomic propositions, take = to contain just an
arbitrary tautology. Let P= be a probability function on £ that satisfies the premisses, and maximises the
entropy on =,
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P: e argmax—ZP )log P(¢
i3S

if E # (). Note that all such entropy maximisers agree on =: on a finite domain, a closed, convex set of

probability functions has a unique entropy maximiser because the entropy function is strictly concave. If

E=0,let P= a P_. Thus Pz is uniquely determined on =, whether or not the constraints are satisfiable.
We are now in a position to identify a unique maximal entropy function on L itself:

Proposition 4 (Quantifier-free entropy maximisation). Suppose premiss sentences @1, ..., ¢k are quantifier-
free. Then [[cpfl, ey goi(’“]] = {P"}, where the probability function P is characterised by

daf
P(w) = P=(§)P-(0), (3)
for all w € Q,, and n>1, and where ¢ € Z and ¢ € E are states induced by w, i.e., w=E&NC.

Proof. If the premisses are unsatisfiable, i.e., E = (), then by definition [¢y",..., pp*] = maxent P = {P_}.
In this case, P= & P_,so Pf =P_, as required

If the premisses are satisfiable, [[gof( RPN X ] = maxent E. Now Pz € E, by construction. Consequently,
P, as defined above, is in E:

=Y P =) P=() = P=(¢i) € X,

€€E £cE
E=pi E=pi
fori=1,... k.
Consider n large enough that the premiss sentences @1, ...,y can all be expressed in £,. P is an n-

entropy maximiser, as can be seen as follows [41, Theorem 5.13]. By the chain rule for entropy [5, Theorem
2.2.1], for any probability function Q € E,

Ho(Q) ==Y Q(&1ogQ(&) — > Qw)logQ(cle)

ez weN,
ENC=w
g—Z:PT €)log PT(&) — Z P (w)log PT(¢[€)
cex WEN,
ENC=w
= H,(P"),

with equality if and only if @Q coincides with PT on all sentences of £,,. The above inequality holds because
Ps is the entropy maximiser on = and PT is defined as PT(w) = P=(&)P=((), so

Y QO1ogQ(E) < =) Ps(¢)log P=(¢) = =Y PI(¢)log PT(¢)
§€E §eE §EE
with equality if and only if @ coincides with P= on =, and
- Y Qw)log Q) < — Y Pl(w)log PT(¢[¢),

we, weR,
5/\{500 ENC=w

with equality if and only if Q(¢|¢)
note first that PT(¢|¢) = P-(¢) =

P_(¢[¢€) for all £ € = and C € Z. To see why this last inequality obtains,
|Q:|| for each £ € Z and ¢ € E, so,
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=Y Q5RO = Y Qu)log 2E)

weQ, wey, Q(w)
ENC=w ENC=w

< (5 )
weN,
:—ZPT log =l

we, n|

=— ) Pi(w)log PT(¢[¢),
g\eg%w

Iii]

where the second line of the above equation is an instance of Jensen’s inequality [5, Theorem 2.6.2].

We have seen that P maximises n-entropy for sufficiently large n and that any function Q that maximises
n-entropy for sufficiently large n agrees with Pt on £,, for each sufficiently large n, and so coincides with
PT on L. Hence, maxentE = {PT}. O

This result enables the use of a truth table to represent the maximal entropy probability function PT, given
quantifier-free premisses cpf{ LT gpf *. Each line of the truth table needs to be augmented by the probability
P1(€) of the state ¢ that is satisfied by the truth valuation on that line, which is found by first maximising
entropy on = to get P= and then equivocating beyond Z, i.e., by the construction Pf(w) = Pz(¢)P=(¢) of
Equation (3). (Note that if the premisses are not jointly satisfiable, [y, ..., op*] = maxentP = {P_},
and each line of the truth table is given the same probability.)

We thus have:

Proposition 5. If the premiss sentences @1, ..., are all quantifier-free then the truth-table method can be
used to determine Pt on SL.

Proof. The (augmented) truth table determines PT via Equation (3), because a probability function is
determined by its values on the n-states. 0O

k

Proposition 6 (Quantifier-free satisfiability). Whether quantifier-free premisses cp{(l, cee wi( are jointly sat-

isfiable is decidable.

Proof. The existence of a probability function that satisfies the premisses is equivalent to the existence of
a solution for a system of linear inequalities with unknowns P(g;) = > ¢, P(¢). That this problem is
decidable follows from the Tarski—Seidenberg theorem and the decidability of first order theory of closed
real fields.
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To see this, take an inequality constraint of the form z;, + ...+ x;, < ¢;, partly expressing the premiss
gpgbi’ci]. Remember that ¢; is finitely represented which implies ¢; € Q, and hence ¢; is an algebraic number.
That is, ¢; can be expressed as the root of a polynomial in one variable with integer coefficients and thus it
is definable in the first order theory of closed real fields. Let k., (y) be the polynomial defining ¢;. Then the

above constraints can be expressed by the formula
U(Z) == Fy(ke, (y) =0 A ziy + ...+ x4, < y),

and the existence of a solution for the system of linear inequalities ¥1(Z), ..., ¥, (&) can be expressed as
the first order sentence

in the first order language of closed real fields. O
Theorem 1 (Quantifier-free decidability). The class of quantifier-free inferences is decidable in OBIL.
Proof. Since the proof is somewhat long, we split it into parts.

Set-up of the problem. Take any inference in the class of quantifier-free inferences. Since the premiss sen-
tences are quantifier free, the truth-table method can be used to fully determine PT. Since the conclusion

sentence v is quantifier free, 1 = \/,eq, w for sufficiently large n, so PT(v) = Y ,ecq, Pf(w). Since PT(¢)
e P
can be effectively determined from the truth table and Equation (3), the key task then is to fill in the

probability values in the truth table: i.e., to find PT(¢) for each ¢ € =.

By Proposition 6, whether the premisses are jointly satisfiable is decidable. If they are not satisfiable then
Pt = [o, ..., op*] = maxent P = {P_}, and each line of the truth table is given the same probability

Otherwise, the task is to determine PT(¢) for each ¢ € = where PT is the function in E # () which
maximises entropy. Given Proposition 4, we can focus on probability functions defined over =, rather than
on the whole language £. We shall use X to denote the set of probability distributions defined over = that
satisfy the constraints imposed by the premisses. The task is to determine the unique probability function
2’ on = such that maxent X = {z7}. Recall that we are working to some degree of precision, so the task is

]

to determine, for any given ¢ > 0, some z* € X such that |z* — T |Gl:f supeez | 2%(€) —21(§) < e

Proof sketch. Let us first sketch how to find such an approximation x*. We shall consider a closed region
X’ C X within which z' is known to lie and an effectively specifiable tessellation 7~ of X’ involving finitely
many closed convex polytopes (henceforth called ‘tiles’).® Given any § > 0, one can find X', a tessellation
T of X/, and rational functions H* and H~ on 7 such that

1. H*(7) (respectively, H™ (7)) is an upper (respectively, lower) bound on the entropy of the entropy
maximiser, x] & arg max,c, H(x) within the tile 7, and

2. for all tiles 7 € T, H (1) — H™ (1) < 4.

Let 7* be some tile that maximises H*. Note that 7* can be found effectively because there are only finitely
many tiles in 7. Then we have that:

8 A tessellation is a cover of X; such that the intersection of two different tiles contains none of their interior points.
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H™(r") < H(z") < H' (1)
and
HY (") —H (") <6
SO
H*(r*)— H(z") < 6.

Thus we can approximate H(z) as close as we like by means of HT(7*). Now consider some effectively
specifiable probability function z* € 7*. x* may not yet be close to z' in the sense that |z* — 2T |< .
However, 6 can be reduced until 2* provides a close enough approximation to z!.

In more detail, a suitable approximation z* to 2! can be found as follows.

Determining X. If z_ dp 1= € X, then 2 = z_. Hence we first check whether z_ satisfies all constraints
(this is easily computable). If so, each line of the truth table is given the same probability 1/|Z| and we can
simply set z* = zf.

If x— ¢ X, the next step is to effectively determine X by computing the vertices of X. We note that

X={z: ) 2 <L) x(§)>1,

tez texs

xz(€) >0, forall £ € 5,

doa© <X w©) = Xy,
e £e=
EFp1 EFp1

PG EP PP o’
fe= (ex
EFpy EFpk

with X; = [X;, X;"]. We can use the Fourier—Motzkin elimination algorithm to compute this set [14]. The
algorithm is effectively computable on a Turing machine since it only requires addition and multiplication
of rational numbers.

We next repeatedly eliminate superfluous constraints by checking whether an application of the Fourier—
Motzkin elimination algorithm to all but one of the constraints gives the same result. If so, then the omitted
constraint is superfluous and can be dropped. If not, then the constraint is relevant and cannot be dropped.
Eventually, we arrive at a minimal set of constraints C that cannot be further simplified.

Next, turn |Z|-many constraints in C into equality constraints by replacing <, > by = to yield new sets C’
of constraints. In this way each equality constraint serves as the border that divides the space of probability
functions into two disjoint regions; one in which the inequality is satisfied, and one in which it is violated.
The set X will then be the region enclosed by these borders. Vertices of X will be where these borders
intersect at a point.

In order to find these vertices, we check whether each such set C’ of constraints has a unique solution via
the Fourier-Motzkin elimination algorithm. Consider those C’ that do have a unique solution. The unique
solutions of these subsets of constraints are the vertices of X, since C is minimal. X is then effectively
characterised as the set of convex combinations of these vertices.
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If the feasible region X consists of a single element, then this element is 2 and we can simply take z* = z7.
In the following, then, we assume that the feasible region has at least two elements. By the convexity of the
feasible region, this entails that the feasible region contains uncountably many points.

Iterative approach. Our approach is to iteratively produce an ever smaller region X; of X which contains
x¥. Initially, i = 1 and we set X; = X.
For all + € N we split X; into a tessellation 7; of finitely many closed, convex polytopes such that: (i) all
vertices of each tile have rational coordinates, and (ii) for every tile 7 € T;, |7] & SUp, e, [ —yl < 1/2°2).
We define an upper bound Hf associated with X;, that satisfies the requirements introduced above, as
follows. Consider the L; bound on entropy [5, Theorem 17.3.3]: if

1
le =y LS 3 12(©) ()] < 5.
€=

then

|z =y Il

—
—

|H(z) = H(y)| < — |2 —y [l log

Applying this to x,y € 7, since sup, . [z —y| < ﬁ, we have that

|=] 1 1
_ ‘ - <z
> 1O -0 < = 5 < 5
§€E
S0
1 1 1+m
H(z) - H <——log——=——log2
| ($) (y)| — WA 08 2’L|E| 91 0g 2,
since |Z| = 2™. Let ¢ be the centre of mass of tile 7, assuming uniform density. ¢ can be effectively

determined as a convex combination of the vertices of 7. Thus, the centre of mass of a convex and non-
empty set with a dimension of at least 1 lies in the interior (with respect to the norm topology of the
dimension of the convex set) of this set.

For any ¢, then,

Thus we can let
. 1+m
2i

log 2,

where an upper estimate h; (z¢) of H(z¢) is found by calculating H(z¢) to d + i decimal places (e.g., by
using a Taylor approximation) and incrementing the final digit, and where d is the number of decimal places
needed to represent numbers at the required accuracy . Note that the upper bound improves as i increases,
but this procedure does not tell us exactly how good the upper bound is.

Next, define the lower bound H, . For each tile 7 € T;, H; (7) is defined by computing a lower estimate

h; (%) of H(z¢), e.g., by calculating H(z¢) to t + 4 decimal places and decrementing the final digit:

K3

Again, the lower bound improves as ¢ increases, but this procedure does not tell us how good the lower
bound is.
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Note that H;" () and H; () become arbitrarily close, since for all large enough i and all 7 € T;

HF(r) = HT (7) = hf (1) + 5" log2 — 7 (a2)
— b (@) - b (af) + 2" log 2

< 4.
For tiles o, 7 € 7T;, define a partial order >; by:
o= T < H (0)> H (7).

If o =; 7 then clearly H(x}) > H(x!) and the overall entropy maximiser zf cannot lie in 7.

Let X1 4 {7 € T; : there is no o € 7; such that o >; 7}, i.e., the union of all 7 that are maximal
with respect to ;. X;11 is a subset of X; within which xt is guaranteed to lie. We can then define a new,
finer tessellation 7;;41 of X; 1 such that 7;y1 is a refinement of 7; restricted to X;;1, and we can define
approximations H;_ |, H :H on 7;41 using the definitions provided above. Iterating, we refine the tessellation
and compute new bounds. By construction, 21 € X;, for each i.

We claim that after finitely many iterations we find a set X, such that sup,cx |7 — zT| < ¢, the required
precision. Hence, any z* € X,, approximates x' sufficiently closely. To be concrete, we can take z* = ¢ for

some T € T, as this element of X,, is effectively specifiable.

Termination of the algorithm. We can see that |z — 2| < ¢ for all € X; and sufficiently large i, as follows.
For every i € N, let S;(z) C T; be the set of tiles in 7; that contain x. Furthermore, let R; = S;(x').
Notice that if 27 is an interior point of a tile in 7 € 7; then R; is the singleton {7}, while if 2T lies on the
boundary of a tile in 7; then R; will have as elements all the tiles that share that part of the boundary.
Since the diameters of the tiles go to zero as i increases and since the tiles in R; are adjacent, there is
some N € N such that for all i> N and all z,y that feature in tiles in R;,

|z —y| <e.

That is, for all 4 > N the region consisting of the set of tiles of 7; that contain the entropy maximiser has
diameter less than our given precision €, and thus for any ¢ > N any point in a tile in R; (and in particular
xT) can be suitably approximated by any other point in (some tile in) R;, given our threshold of precision.

Consider Ty and some o € Ty such that o € Ry. We next show that there is some M > N such that
ocNXpro1 = 0. That is, after M + 1 — N more iterations, all the points in ¢ have been eradicated from the
feasible region Xjs1.

To see this, let ¢ ) H(z") — H(x!). By the construction of the upper bound H;", there is some M; € N
such that for all ¢ > M, all z € X;, and all tiles 7, € S;(z),

0

[HF () — H(zs,)| < 5.

By the construction of the lower bound H , there is some M € N such that for all i > M5 and all tiles
ol ER; = Si(.’ET),

_ . 5
[ (7a1) = H(22)| < 5.

Let M = max{M;, M3, N} and consider the tessellation 7Tj;. Suppose tiles 71, ..., Ty, are the refinements
of o € Ty in Ty, that is o NXy, = U;nzl Tj.
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Now consider an arbitrary such tile 7;, where j € {1,...,m} and any tile 7t € Rys. We have that:

N

= H(z") — 9« Hy, ().

5
Hy (7)) < H(xg,) + 5 < H(xl) + 5

So 7! = 7; and 7,NX 741 = (. Since this holds for all j = 1,...,m, it is indeed the case that cNXpr41 = 0,
as claimed above.

Denote this particular choice of M by M, and note that the tessellation 7Ty is finite. Consider L =
max{M,+1|c € Tn,0 & Ry} Then for all such tiles o, 0 "Xy, = (). Hence, 77, = R 1. By construction, for
all z,y in (tiles in) Rz, we have that |z —y| < ¢, so any point in X, can be taken as a suitable approximation
z* to 2, as required. O

This result is perhaps surprising in the light of recent research that suggests that, for many important
optimisation problems, determining the optimiser is in fact undecidable [21]. Note that while the algorithm
that we provide in the above proof offers an effective procedure to obtain the entropy maximiser, and
thus can be used to demonstrate decidability, we do not suggest that it is efficient enough to be used in
practice to fill in a truth table. In practice, standard convex optimisation methods, such as gradient ascent
methods [4] or Lagrange multiplier methods (see the Appendix), work perfectly well to find the entropy-
maximising values that are required for the truth-table method. Moreover, the truth-table method is itself
not the most efficient method for determining the probability that attaches to the conclusion sentence in
an OBIL inference, because the number of rows of a truth table increases exponentially in the number of
atomic propositions in the inference. In §7 we introduce an inference procedure that employs probabilistic
graphical models and that is potentially much more efficient.

As an aside, we note that while the above result requires that the premiss and conclusion sentences are
quantifier-free, the truth-table method can also be used to determine the probability P(1) of a conclusion
sentence ¢ € SL that contains quantifiers. That this is the case will follow from a later result, Theorem 4;
here it suffices to provide a couple of illustrative examples:

Example 2.

U1t4t6 — Ugtg, U2t92/5 h,o/ 3$U1t4.’l]

since, by axiom P3,

m
PT(El‘Ultz;JJ) = Sup PT(\/ U1t4ti)

m—oo .
i=1

m—o0

m
= lim PT<\/ U1t4ti)
i=1

m

— % o A o ,

—77115110013< /_\1 U1t4tl>
m

— 1 _ pt( A S ,

= lim 1-P ([\1 Urtat;)

m

=1— lim PT(/\ ﬁU1t4ti)

m—o0 !
i=1
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where the penultimate equation is obtained by equivocating beyond the truth table.
Furthermore,
Example 3.
Uitysts — Ustg, Usgto?/® R Vy3IzU yx

because

PT(¥y3aliyz) = lim PT( A 3xUitir) = lim 1™ = 1.

m—oo / m—oo
=1

The key goal of the rest of the paper is extend the above decidability result to a much richer class of
inferences. We next introduce a generalisation of a concept from [41, §5.5]:

Definition 14 (Finitely generated consequences). A set A C A of statements has finitely generated conse-
quences if there are quantifier-free sentences @1, ..., ¢r and closed intervals X7, ..., X C [0,1] such that
[A] = [¢, ..., w?k]]. O, goi(k are generating statements for A.

Definition 15 (Finitely reducible). A set A C A of statements is finitely reducible if it has finitely generated
consequences and there is an effectively computable procedure for determining the generating statements
for A. A class of inferences is finitely reducible iff

1. it is effectively determinable whether any given inference lies within the class of inferences,

2. each inference in the class has premisses with finitely generated consequences, and

3. there is an effectively computable procedure for determining the generating statements for the premisses
of each inference in the class.

The task of the following sections is to show that there is a large class of inferences of OBIL that has
finitely reducible consequences. By determining the generating statements for the premisses and using the

truth-table method, this large class of inferences is then decidable.

4. The support inference

In this section, we consider premisses cp{(l, ceey gpi(’“ with ¢1, ..., ¢k being arbitrary sentences of £ (not
assumed to be quantifier-free), and Xi,..., X} closed subintervals of the unit interval as usual. We shall
associate quantifier-free sentences 1, ..., Y, with the premiss sentences @1, ..., pk. In the next section, we

shall specify conditions under which these yield generating statements for the premisses.

Definition 16 (Support). Suppose a;,,...,a;, include all the atomic propositions that appear in sentence ¢

m

of £, and let =E, 24 {#a;, A ... A +a;, } be the set of states of these atomic propositions. If ¢ contains no
atomic propositions, we take =, A {a1,—a1}.
The support ¢ of ¢ is the disjunction of states in =, that are inductively consistent with ¢, i.e., the

disjunction of £ € Z,, such that B —(£ A ¢). Equivalently,

. d

pE\/{e €2, P_(Eng) > 0}

If ¢ is a tautology, then so is ¢. If ¢ is a contradiction, then so is .
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Example 4. If ¢ = Jz(Urty A Ustyz) then ¢ = Uity. Note that ¢ does not mention an atomic proposition
containing Us.

Example 5. If ¢ = Uyt V (VaUsx A —Upty) then ¢ = Uty because

i=1

m—00 m—00
Definition 17 (Support inference). Given an inference

Prt et BT,
we shall consider an associated support inference,

PG Y

One can think of the support inference as a quantifier-free simulation of the original inference. We show
in this section that if the support premisses gbfl, ceey gbi( * are satisfiable then they are generating statements
for the original premisses @{(1, cee @f’“, i.e., the original inference has finitely generated consequences. In
the next subsection, we shall demonstrate that this is the case when X, ..., X} are point values in [0, 1]
(Theorem 2). We subsequently generalise the key result to the situation in which X7, ..., X} are non-empty
subintervals of [0, 1] (Theorem 3).

It turns out that the construction of the support inference from the original inference is effectively
computable (Proposition 10). The premisses of the support inference are quantifier-free, so, as we shall
see in Theorem 5, the support inference is decidable by means of the truth-table method outlined in the
previous section.

In what follows, in order to clearly distinguish the support inference from the original inference we shall
adopt some notational conventions:

Original inference Support inference
Promisses N I
Feasible region EZPlp, ..., ox*] EZPES,. .., 60
n-entropy maximiser P" P™
Maximal entropy function P € maxentE P € maxent R

We now introduce a concept that is key to the results of this paper.
Definition 18 (Support-satisfiability). Premisses @f(l, e <ka’€ are said to have satisfiable support or to be
support-satisfiable if and only if E # (), i.e., if and only if there exists a probability function P € P such that
foralli=1,...,k, P($;) € X;. An inference has satisfiable support or is support-satisfiable if its premisses
have satisfiable support.

As we shall see in Proposition 13, premisses have satisfiable support as long as they do not force an
inductive tautology to have probability less than one, or equivalently, an inductive contradiction to have
probability greater than zero. Recall from Definition 11 that the inductive tautologies include not just the
deductive tautologies but all the sentences with measure 1, e.g., 3zUx. Similarly, the inductive contradictions
are the measure-zero sentences, e.g., VaUzx.

If an inference has satisfiable support then the support problem, being quantifier-free, admits a unique
maximal entropy function PT € maxent E (Proposition 4) and the class of such inferences with quantifier-
free conclusions is decidable (Theorem 1). The main task of the paper is to show that this phenomenon
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carries over to the original inference itself: if the original inference has satisfiable support then it is reducible
to the support inference, Pt = pt (Theorem 3), and moreover, the class of all inferences with satisfiable
support is decidable (Theorem 5).

This is perhaps surprising, because the feasible regions of the two inferences can be very different, even
where the original inference is support-satisfiable:

Example 6 (E and E ). Consider the single premiss @5 = (Ut; V VzVx)?®. Then ¢ = Uty, so P € E if
and only if P(Ut;) = 0.5. But P(Ut;) = 0.5 does not entail that P(p) = 0.5. So, E ¢ E. Furthermore, for
Q € P with Q(Ut;) = 0 and Q(VzVz) = 0.5, we have that Q € E. However, Q ¢ E. So, E  E.

In the remainder of this section, we explore some properties of the support propositions ¢. In particular,
in Proposition 7 we see that ¢ is logically equivalent to ¢ & Vi{wn, € Qn, : P=(wn, A ) > 0}, so any
probability function gives these two propositions the same probability. Before proceeding to Proposition 7,
we require a definition and two lemmas.

Definition 19 (Constant exchangeability). Let 0(x1,x2,...,2;) be a formula of £ that does not contain
constants. A probability function P on SL satisfies constant exchangeability if and only if for all such 6 and
all sets of pairwise distinct constants ¢1,ts,...,%, and t],¢),...,],

P(O(t1,ta, ..., 1)) = PO(t),th,....1)) .

Equivalently, constant exchangeability holds if and only if for all n € N and all n-states w,v € Q,, if w can
be obtained from v by a permutation of the first n constants then P(w) = P(v).

Lemma 1. Suppose probability function P satisfies constant exchangeability. If the following identity holds
for all quantifier-free sentences then it holds for all sentences p,1p € SL:

Ple Ap|A) = P(p|A) - P(¢[A), (4)

where \ is any contingent conjunction of closed literals that contains all the atomic propositions that occur
in both ¢ and 1.

Proof. The result follows by a straightforward adaptation of the proof of [29, Corollary 6.2] and proceeds
by induction on the quantifier complexity of ¢ A 1) when written in prenex normal form.

The result holds by assumption when ¢ A ¥ is quantifier free. For the induction step it is sufficient to
consider

3z1,. 2002, Ty, ) /\Ela:l,...,msn(ml,...,ms,f’) (5)

where all constants appearing in both # and # are included in {t1,...,t1}. To see that this is sufficient notice
that if (4) holds for sentences of this form then,

P(3%0 AVin| \) = P(350 | \) — P(330 A Vi | \)
= P(3F0| \) — P(350 A Jij-n | \)
P(3#0| ) — (P(326|\) - P31 | \))
— P(3#0|A) — (P20 \) - (1 — P(¥jin| \)))
= P(3T0|\) — P(3T6 | \) + P(326 | \) - P(Vijn | \)
= P(370|X) - P(Viin|A)

—~~
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and,
P(YZ0 AVyn|A) =1 — P(35-0V 3g—n| )
—1- P(H:c—'@ IA) — P37~ | \) + P(35-0 A 37~ 1| \)
P(VZO|X) + P(Vyn|A) =14 (1 = P(VZ0| X)) - (1 = P(Viin[A))
= P(NVZO|N) - P(Vyn|A) .
To show (4) for sentences of the form in (5), let u;, us, us, ... be distinct constants containing those in ¢

and ), ub, uj, ... distinct constants containing those in ' such that {u1,u2,us,...} and {u},ub, us,...} are
disjoint except for the constants shared between ¢ and .
By [29, Lemma 6.1],

nli_)H;OP \/ 9<Ui1,ui27---,ui,.,f> <—>33317...733T9(1;1,...,xr,f)|)\ =1
i1, SN
and
Jim P \/ n(u) ul, .l ) | e Fan, ez, xs, ) [N ] = 1

i1,.00s <N

Then for every € > 0 there is N large enough such that for all n > N

€
P \/ 9(ui1,ui2,...,uir,f) <—>31’17...,$T9($1,...,37T,E>|)\ >1_Z
11 4esip <N
and
P \/ n(ugl,ugw...,u;s,t_") (—)E|$1,...,:L’577(171,...,1‘t,t7)|)\ >1,§

by [29, Lemma 3.7],

P(Elxl,...,mﬁ(zl,...,zr,ﬂ/\Hxl,...,xsn(xl,...,xs,ﬁ)|)\) —
P \/ O(wi, , Wiy, .. Ui, , 1) A \/ N, Wy s - ooy U HA] < =
B1yeenyipr <N 01,05
But
P \/ e(uilauigv"'vuirva/\ \/ 77(“2p“227~~~au257t7)|)‘
U15entr ST 1150505 ST

equals
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P \/ e(uilvuiw"'auira{}‘)‘ - P \/ 77(“;1>U;2a~~a1‘;s»ﬁ)|)\

01508 <R 11,58 ST
by the induction hypothesis, and taking n large enough we have:

Vig \/ H(Uil’ui27"'7uir75|A P \/ 77(“;1’“;27~-~7U257t7)|/\ -

11, ir <N 11,0505 <N

P(Elxl,...,x,«g(xh...,xr,f)|)\) 'P(Elxl,...,xsn(:ﬂl,...,xs,ﬁ)\A) <§

and thus

P(Hxl,...,xTQ(xl,...,xr,ﬂ /\33:1,...,xsn(xl,...,xs,f’) |/\)

which gives the required result. O
In particular, Lemma 1 applies to the equivocator function:

Corollary 2. For all p,v € SL,

P=(o AYIA) = P=(p|A) - P=(¥]X),

where \ is any contingent conjunction of closed literals that contains all the atomic propositions that occur
in both ¢ and 1.
Consequently, for all p € SL and all w € Qn,,,

P_(plw) = P=(p A plw) = P=(p|w)* € {0,1} .

Proof. The first part follows immediately if ¢ or ¢ has measure zero; the second part is also trivial for
measure-zero . So suppose otherwise.

Consider ¢, € SL and X as in Lemma 1 and let M := max{N,, Ny, Nx}. Since X is contingent we do
not divide by zero in the following equation,

P NN = S e ]

Let us now split M-states w into four conjunctions, one mentioning the atomic propositions of A\, one men-
tioning those unique to ¢, one mentioning those unique to ¢ and one mentioning the remainder, wy, wy, w™.
For all w € ), we shall consider here we hence have w = A A wy, A wy Aw™.?

Also put

Qoan i ={V €, : YVAAF @AM}

9 Note that ¢ = X is possible. If ¢ had measure zero, so would be the measure of A and we could not conditionalise on . If
A FE ¢, then wy is an empty conjunction, a tautology.
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Quar ={V€Ey, : VAAEY AN}
Qonpar = {V € Eunwy * VAAF Q@AY AN} .

Let us now observe that [Quapar] = [Qpar||Qyanr]- Let Iy, Iy, l,+ denote the number of conjuncts in these
conjunctions and |w,| := 2%, |wy| := 2% |wt| ;= 2%+, Then,

HweQn - wEeAY AN/ QM|
P_(p ANY[A) = Hw € Qur : wEA}/IQum|

_ 1wt 1Q0npmal /192m]
Wt |wl - lwy| /12|

WP 19Qpnal - Jwy] - Q- lwel /190
wF 2w | - w2/

_ ot Q] - [wul/[90] [t - [Quar] - [wel /1]

] wel - wsl/I9m ] W] wg| - wpl /||
:|{w€QM st wE e AN/ Q] . Hw € Qar : wE Y AN/ |Qum|
|{UJ€QM : UJ':)\}|/‘QM| |{WEQM : w|=)\}|/|QM|

=P=(p|\)P=(¢[}) .

Since ¢, ¥ were arbitrary, this holds for all quantifier-free sentences ¢, and all such A. Consequently,
the assumptions of Lemma 1 hold for P-.
Letting ) = ¢ and recalling that A may be a state completes the proof. O

Example 7. Note that ¢ = JaUx A Vt; and ¢ = JzUx A -Vit; share the atomic proposition V¢;. In
particular, they do not share an atomic proposition mentioning U, since the literal Uz mentions a variable.
So, Ey = {Vt1}. Observe furthermore that, P—(¢ A ) =0 < 0.25 = P_(p) - P—(¢). But for both A = Vt;
and A = =Vt; we have P_(¢p A 9|A) = 0= P—_(p|\) - P(¢|\). Note that A\ may contain further literals such
as Vity, Uty and Uts.

Some properties of probability 1 sentences will be useful:
Lemma 2. For any ¢, x € SL:
If P(y) =1, then P(a Ap) = P(«) for all « € SL.
If P(¢p <> x) =1, then P(¢) = P(x).

(
(
If P( < x) =1 and P(¥) > 0, then P(-|¢)) = P(-|x)-
If P(¢p <» x) =1, then P(a ANY) = P(a A x) for alla € SL.

- W

Proof. (1) We have that:
P(a) = Pla At) + Plah ) < PlaAt) + P(~) = Plan) |

Since P(a) > P(a A ) must also hold, we find that P(a A1) = P(a).
(2) Since P(p A —x) = 0= P(—¢ A x),

P(p) = P(y Ax) + P A=x) + P(-¢ A x) = P(x) + P(¥ A=x) = P(x) -
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(3) We first observe that

Plany)=PlanyAx)+PlanyA=x)+ Plan—Ax)
=PlaAx)+PlanypA-x)=Plany) .

Since P(¢) = P(x) by (2), P(al$) = P(a|x).
(4) Let us first assume that P(¢)) = 0. Then

1= Py ¢ X) = P AX) + P(=th A—x) = P(~p A =x) L P(=) .

So, P(x) = 0. This establishes that P(¢» Aa) =0 = P(x A«) for all « € SL.
Finally, assume that P(¢) > 0. P(a|y) = P(alx) for all @ € SL by (3). Hence, for all o € SL

P(p Na) = P(a|p)P(y) = Plalx)P(¢) = Plalx)P(x) = P(x N a)
where the penultimate equality follows from P(1i <+ x) = 1 entailing P(¢) = P(x) (2). O

Proposition 7. For all ¢ € SL and n > N, the following two sentences are logically equivalent:

gi=\{EE€B, : PL(6Ap) >0} 9" = \[{we Qy: P_(wAp) >0} . (6)

Since ¢ and ™ are logically equivalent, each probability function must give them the same probability.
We can thus switch freely between them in the sense of the above Lemma. ¢ is the most economical
representative of this class of equivalent propositions insofar as it involves fewest atomic propositions. This
provides computational advantages that we shall exploit in §7.

Proof. If ¢ has zero measure, both disjunctions are empty and the result follows trivially.

Let us now assume that ¢ has positive measure and that n > N,.

If P_(p NE) =0, then P_(w A &) < P_(p ANE) = 0 for all n-states w with w F £. So, if £ € =, then no
n-state w € §,, entailing & is such that P—(p Aw) > 0.

Now let P_(p A€) > 0 and w™ be the conjunction of the conjuncts w F ¢ that are not entailed by &, so
w=wt A& Then,

P (£)>0

0<P_(pAEAwh) P_(p Aw*[€) - P=(§)
Cor. 2

=" P_(p|€) - P=(wT€) - P=(¢)

where m is the number of atomic propositions that feature in &.
Note that P_(¢ A &) - % does not depend on w: it is a constant. And since

0<P_(pnE)= > P:(soAwa):P:(soA&)-m B

w
EnwTEQ,

this constant cannot be zero. This shows that for all w™, P_(p A& Aw™) > 0. This in turn implies that the
n-state £ Aw™ entails \/{w € Q,, : P—(w A ¢) > 0}, as claimed. O
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Lemma 3. For all p,v € SL,

Proof. (i) Let M = max{N,, Ny}. By [16, Lemma 27], for all n > M and w € ,,, we have P_(p A ¢|w) =
P_(p|w) - P—(¥|w). Hence P_(w A ¢ A1) > 0 if and only if P_(¢ Aw) > 0 and P_(¢) A w) > 0. Then
{weQp :Po(wAheAY) >0} ={weQpy: Po(wAp)>0N{we Qu : P=(wA) > 0}. Since for distinct
wi,w; € Qar, F =(w; Awj), we have:
cp/v\z/}:\/{wGQM:P:(w/\go/\w) > 0}
:\/{wEQM:P:(w/\go) >0}/\\/{w€QM:P:(w/\w) > 0}
=@NY .

(ii) Notice that

{weQpm:P_(wA (V1Y) >0} ={weQuy:P=(wWAp)V(wAY)) >0}

={weQu:P_(wAhp)>0}U{we Qp: P_(wAY) >0}

and so,

PV =\{weQu: Po(wA(pV§)) >0}
=\{weQu: PowAp) >0} v \/{we Qy: P_(wAv) >0}
=gV .
(iii) See [16, Proposition 40).

(iv) Observe that

Po(p)= Y. P-((nyp)
P_(Eng)>0

< > P

te=,
P—(Enp)>0

= P-(¢)

and then similarly find that

P_(~p) < P_(-p) 2 P_(~¢)

Since (p, ) and (P, —@) are partitions it must be the case that P_(¢) = P—_(¢). O
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5. The reduction theorem

The main purpose of this section is to show that, where the premisses have satisfiable support,
gpf(lw..,apf’“ K Y if and only if gbfl, . ,gbi(’“ S 1LY (Theorem 4). The latter problem is quantifier-free
and decidable.

In the remainder of the paper, we shall move freely between the representation of Pt oof Equation (3)
and the following representation of Pt, which follows directly from Proposition 4:

Observation 1. If E # () for quantifier-free premisses, then maxent E = {IST} with

PIE Y PMw) Po(fw)

WEQ N
where M = max{N,, : i=1,...,k}, and PM g any M-entropy maximiser in E.

The use of this latter representation will allow us to assess the entropy of PT more directly and will allow
us to apply results of [16]. Note that pt equivocates beyond M, in the sense of the following definition:

Definition 20 (Equivocation beyond N ). Given some N € N, we say that a probability function P € P
equivocates beyond N if and only if for all n > N and all w,, € Q,, P(w,) = P(wy) - ||?2N||
restriction of w, to Ly, that is the unique N-state such that w, F wy.

, where wy is the

We now show that equivocation beyond the support problem fixes conditional probabilities of quantified
sentences.

Lemma 4. If P equivocates beyond N, then for all wy € Qn such that P(wy) > 0 and for all sentences
p € SL, P(plwn) = P-(¢lwn).

Proof. First note that P(v|wy) = P=(v|wy) for all N-states v € Qn with P(v) > 0. Since these probability
functions also both equivocate beyond N, they agree on all quantifier-free sentences. By Remark 2, they
are thus equal. O

5.1. Point-valued premisses

In this subsection we consider inferences of the form
Xl Xk e} Y
4101 3y (pk F’ ,(/} 1)

where X; = ¢; € [0,1] for ¢ = 1...k. For the rest of this subsection let E = {o{',...,¢*} and M =
max{N,, :i=1,...,k}.

Example 8 (Support-satisfiability of a single premiss). If P—_(p) > 0, then the premiss ¢! is support-
satisfiable, since P_(p) = P—(¢) (Lemma 3 (iv)) and P—(¢|@) = 1.

If 0 < P_(¢) < 1, then the premiss ¢ for 0 < ¢ < 1 is support-satisfiable, since Q(p) := ¢ - P—(@|@) +
(I1—c¢)-P_(¢|7¢)=c+0=c.

Consequently, given categorical premisses ¢i,..., ¢, if P_(p) > 0 for ¢ := /\f:1 @i, then the inference
is support-satisfiable.

Proposition 8. If £ # 0, then Pt eE.
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In particular, if the premisses are support satisfiable then they are also satisfiable.

Proof. For all premiss sentences (;,

Pi() = 3 PM(w)- P_(plw)

wE M

= ). PMw) Po(pilw)
WEQ N
P_(wAp;)>0

= Y PYw)-1
wEN N
P—(wAp;)>0

=) Piw)

wEQM
wE@;

=PM(,)

=¢; ,
where the third equality follows from [16, Proposition 28] (P-(¢;|w) = P=(w|w)). O

Proposition 9 (Entropy of FV’T) For alln > M,

H,(Pt) = Hy (PF) + log(|92,]) — log(|2]) -

Proof Hy(P) == 37 3 PY(w) Po(Clw) - log(PY (w) - Po(¢J))
weQN CEQY,
CFw
_ oM w) - |QM| 0 VMw (0] |QM‘
CFw
_ va. o V]y[w o |QM‘
—= 3 P Jose o s (331
=log(|2,]) — log(|Q]) — Z PM(w) - log(PM (w))

WEQ M

=H (P1) + log(|Q]) — log(|2u]) - O

Lemma 5. Let P € E \ E. Then there are constants g1,92 > 0, a strictly positive sequence v, diverging to

infinity, and some N such that H,(P) < g1 + (1 — %) log(|2,]) for alln > N.

Proof. Since P ¢ [ there has to be at least one premiss ¢; such that P(3;) ¢ X; and P(p;) € X;.

. . 1-X1-X,
Considering _‘SOE : 2

of the interval X;, X . So,

if necessary, there then exists some i such that P(¢;) is less than the minimum

X, < P(ypi) = E PlwAg;) = g PlwAy;)+ E P(w A ;)
wEQ N weQnr wE M
P—(piAw)>0 P—(piAw)=0
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Table 1

Example of the S, ; and the N;. The shaded cells indicate the element in the sequence
(Snt),en after which 124l < L Since Np = 2 we have S1 = Q1 and S = Q5. The bold
font indicates that this cell is part of S,, for these cells S, = S, ;. The sequence (S, 3)
is skipped and does not appear in S,,.

neN

l S N; Vn > N; Q4 Qo Qg Qy Qs Qg Q7

2 Sp,2 N>=2 % <1 Si2 S22 Ssz2 Siz2  Ss2 Se2  Sre
3 Snz N3=3 % <% Si3 Sas Sss  Saz Sss  Ses  Srs
4 Spa Nsi=3 ‘%’ﬁ‘ <% Sia S2a Ssa Sisa Ssa4 Sea Sra
5 Sps Ns=6 ‘%ﬂ"’]‘ <% Si5 S25  Sss Sa,5 Ss.,5 Se,5 S7.5
6 Sne Ne=100 ‘i”j‘ <% Sie S26 Sz Sie Ss6  Ses Sre
7 Sur Nr=101 Lilol s S0 S5 Sur S5 Ser Sin

€
>
S

= P(i) + Z P(
wE N
P—(piAw)=0

Since P(@;) < X, , there is thus some w € Qj; such that P(wAp;) > 0 and P—(wA ;) = 0. Let x = wA ;.
In particular, 0 < P(y).

From [16, Lemma 32] it follows that for any € € (0,1) there is some N, € N such that for all n > N, there
exists some set S/ of n-states with I‘Sslill < e such that for all n > N, P concentrates at least probability
(1—€)-P(x)on S,,.

So, for all natural numbers [ > 2 there is IV; € N such that for all n > IV}, there exists some set .S,,; of
n-states with % < 7 and P concentrates at least probability (1 — 7) - P(x) on Sy;. (We shall refer to
this as Condition *l.) We assume without loss of generality that N; < Nj;1 for all I. Clearly, no such set

Sp, can be empty. Let us now define a sequence S,, of n-states

S L Q»m 1f1§n§N2
" Sns N, <n< Ny foralll>2 .

Our assumption of N; < Njy; uniquely determines the value of [ given fixed n.

Example 9 (Illustrating the definition of Sy).

S5 = Ss.2 No=2<3=n<3=N;,
Si =S4 Ni=3<4d=n<6=N;
S5 = Ss.a Ni=3<5=n<6=Njs
Se = So4 Ni=3<6=n<6=Njs
Sy = Sr5 Ns=6<n=7<100=Ng
Sq =545 Ny =6 < g <100 = Ng for all 8 < g <100
S101 = S1o1,6 Ng =100 <101 =n <101 = N, .
[S7,2| 1

Intuitively, S, starts with €, and then moves to S, 2 as soon as ol < 3 and P concentrates at
least probability 0.5 - P(x) on Sp 2 (see Table 1). (Call this Condition *2.) We move to S, ;41 as soon as
‘Sl"Q“"ll < 737 and P concentrates at least probability (1 — 725) - P(x) on Sy 1. (Condition *I + 1.) Note
that we might skip some [. In the above example, cells with a bold font can never appear on the left of an

orange cell. So, the ratio of |S,| and |Q,| is never zero but falls below every strictly positive upper bound;

(llg"l‘) N converges to zero. We define furthermore the level [ of the sequence S,,, for n > Ny + 1, by
"/ ne
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A, = l: N, .
s N<nd

So, S, = Sp.A,, - Intuitively, A,, tells us how far in the sequences of the S;,; we need to go in order to define
S,,. The ratio of S,, and ,, is thus less than Ai and P concentrates at least probability (1 — Ai) - P(x) on

Sp (Condition *! for ever larger [.) '
Notice that “gnl‘ — 0 as n — oo. Thus, dividing as much of the probability mass among n-states in
2, \ S, and as little as possible among n-states in S,, increases n-entropy. By assumption, S, should get

at least (1 — A%l) - P(x) of probability mass. Thus the greatest entropy would be achieved by dividing the

minimum permissible probability mass of (1 — 4-) - P(x) equally among n-states in S,, and the remaining
probability mass equally among €, \ Sy:

~ P(=x) + 3= P(x) o [P0+ P
H,(P) < wn%}\sn 015 log ( 15, )
(1- 1) P (1-7)-PKX)
- 3 e e ()
P(=x) + 2= P(x) P(=x) + 2= P(x)
D S A 1°g< [ )

(1-2)- PO ((1=34) P
2 s 1°g< 5] )

wn €Sy

=~ (P(~x) + 3~ P(x)) - log

Let go := —(P(=x) + 3> P(x)) - log(P(=x) + 7 P(x)) — (1 = 5) - P(x) - log((1 = 5) - P(x))- Note that go
is positive but less than the constant g; := —log(P(=x)) + 1 > 0 (since —xlog(z) < 1 for all € [0,1]),""
which only depends on P(x) (and thus also on P(—))) but not on i nor on n. For the others terms, which
depend on n, we find

(P() + 3= P(0) - og((2a]) + (1= 3-) - P - og(15,)
=log(|2]) - [P(~x) + Ainp(x) . Ain) Pl - %]
—log(12)) - [P0 + POO( + (1= 1)) -
Letting u, = {521 we find that for all large enough n € N,
(P() + 3-P(0) - Jog((2a]) + (1= 5-) - PO - og(15.)
—log(|9%) - [P(=) + POO (5 + (1 - i)%”

10 1f a different base of the logarithm is chosen, the upper bound of —z log(z) for all € [0, 1] may change. In the following only
the existence of a fixed upper bound matters. The choice of the base of the logarithm thus remains inconsequential.



30 J. Landes et al. / Annals of Pure and Applied Logic 177 (2026) 103714

—log(I,) - [P0 + PO + (1= o)<l
g0} [P0 + PO + (1 10 (14 el
—log(12]) - [P0 + PO+ (1 - 1) 2y
—og(2,) - 14 PO = )i
~log(9,]) - (1~ PO - )iy
Overall, with v, := log(u>1) and gs := P(x)/2,
H(P) <1+ (1= i ) oul(9)

Since u,, is a null sequence, v,, diverges to infinity; from some point onwards all v,, exceed any fixed lower
bound. O

Theorem 2 (Support—vsatz'sﬁability theorenvz.' point-valued case). If the premisses o5, ..., ¢F have satisfiable
support then P <y Pt for all P € E \ {P1}. Hence,

maxent E = {ﬁT}

Proof. By Proposition 8 we have Pt € E. Next we show that for all other probability functions in P €
E\{P'}, P <y P'.

Consider a probability function P € E '\ {ﬁT}, and let M = max{N,,,...,N,,} as before. Then P must
satisfy one of the three mutually exclusive and exhaustive cases below:

1. Py = Py,
2. Py # Pty and for all 1 < i <k, P(g;) = PT(g;) or
3. there exists a premiss sentence ; such that P(;) # PT(;).

The first case is that P s and Pt agree on {2y,. The second case is that the restrictions of both P, and
Pt to Qs are in E but they differ on Q. In the third case, P is not a solution to the support problem,
i.e., the restriction of P to Q) is not in E. We go on to show that in all cases Pt has greater entropy than
P, P <y Pt.

We first provide some intuition for thinking that P <p Pt in these three cases.

In the first case, Py and Pt have the same M -entropy (they agree on /). However, Pt is maximally
equivocal beyond M and hence Pt has strictly greater j-entropy than P for all j greater than some threshold
L>M.

In the second case, Pt has greater M-entropy than Py, since Ptis M -entropy maximiser for the finite
constraints. Since PT is also maximally equivocal beyond M, the M + j-entropy of Pt must be strictly
greater than the M + j-entropy of P for all j > 1.

In the third case, P might have greater M-entropy than Pt However, P must concentrate some probability
on sets of M + j-states that are very small compared to |Qaz4;| ([16, Lemma 32]). This entails that H,(P)
grows at most like log(|€2,|) — vy, with v, diverging to infinity. Since Hn(ﬁT) grows like 1 -log(|©,]) — ¢ for
some constant ¢, the n-entropy of Ptis eventually greater than the n-entropy of P.
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Case 1: Py = pt M- Since P # FV’T, there has to exist some L € N with L > M such that P, #
pt |L+; forall j > 0. Since ﬁTvequivocates beyond M, it straightforwardly follows that Hr;(P) < Hry; (15T)
for all j > 0. Hence, P <y PT.

Case 2: Py # Pty and for all 1 <i <k, P(g;) = Pt(4;). Since PT has greatest M-entropy among all
those functions that agree with P on all ¢;, HM(]5T) > Hjs(P). It now suffices to observe that for all j > 1,
(Proposition 9)

Hiyj(P) < Ha(P) + log(|Qar+5]) — log(1Q2])
< Hyr(P1) +1og(|-]) — log(| )
= Hyr;(PY) .
Hence, P <y P,
Case 3: There exists some 1 <4 < k such that P(3;) # PT(3;).

This follows directly from Lemma 5 since n-entropy of P grows less quickly than the n-entropy of PT:
for all P € E \ E we find for all large enough n € N

> Har(P1) +1os(12,) ~ Tou(tr]) — 1 — (1= 2200 ) w9,
log(|€2n)
= Hu(PY) —log(I]) — g1 + g2vn -
Since v,, diverges to infinity, H, (P") > H, (P) for all large enough n € N. O

5.2. Interval-valued premisses

We now drop the assumption that only single probabilities can attach to premisses sentences and consider
the general case where intervals ) # X; C [0,1] are attached to the premisses. We treat point-valued
premisses, i.e., premisses in which X; = ¢;, by setting X; = [¢;, ¢;]. Without loss of generality we may
assume that no premiss is of the form ¢°, since we can equivalently replace it by (—¢p)?!.

Definition 21 (Pci ). Let the premisses 7', ..., ;" be support-satisfiable. Let PClL = 1561 denote the unique
maximal entropy function (uniqueness follows from Theorem 2).

Definition 22 (P;% ). Given support-satisfiable premisses go{( RPN go,i(k, let P)T? be a probability function in
{Pci : @€ X such that i, ..., @k are support-satisfiable}
with maximal M-entropy, where M = max{N,, :i=1,...,k}.
Note that PCI equivocates beyond M.

Theorem 3 (Support-satisfiability theorem). If the premisses 3%, ..., goé(’“ are support-satisfiable then P;% is

the unique PEJr with maximal M -entropy and P <y P;L? for all other probability functions in P € E\ {P;%}
Hence,

_ypt
maxent E = {PL}.
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Proof. Since E # § there is some function in E such that P(p;) € X; which equivocates beyond M. The
n-entropy for n > M of such a function is (Proposition 9):

Hy(P) = Hp(P) +log (/) — log(|€2]) -

From Theorem 2 we obtain that for all other @ € E with Q(¢;) = P(¢;) for all i, Q@ <g P.

From Lemma 5 we obtain that for Q € E \IE the n-entropy is eventually strictly less than the n-entropy
of such a P.

Denote the functions in E which equivocate beyond M by ET,

Et :={P: P(;) € X; for all 1 <i < k and P equivocates beyond M} # 0 .

Then every function in @ € E \ E* has less entropy than some function P € ET.
Next let us consider R,S € ET such that Hp(R) = Hp(S). Then define Q :=
. R(@;) + S(p;

Qi) = 2P 5

n-entropies of the probability functions P in ET are, for large n, determined by their M-entropies, the

R —; 5 and note that

€ X; for all i since the X; are convex. So, Q@ € ET, R <y Q and S <y Q. Since

maximal entropy function in E¥ (and hence in E) is unique, if it exists.

Note that every function in E7 is represented by the |Q5/| probabilities it assigns to the M-states. The
set of these |Q)/|-tuples representing the probability functions in E* is compact since (i) it is bounded
(probabilities lie in the unit interval) and (ii) it is closed (the intervals X; are closed, hence the condition
defining E™ is closed). Thus every convergent sequence of probability functions (P,),ecn with P, € ET
has a limit in ET. So, the supremum of Hy;(P) with P € ET exists, is unique and obtains for a unique
probability function P € E* C E. This function has maximal entropy. O

5.8. Reduction to the finite problem

We now arrive at the main result of this section.

Theorem 4 (Reduction theorem). If the premisses cpf(l, ceey wf’“ have satisfiable support then
P ent Y if and only if g1, G0t ROY

Proof. Theorem 2 and Theorem 3 have already established that the original problem and the support
problem have the same solution, PT. It only remains to show that Pf () = Pt (15), dropping the cumbersome
index X.

We first make a small observation. For all ¢ € S£ and all wy; € Qjy,

PY (W Awpr) > 0 <= PT(|wp) > 0 & Pl(wy) >0
> P_(¢|war) >0 & PT(war) >0

= P_(¢Y Awp) >0
— P_(¢) Awpr) >0 .

Using the fact that P! equivocates beyond M (Theorem 3) we thus note,

Pip)= Y Pi@Wrwm)= >  PWAwy)
wm EQM WM EQN
P (¢Awar)>0
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= > P(¥lwm) - Plwn)
wp EQM
P (¢Awar)>0

< Y Po(Ylwm) - Pl(wn)
L;J]v\/IGQJM
P'r (’(Z)/\w[u)>0

L 4 M
et S Pi(lwar) - Plwan)
Wy €Qp
PT(Awar)>0

= Z P () Awar)
LUMEQJVI
P (4 Awar)>0

= PI(J) .

Replacing 1 by = and exploiting that —i) = —) ((iii) of Lemma 3) we obtain Pf(—¢) < PT(—WZJ). This
entails that PT(y) = PT(4). O

6. Decidability

In this section, we establish that the class of support-satisfiable inferences is decidable.
First, we present an important lemma.

Lemma 6 (Computability of the measure of p). For any sentence ¢ € SL, P_(p) is computable and P—(yp) €
{Qﬁ,i,...,l}, where N = N,.
N7 Q] ?

Proof. First, note that for any sentence ¢ € SL,

Pp)= 3 Plprw)= 3 P(pw)P(w) .

wENN wENN

By Corollary 2, we observe that for all w € Qp,

P_(plw) = P=(p A plw) = P=(p|w)* € {0,1} .

So, P—(w A ¢) € {0, \Q—lzvl} and consequently P_(¢) € {0, ﬁ, ﬁ, ..., 1}. To conclude the proof, it hence
suffices show that we can compute whether P_(w A ) is zero or |Q—1N‘ for all ¢ € SL and every w € Q.
We shall show this by induction on the number of quantifiers in the prenex normal form of .
Base Case. The claim follows immediately for quantifier-free sentences ¢, which are logically equivalent

to a disjunction of N-states:

P_(wAp)=P_(wA \/ W' =
w'eQn
w'l=p

P:(w/\w):P:(w)ZQLN‘ D wEe
0 @ wle

Induction step. Now suppose that ¢ has ¢ > 1 quantifiers and assume that the induction hypothesis,
i.e., the statement of the lemma for ¢, holds for any sentence in prenex normal form with fewer than ¢
quantifiers.

Suppose first that ¢ is in prenex normal form and ¢ = Vzé(z). Consider for w € Qp

X :=wAVzo(x) .
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By P3,
P_(x) = P_(w AY26(z)) = lim P_(w A /\ 0(t:))
Jj+1 J -
<P_(whA N\ 0(t:) < P_(wA N 0(t)) ,
i=1 i=1
for all j > 0.

w A B(t;) is not in prenex normal form, but by moving the quantifiers of 6(¢;) to the front of the sentence
wAB(t;), we obtain a (deductively) logically equivalent sentence ,,(¢;) that is in prenex normal form and has
the same number of quantifiers. Since the two sentences are deductively logically equivalent, P—(v,,(t;)) =
P_(wAO(t;)).

By the induction hypothesis, for all w € Qn,and allt=1,..., N 4+ 1,

1 2
Nl QN

P_ (1o (i) € {0

is computable. In fact, P—(w) = 1/|Qx| and the probability of a conjunction cannot exceed the probability
of either conjunct, so

1 2 1

P:(’(/Jw(tz)) = P:(W/\H(tl)) € {07 ‘QN+1|’ |QN+1‘7”.7 |QN|}

and this value is computable.

If Po(wA6(t;) < 1/|Qn], for any ¢ = 1,...,N + 1 then P_(w A /\Z]\Q{l 0(t;)) < 1/|9Qn], and since
P_(x) < P_(wA /\Z]\Q{l 0(t;)) and P-(x) € {0, m}, we must have P_(x) = 0.

On the other hand, if P_(wA0(t;)) = 1/|Qn| foralli=1,..., N +1, then P:((,u/\/\f\gl'1 0(t;)) = 1/|Qn].
We show that this implies P_(x) = 1. Since P_ satisfies the principle of Constant Exchangeability (CX)
(Definition 19), we have that for all j > 1,

N N
P_(w A O(txag) A\ 0(t:) = Po(w A B(tw11) A N 0(t:)) =

i=1 i=1

QN
By the definition of conditional probability,

P0ta) n \ 0t ) = EEA I A OO _ [l

i=1

Since P—(-|w) is a probability function, by Lemma 2(1) we can add 6(tn+;) A /\fil 0(t;), for any j, as a
conjunct to any sentence and the conditional measure remains unchanged. So, for all s > 2,

N
1=P_(0(ty1) A J\ O(t:)|w)
i=1
N
= P_(0(tn+1) AN O(tn42) A /\ 0(t:)|w)
s N

= P_(/\ 0(twe) A N\ Ot )
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n

= tim P_(/\ 6(t))

i P AN 00)
n— 00 P:(w)

= Q- lim P_(wA [\le(ti))

= [Qn]- P=(x) -

Thus, P_(x) = m
The case of an existential quantifier, ¢ = 3zf(x), is proved by noting that

P_(wA320(z)) = P_(w) — P—(w AVz—0(x)) ,

which is (computably) verifiably equal to zero or ﬁ |
In particular, we can compute ¢ because we can compute the measure of ¢ A w for all w € Q.

This result gives the following immediate corollary.
Proposition 10. Determining the support problem from the original problem is effectively computable.

Our key result is that the support-satisfiable inferences are finitely reducible (Definition 15), and hence
decidable:

Theorem 5 (Support-satisfiable Decidability). The class of support-satisfiable inferences is decidable in OBIL.

Proof. We shall show that the class of support-satisfiable inferences is finitely reducible (Definition 15). Since
testing for support-satisfiability is decidable (Proposition 6), it follows that the class of support-satisfiable
inferences is decidable.

Given an inference @f o gpi(’“ K oY, one can effectively construct the support inference gbf o, gbi( kRS
J}Y by Proposition 10. By Proposition 6, we can effectively test for satisfiability of the premisses of the sup-
port inference, thereby determining whether the original inference is within the class of support-satisfiable
inferences.

If it is support-satisfiable, then by the Reduction Theorem (Theorem 4),
o1 ok BV if and only if G, ... opt SRS
The support inference is decidable by Theorem 1. O
We have the following corollaries:

Corollary 3 (Decidability of premiss-free inferences). The class of inferences from no premisses is decidable.
In particular, it is decidable whether any given sentence is an inductive tautology.

This stands in marked contrast to the situation with deductive logic: as we observed in §1, there is no
effective procedure for deciding whether any given sentence is a deductive tautology.

Corollary 4 (Decidability of inferences from an inductively consistent premiss). If ¢ is inductively consistent,
i.e., P—_(p) > 0, then the premiss o' is support-satisfiable (Ezample 8). Hence, it is decidable whether
© R YY for any sentence 1) € SL and any interval Y.
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If 0 < P_(p) < 1, then the premiss ¢° for 0 < ¢ < 1 is support-satisfiable (Example 8). Hence, it is
decidable whether o¢ F )Y for all sentences 1 € SL and all intervals Y.

Consequently, given categorical premisses ¢1,..., ¢}, if P—(¢) > 0 for ¢ = /\f:1 ©;, any inference is
decidable. L.e., the class of inferences from inductively consistent categorical premisses is decidable. In fact
in this case, PT(¢)) = P=(¢|¢1 A ... A @) [16, Theorem 34].

7. Objective Bayesian networks

The truth-table method introduced in §3 serves to highlight the decidability of the class of finitely
reducible inferences. The truth-table method is not particularly computationally tractable, however: the
number of rows in a truth table increases exponentially with the number of atomic propositions that feature
in an inference. Furthermore, the fact that computing the maximum entropy function on a finite domain has
a high worst-case complexity [28, Chapter 10] has raised worries about the practical feasibility of entropy
maximisation [30, p. 463].'' While the focus of this paper is on decidability rather than computational
complexity, it is worth observing that there is a method for inference that is tractable in many cases. This is
the graphical modelling approach of objective Bayesian networks. Hitherto, this approach has been applied
to the case of finite propositional inductive logic [18,37,38]. Finite reducibility allows its use also for predicate
inductive logic. In this section, we briefly sketch the approach and provide an example.

Suppose, as above, that the task is to verify an entailment relationship of the form

X Xi Lo .Y
@117"'7<pkk|:¥¢ I (7)
and that the premisses go{(l ey <ka’€ are support-satisfiable. Let a;,, ..., a;,, be the atomic propositions that
occur in By, . . ., ¢, and let = be the set of states of a;, , . .., a;, . As before, PT is the maximal entropy function
in IP’[gof(l, ey 302(’“], which can be found by maximising entropy subject to gbfl, ceey gka" and equivocating

beyond =. The atomic propositions a;,,...,a; will be the nodes in our Bayesian network:

m

Definition 23 (Objective Bayesian network). An objective Bayesian network or OBN for gof%...,cp?’“ con-

sists of (i) a directed acyclic graph H whose nodes are the atomic propositions a;,,...,a; , and (ii) the
probability distribution, induced by P, of each node conditional on its parents in 7, such that for each
£€E,

m
Pi(&) = [] P, | par).
j=1

13

where a; is the state of a;. (i.e., a;, or —a;.) that is consistent with £, and par? is the state of its parents
i J J J 15

that is consistent with &.

Thus an objective Bayesian network for @fl, cee @fk is a means of representing the maximal entropy

function in P, ..., ¢p*]. The OBN directly represents PT on = and this is extended to the whole of £
by equivocating elsewhere, as per Proposition 4.
An OBN can be constructed by means of the following procedure:

1. Construct an undirected graph G that represents independencies of P': for i = 1,..., k, connect atomic
propositions that occur in the same support sentence ¢; by undirected edges. G can be thought of

' Tractable entropy optimisation is an active sub-field of optimisation theory [2,8,11,12,23,27].
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as a Markov network structure for PT: for any sets X,Y,Z of atomic propositions, if Z separates X
from Y in G then P! is guaranteed to render X and Y probabilistically independent conditional on Z,
X I piY | Z [36, §5.6]; [19, Appendix A].

2. Construct a minimal triangulation GT of G and transform this into a directed acyclic graph # that
represents the independencies captured by G7. This transformation can be performed as follows—see
[36, §5.7] and [25] for further discussion. (i) Order the vertices of GT with vertex set V according to
maximum cardinality search: at each step select a vertex which is adjacent to the largest number of
previously numbered vertices. (ii) Let D1, ..., D; be the cliques of GT', ordered according to the highest
labelled vertex. (iii) Let E; := D; N (Uf;ll D;) and F; := D; \ E;. (iv) Add an arrow from each vertex
in E; to each vertex in F;. (v) Add further arrows to ensure there is an arrow between each pair of
vertices in D; such that the resulting directed graph H is acyclic.

3. Solve an optimisation problem to determine the associated conditional probability parameters P(afj |

pari) that maximise entropy:

(9) == 3= ([Tt oy ) st )

subject to the constraints imposed by the premisses [36, §5.7].

k requires as many parameters as there are lines in the truth

In the worst case, an OBN of gpfl, cee goi(
table for cpfl, ceey gai("‘. This worst case occurs when there is some support premiss that mentions every
atomic sentence that occurs in the inference.

More typically, however, each support sentence will mention only a small subset of the atomic propositions
Giys---,0;,. In such a scenario, the OBN will require far fewer parameters than there are lines of the
corresponding truth table. It is in this sense that OBNs can be more computationally tractable than the
truth table method.

Let us consider an example, based around the following premisses:
3 0.9 [0.95,1]
xUtlx, (Vtg vV VLUR’I’) s th — Utltg, (th \ (33’]U$t3 — Vtg))

The language of this inference is the language £ of Example 1. We can enumerate the atomic propositions
as follows:

aj : th, a : Utltl, as : Vtg, Qy Utltz,

as Utgtl, Qg Utgtg, ar Vtg, as Utltg, e

Then the support of each premiss sentence is as follows:

i P Pi

1 FxUtrx ay V nay
2 Vit VVzRx as

3 Vit, — Utyts a1 — as
4 VitV (FaxUxts — Via) ai Vag

Note in particular for ¢y, i.e., JxUtix, we have that ¢ is a3 V —a; because ¢; mentions no atomic
propositions and P—(ay A zUt1z) = P—(—a; A FzUtiz) = 1/2 > 0. Strictly speaking, ¢35 is defined as
(a1 AN ag) V (ma1 Aag) V (ma; A —ag) but we abbreviate this sentence by the logically equivalent a; — as.
Similarly for ¢q.
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To construct the corresponding OBN we first construct the undirected graph G. We take a1, a3 and ag as
nodes because they are the atomic propositions that feature in the supports. We include an edge between
a1 and ag because they both feature in the third support premiss, and an edge between a; and a3 because
they both feature in the fourth support premiss:

Separation in G provably corresponds to a conditional probabilistic independence of the maximal entropy

function P, so we can conclude that PT renders as and ag probabilistically independent conditional on a;.
We next transform G into a directed acyclic graph H that preserves as many of the conditional indepen-
dencies of G as possible. For example, we can set H to be:

D-separation in H also implies that Pt renders a3 and ag probabilistically independent conditional on a;.'

2

We parameterise the OBN by finding the values of the following parameters that maximise entropy:
P(a3), P(a1las), P(ai|-as), P(as|a1), P(as|—a1).

A simple numerical optimisation subject to the constraints P(as) = 0.9, P(a; — as) =1 and P(a1 V ag) €
[0.95,1] yields:

P(ag) = 0.9,P(a1|a3) = 1/3,P(a1\—\a3) = 1/2,P(a8|a1) = 1,P(a8|—\a1) = 1/2.
The OBN can then be used to perform inference. For example,

Ell'Utl.’L‘, (Vtz V VCL'R(E)OQ s th — Utltg, (th V (HxetB — Vt2))[0'95a1}

B (=(Vt; VVis) AJzUzax A Utlt3)0.1625 .

To see this, note that the support of the conclusion sentence is —a; A —a; A ag and that a; is not mentioned
by any of the premisses so P! renders a; probabilistically independent of a; and ag and Pf(a;) = 1/2.
Hence,

PT(—\al N\ —ar /\ag) = 1/2 . P(a8|ﬂa1) (P(—\a1|a3) . P(a3) + P(ﬂa1|ﬂa3) 'P(_\a3)>
= 1/2 . 1/2 (2/3 . 9/10+ 1/2 . 1/10) =0.1625 .

The main advantage of this OBN over the truth table method is a reduction in the number of parameters
required to specify the maximal entropy function. The truth table for the premisses can be written down
as follows:

12 Subset Z D-separates subsets X from Y of nodes if each path between a node in X and a node in Y contains either (i) some
node a; in Z at which the arrows on the path meet head-to-tail (— a; —) or tail-to-tail («+— a; —), or (ii) some node a;
at which the arrows on the path meet head-to-head (— a; <—) and neither a; nor any of its descendants are in Z. The key
result is that if Z D-separates X from Y in H then the maximal entropy function renders X and Y probabilistically independent
conditional on Z [36, Theorem 5.3].
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ID]L as ay as ay V —ay as a; — as a1 V as
0.025 F F F T F T F
0.025 F F T T F T F

0 F T F T F F T

0.05 F T T T F T T

0.3 T F F T T T T

0.3 T F T T T T T

0 T T F T T F T

0.3 T T T T T T T

We see then that although the support problem only involves three atomic propositions, the truth table
requires 8 parameters while the OBN requires only 5. Typically, this reduction in the number of parameters
becomes more marked as the number of atomic propositions in the premisses increases.

8. Infinitely many premisses

Thus far, we have considered inductive inferences involving finitely many premisses. In this section, we
consider inferences involving infinitely many premisses and show that it is possible to obtain a reduction
theorem. Handling infinite objects is often a difficult endeavour in practice. Our main point here is that there
are some cases which we can treat as if they were finite, namely those that are finitely support-satisfiable
(Theorem 6). However, some complications can also arise, as we point out in Examples 11 and 12 as well
as Observations 2 and 3. As we shall see, some results in Section 9 also hold for infinitely many premisses.

Consider the inductive inference:

(‘Pfi)iel = Z/JY

where [ is an index set of arbitrary size. We again define the set of probability functions consistent with
the premisses to be:

E = P[(¢;")ier]-
As before, the maximal entropy functions are:
maxentE := {P € E : there is no Q € E with P <y Q},

and we define objective Bayesian inductive entailment in the usual way. We consider the support of ¢ as
defined in Definition 16,

pL\/{e €5, P(Enp) >0}

Notational conventions remain in line with those adopted earlier:

Original inference  Support inference

Premisses (07 ier (@5 Vier
Feasible region E S P )ier]  EZP($])icr]
n-entropy maximisers ~P" P"

Models P’ € maxent E Pt € maxent K

Definition 24. We let M be the supremum of the indices of the constants that appear in the premisses:
M :=sup{N,, :i € I'}. Note that M may be infinite.

Definition 25 (Finite support-satisfiability). The premisses are finitely support-satisfiable if and only if
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1. they are support-satisfiable, E # 0, and
2. there exists a K € N with the following property: for all P € E, there exists a Q € E such that
Q(pi) = P(;) for all i € I and @ equivocates beyond K.

Let K* denote the minimal such K. Note that for finitely many premisses, the second condition follows
from the first, so the above definition extends Definition 18.

As the following example shows, there are some cases in which the premisses are finitely satisfiable, but
where every constant appears in at least one ;.

Example 10 (Finite support-satisfiability of infinitely many premisses). If p; := Uty V (VaUyx A Ust;) for all
i € N, then the premisses (;),y are finitely support-satisfiable. Here ¢; = [(Urt1 A Ust;) V (Uit A —~Ust;)]
and £ = {PeP : P(Uit1) =1}, K* = 1. However, every constant is mentioned by an atomic proposition
in at least one premiss sentence, M = sup{N,,,...} = oo.

Example 11 (Infinitely many categorical premisses). Let the premisses be (Uty;);en. Unlike in the finite
case, it is not possible to collect all these categorical premisses as a single premiss.

Example 12. Let the premisses be (Ut;);en. Then E=E # (), because it contains a probability function
with P(VaUz) = 1. Note that the premisses are not finitely support-satisfiable, since no @ € E equivocates
beyond some fixed K € N.

Theorem 6 (The mazimal entropy function). If the premisses (905(7‘)1-61 are finitely support-satisfiable, then
Pt is the unique function that has mazimal K*-entropy and that equivocates beyond K*. P <y Pt for all
other probability functions P € E \ {Pt}. Thus, maxent E = {P1}.

Proof. This is analogous to the proofs of Theorem 2 and 3. None of the above proofs use the fact that the
number of premisses is finite; only support-satisfiability and equivocation beyond some N € N is assumed
in these proofs. The second condition of Definition 25 guarantees that there is a fixed number K* for which
it is sufficient to maximise K*-entropy. 0O

Definition 26 (Finitely presented support). An inference has finitely presented support iff the support infer-
ence is represented by means of finitely many finitely represented, quantifier-free premisses, i.e., if and only if
premisses GYVI ey GZV’“ are provided where 01, ..., 0 are quantifier-free, W7y, ..., Wy are finitely represented
andE={PecP:P0;)eW,i=1,... kb

Note that an inference with finitely presented, satisfiable support is finitely support-satisfiable.

Effectively computable decision procedures for infinitely many premisses are hard to come by, since we
need to ensure that the conclusions are compatible with all, i.e., infinitely many, premisses. In order to isolate
a class of decidable inferences with infinitely many premisses we hence assume a given finite presentation of
the support premisses—this does not need to be effectively computed since it is given. Putting Definition 26
together with Theorem 5 we obtain:

Corollary 5. The class of inferences with finitely presented, satisfiable support is decidable in OBIL.
Inferences with infinitely many premisses may not be well-behaved in other respects:
Observation 2 (Non-compactness 1). Given categorical premisses ¢; := Ut; for ¢ € N, we have that

Pt(VaUz) = 1. However, all finite subsets of premisses (J C I) are finitely support-satisfiable and have a
maximal entropy function P} with P}() = P_(|\jes ¥j)- Thus, P}(VQJU.I‘) =0.



J. Landes et al. / Annals of Pure and Applied Logic 177 (2026) 103714 41

Observation 3 (Non-compactness 2). The premisses Jz—Ux,Uty, Uts, . .. are not satisfiable. However, every
finite subset has a well-defined maximal entropy function P! with PT(3z-Uz) = 1.

9. Preservation of inductive tautologies

Learning new information changes what we are in a position to infer. On finite domains, maximum entropy
inference from consistent premisses preserves measure one and measure zero propositions. In other words,
any inductive tautology and any inductive contradiction (the empty event) are assigned probability one and
zero, respectively, after learning consistent information. This inferential property was called Preservation
of Inductive Tautologies (PIT) by [16, Section 7]. PIT states that inductive tautologies (i.e., probability 1
inferences in the absence of any premisses) are preserved on learning new information. In OBIL, PIT can
be stated as

{eSL RY'IC{YeSL : o7, p32,... By}
Proposition 11. If the premisses are finitely support-satisfiable then OBIL satisfies PIT:
{vest Ry} C{Yest : v 2. By}
Proof. Let ¢ be an inductive tautology and P! be the maximal entropy function for given support-satisfiable

premisses which equivocates beyond some number. Then the assumptions of Lemma 4 hold. Recall that we
showed in Lemma 6 that P—_(p A w) € {0, \Q—lNI} So, for all large enough n we find

P(p)

Z Pl(o Awy)

wn €0y

Z Pt (o Awy)

U;’negn
P(wn)>0

Z PT(<p|wn) ' PT(Wn)
wn €Ny
Pt (wn)>0

Lemma 4 Z P_(p|wn) - bl (wn)

Wn €y
PT(wn)>0

wn €Qp
P (wn)>0

berpa 6§ _i :E:Z;.Pf(wn)

Wn €Qp
P (wn)>0

Z PT(Wn)

wWn €Ny,
PT(w,)>0

=1. O

Note that PIT holds for a class of premisses if and only if inductive contradictions are preserved by
premisses in that class:
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{veSL Ry Y C{YeSL : ot pp, .. YL
We can also say something about when these inclusions are strict:

Theorem 7. If the premisses are finitely support-satisfiable, then

{(peSL R I C{WeSL : o1, e, Ry}
(peSL Ry C{peSL + o o2, Ry} .

The inclusions are strict if and only if there exists some N and some N-state wy € Qn such that pt (wn) =
0.

Proof. The non-strict inclusion relationships follow directly from PIT (Proposition 11).

If there exists some wy € Qy such that PT (wy) = 0, then —wy follows inductively from the premisses
and wy is ruled out by the premisses.

For the converse, consider an arbitrary ¢ € SL such that 0 < P—_(¢) < 1. Then there exists some
wiy € Qn such that P—(3) A wly) > 0. We may assume that N > M (or K* in the case of infinitely many
premisses).

We assume that Pf(wy) > 0 for all wy € Q. We now show that PT(¢)) > 0 using the fact that PT is
unique and equivocates beyond M (K* in the case of infinitely many premisses) (Theorem 6):

PH() > PT(p Awly) = PT(lwly) - PTwiy) " P_(glwly) - PH(wiy)

>0 .

Replacing ¢ by —/ we note that 0 < P—(¢)) < 1 entails that 0 < PT(y) < 1.
If PT(wN) > 0 for all wy € Qp, there are hence no new inductive tautologies and no new inductive
impossibilities. O

Note that inductive non-contradictions that are consistent with the premisses may be given zero proba-
bility in OBIL:

Corollary 6 (Failure of open-mindedness). There exist finitely many support-satisfiable premisses, an M-
state wyr and P € E such that P(wy) > 0 but Pt(wy) = 0.

Proof. Let

¢S := ([Rty A Rto] V VaUz)3

wl=

05? := ([Rt1 A ~Rt] VVaUx)

ol

@5 = ([7Rt1 A Rtp) VVaUx)

Then PT(—=Rt; A =Rty) = 0, since PT(VaUz) = 0. However, every probability function with P(VzUz) =
% = P(VazUz A —~Rt; A - Rty) satisfies all the premisses (P assigns the conjunctions in the square brackets

of the ¢; probability zero). So, as claimed P(Ut; AUty A ~Rty A —Rty) > % >0. O

Note that this differs from the case in which the premisses are quantifier-free, where Open-Mindedness
does hold [28, Chapter 7]: if there exists a probability function satisfying quantifier-free premisses which
gives some state positive probability, then so does the maximal entropy function.
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10. Support-satisfiability

Having shown that OBIL is decidable for finitely many support-satisfiable premisses or finitely presented,
satisfiable support, we now investigate the notion of support-satisfiability. Firstly, we contrast the notion of
support-satisfiability with satisfiability in more detail. We then show that this contrast has a pronounced
effect on maximal entropy functions.

10.1. Support-satisfiability and satisfiability

In the following, we suppose without loss of generality that there is a single categorical premiss ;. In the
absence of any categorical premisses, one may simply let ¢ := Uty V =Ut;. If there are multiple categorical
premisses, 1 can be taken to be their conjunction.

Proposition 12 (Connection between support-satisfiability and satisfiability). Suppose the premisses take the
form @7, ... o withey =1, k> 1, ca,...,¢c € (0,1). The premisses are support-satisfiable if and only if

1. the premisses are satisfiable and
2. there exists a probability function P € E such that whenever P—(p1 A £pa A ... A £pi) = 0, then
P(oy At@a A ... A£py) = 0.

In words, condition 2 says that there exists a probability function P € [E assigning every measure zero
conjunction of premiss sentences or their negations probability zero. Note that every probability function @
solving the support problem must also assign such a conjunction probability zero since there is no M-state
which has positive measure taken together with such a conjunction, where M := max{N,,,..., Ny, }.

Proof. Let us first recall that support-satisfiability entails satisfiability (Proposition 8).

In case of k = 1, there are no premisses given with non-extreme probability. ¢} being support-satisfiable
(P($1) = 1 is satisfiable), entails that ¢; is not a contradiction. Hence, there is no such conjunction in 2
and 2 follows trivially.

Now consider the case k > 2.

Assume that the premisses are support satisfiable with maximal entropy function P'. P! is a convex com-

bination of probability functions of the form P_(-|was), where M := max{N, ., Ny, }. These functions

L
all assign zero measure sentences zero probability, since they assign all measure one sentences probability 1
[16, Theorem 45]. Hence, so does PT, which is in E.

Consider the converse implication. Suppose condition 1 holds and let P € E satisfy condition 2. For
the remainder of this proof and all i € {2,...,k} we use o} to denote ¢; and ¢? to denote —p;. Note
first that the o A @52 A ... A @}* are pairwise inconsistent. Note also that S A G2 A LA G s a
contradiction if and only if 11 A @2 A ... A G, has measure zero (this sentence is quantifier-free) if and
only if 11 Ao A ... A pi* has measure zero (Lemma 3 (iv) shows that P—(¢) = P=(9)).

Then define a function @ on the M-states as follows:
QU™ A A NG = P A @ A A

and let Q equivocate between those M-states which entail the same 1t A G2 A ... A G*. In particular,
Q(—F1 NG N AGE™) =0 for all ea,. .., € since P(—p;1) = 0. In particular, Q(¢1) = 1 and Q(—p1) = 0.
We next observe

YRwW =Y QAEAERT.AG™)

wey ge {0,131
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= Z Pt N Ao Agik)
€e{0,1}k-1

=P(p1)=1.

This means that @ is a probability function on Q;;. In other words, there exists some P € P which
agrees with @ on Q.

Let us now extend @ to the subsets of 3; as usual: for all S C Qp let Q(S) := > 5 Q(w). We note
that for all 2 < i <k,

Q(gi) = Z Q(H1 A G2 A A1 A G A e A )
ee{0,1}k—2
= Z Pt Ao AL A O A i A <p:.:’f A o)
gc{0,1}%—2
= P(%’)
=C; .

Hence, @ is a probability function on Qj; satisfying Q(y;) = ¢; for all 1 < i < k. Hence, the premisses are
support-satisfiable. O

There are sets of premisses that are jointly satisfiable, and where every premiss sentence has positive
measure, but that are not support-satisfiable:

Observation 4. Satisfiability of the premisses does not entail their support-satisfiability.
This emphasises that the second condition of the equivalence in Proposition 12 cannot be omitted.

Proof. Consider premisses ¢{* := (Uty VVzVz)?, 052 := (~Ut; VVzVz)? [16, Example 43]. Clearly, these
two premisses are jointly satisfiable. Support-satisfiability holds if and only if P(Ut;) = 0.9 and P(—=Ut;) =
0.9 are jointly satisfiable. This is obviously not the case. O

Support-satisfiability with non-extreme ¢;s entails that all premiss sentences have non-extreme measures:

Observation 5. If X; = ¢; € (0,1) for some i € I and the premisses are support-satisfiable, then P_(y;) €
(0,1) for this i € I.

Proof. Let us suppose for contradiction that P—(p;) = 1 (replace ¢; by —p; if necessary). This means that
@; is the disjunction of all N-states (i.e., a tautology) and —¢; is the empty disjunction (a contradiction).
Support-satisfiability requires that P(p;) = ¢; € (0,1) and P(—¢;) =1 — ¢; € (0,1). However, P(¢;) = 1
and P(—¢;) = 0. Contradiction. 0O

This shows that while sets of support-satisfiable premisses are such that every premiss sentence and its
negation must have positive measure, a conjunction of premiss sentences may have measure zero.

10.2. Support-satisfiability and inductive tautologies
The question arises as to why finitely many premisses that are support-satisfiable are so well-behaved

in OBIL. After all, we know that there is (i) a satisfiable premiss (¢ = JxVyUzxy) that does not yield
a maximal entropy function [16, Proposition 53] and (ii) a premiss without a maximal entropy function
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which nevertheless yields a well-defined unique maximal entropy function after adding a further categorical
measure-one premiss [15, Proposition 5].

We now give another characterisation of the key notion of support-satisfiability for finitely many pre-
misses. This observation exploits our above result on the preservation of inductive tautologies. This charac-
terisation will be used to elucidate similarities between OBIL and entropy maximisation on finite domains.

Proposition 13 (Characterisation of support-satisfiability). Let the premisses 4,05(1,...7<ka"‘ be satisfiable.
The following are equivalent:

1. E=9.
2. For all P € E there exists a sentence ¢ € SL such that P(p) € (0,1) and P—(y) € {0,1}.

Proof. Let us first assume the negation of the first condition, i.e., E # (). Applying Proposition 11 we
conclude that PT exists and satisfies PIT. So, P—(p) € {0,1} entails that PT(p) ¢ (0,1). So, the second
condition fails (PT € E). Hence, the second condition implies the first.
Now assume the first condition. Since the premisses are satisfiable (E
(E = (), for all P € E there must exist a premiss ¢; such that P(p;) #
necessary, we may assume that P(¢;) > P(@;). We now note that

# () but not support-satisfiable
P(;). Swapping ¢; with —p; if

Pe)= Y. PlnAp)+ Y. PlnAy)

wWNEQN wNEQN
P_(wnApi)>0 P_(wnApi)=0
—P@g)+ S PlanAg) .
WNEQN

P_ (U.)N/\Lpi):o

Since P(p;) > P(p;), the last term must have non-zero probability. Since all sentences wy A ¢ have measure
zero, at least one measure zero sentence is assigned non-zero probability by P. O

A failure of condition 2 in Proposition 13 is equivalent to PIT. If condition 2 fails then by Proposition 13,
condition 1 fails, i.e., support satisfiability holds, and by Proposition 11 this implies PIT. On the other
hand, if condition 2 holds, then it holds for the maximal entropy function in particular (if it exists), so an
inductive tautology is not preserved, i.e., PIT fails. If there is no maximal entropy function of £, then OBIL
uses every function of E for inference and PIT fails, too.

We see, then, that satisfiable premisses naturally sub-divide into two mutually exclusive cases. The first
case comprises the non-support-satisfiable premisses where all probability functions in the feasible region
give some inductive tautologies probability less than 1 and give some inductive contradictions positive
probability (P=(¢) =0 < P(y) and P—(—¢) =1 > P(—¢)). The second case comprises support-satisfiable
premisses which possess a unique maximal entropy function PT that satisfies PIT (inductive tautologies and
inductive contradictions remain as such).

Let us compare this with maximum entropy reasoning on quantifier-free languages. There, the only induc-
tive tautologies are deductive tautologies and the only inductive contradictions are deductive contradictions.
Hence, every satisfiable set of premisses is as in the second case. The first case can only arise when quantifiers
are introduced.

11. Conclusion

The undecidability of first-order deductive logic carries over to first-order inductive logic under the
standard semantics (Proposition 3). It is therefore interesting and surprising that a large class of inferences
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in first-order objective Bayesian inductive logic is decidable: namely the class of support-satisfiable inferences
(Theorem 5)."* In particular, in OBIL the class of inferences from no premisses is decidable (Corollary 3);
this does not hold of first-order deductive logic, and hence it does not hold of first-order inductive logic with
the standard semantics (by Proposition 3).

The main question for further research concerns the extent to which this decidable class of inferences can
be expanded. We saw that the class of quantifier-free inferences is decidable (Theorem 1). Moreover, any
class of inferences from unsatisfiable premisses is trivially decidable, as long as one can effectively determine
that the premisses are unsatisfiable. This is because the equivocator function is used for inference whenever
the premisses are unsatisfiable. (Examples of such classes include the class of inferences from unsatisfiable
premisses that involve only unary predicates [22], and the class of inferences from unsatisfiable X5 premisses
[32].) Hence any class of inferences involving premisses that are quantifier-free, support-satisfiable or decid-
ably unsatisfiable is decidable. In addition, there are decidable inferences from premisses that are satisfiable
but not support-satisfiable. For example, the class of inferences with a single premiss of the form VaUx® is
decidable [16, Example 17]. A key task for further research is to find other decidable subclasses of the class
of inferences that are satisfiable but do not have satisfiable support.
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Appendix A. Lagrange multipliers for determining entropy maximisers

In this appendix, we sketch how the maximal entropy function Pt can be obtained using Lagrange-
multiplier optimisation methods.
Recall that PT is the (unique) maximal entropy function with respect to the support problem,

maxent{gbfl, cee g?)kX"} = {]E’T} (Theorems 2 and 3). For ease of exposition, we take Xy = ¢1,..., X = ¢
where c¢q,...,¢; € [0,1], but the approach can be straightforwardly generalised to the case in which
X4,..., X} are intervals by using inequality constraints instead of equality constraints. Throughout this

appendix we work with the natural logarithm for convenience.

Fix n>max{Ny,,..., Ny, }. Let z, g Pt(w) for each w € Q,,.

The task is to use Lagrange multipliers to solve an optimisation problem to find the x,, subject to k + 1
constraints. We have an additivity constraint with multiplier u € R:

13 Recall that we focus throughout on decidability modulo comparison of real numbers, by assuming that inferences are finitely
represented and that numerical comparisons are made to some given fixed precision.
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Z To=1". (8)
wEN,
We also have k premiss constraints with multipliers A\; € R for 1 < < k:
Z Ty =C; . (9)
wEP;
Call these latter constraints fi,..., fi. The Lagrange function L is

k

L=- Z Z,logxy, + pu(—1+ Z mw)—f—Z)\i(—Ci—l— Z Ty) - (10)

WED, WED, i=1 wE@;

The Lagrange equations are obtained by taking partial derivatives of L with respect to the unknown =z,
for each w € Q,,:

k
885: +u+;)\igg‘cf; =0 .
Here,
a@f: =—1—logz,
and
ofi _ { Y
oz, 0 : otherwise.
So we have:
logz, = -1+ p+ Z Ai (11)
BwEg
and thus
Ty, = e ITH L gXiwkg; N (12)

Since probabilities sum to one, we find

1= Z Ty = Z e Hh L el Mo — gm0 Z eXiwlg; M (13)

WEN, WEN, we,

Let us now consider the k constraints arising from the premisses (9),

) > \ Zw':¢ 6Zi:w\:¢i Ai

L — “lp g, N

G = Z Tw = Z ¢ ¢ ’ Z 621;w\=¢i X (14)
wi=@; wEp; wen

This is a set of k equations in the unknowns Aq, ..., \x. Once these A are determined we can use (13) to

determine p and thus the z,, from (12).
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Substituting (11) into (10) gives using (13) in the last step

k
L=— Z Ty[—1+p+ Z Xi] +p(—1+ Z xw)+z)\i(—0i+ Z Ty)
wEN, LwER; weNy, =1 wE@;
k
=1—p— Z T, Z /\i+z>\i(_ci+ Z Zw)
we, LwEg; i=1 w=g;

k
:17[1472)\2'61'
i=1

_ 1
10g (ZWEQn €

k
— G .
Gl i Z v
AP

Since the original problem of maximising n-entropy is a convex minimisation problem (minimise —H,,) and
H,, is continuous, maximising n-entropy is equivalent to maximising the above equation, called the dual
problem. This dual problem is a convex optimisation problem [4, p. 215].

We have hence three ways of maximising n-entropy:

1. Numerically solve the problem of maximising H,, (P).
2. Solve (14) for the unknown A;.
3. Solve the dual optimisation problem.

In practice, the choice of method will depend on circumstances.

1. Maximising H, (P) is a convex optimisation problem, that hence has a unique solution. One may use
one of the many gradient descent (hill climbing) algorithms to find arbitrarily good approximations of
Pt and H,(P"). The number of unknowns to be determined is |€2,|. Such algorithms are hence likely
to perform well if |2, | is small.

2. (14) is a system of k multilinear equations. Since a solution of this system provides a solution to the
original problem, this system must have at least one solution. The number of unknowns to be determined
is k, the number of premisses. A solution is such more likely to be found quickly if k is small.

3. Solving the dual problem is again a convex optimisation, which can again be tackled by a gradient
descent algorithm (hill climbing). The number of unknowns to be determined is k, such algorithms are
hence likely to perform well if k is small.

. - . £ £y
What is the n-entropy of PT? Write z,, = 2o [] 2z, where z L er=1 and 2 & M. Then,

Lwl=

Hn(PT) = - Z x, log z,
weN,
= - Z x, log | 2o H Zi
W€ Lwl=g

— Z T, | logzo + Z log z;

wEN, LwlEg;
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DR VTR S PP

weQ, LwE=g,
k
= _(ﬂ_l)zxw_z)\izxw
wER, =1 whegs

k
= 1-p—) \NPi(g)
i=1

k
= 1— o — Z )\ici .
i=1
Thus, the n-entropy of P! can be straightforwardly determined from the values of the Lagrange multipliers.
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