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Abstract

Schurz (2019, Chapter 4) argues that probabilistic accounts of induction
fail. In particular, he criticises probabilistic accounts of induction that appeal
to direct inference principles, including subjective Bayesian approaches (e.g.,
Howson, 2000) and objective Bayesian approaches (see, e.g., Williamson, 2017).
In this paper, I argue that Schurz’ preferred direct inference principle, namely
Reichenbach’s Principle of the Narrowest Reference Class, faces formidable
problems in a standard probabilistic setting. Furthermore, the main alternative
direct inference principle, Lewis’ Principal Principle, is also hard to reconcile
with standard probabilism. So, I argue, standard probabilistic approaches can-
not appeal to direct inference to explicate the logic of induction. However, I go
on to defend a non-standard objective Bayesian account of induction: I argue
that this approach can both accommodate direct inference and provide a viable
account of the logic of induction. I then defend this account against Schurz’
criticisms.

§1
Introduction

There are two problems of induction. The more famous of the two, the problem
of inductive justification, is the problem that there seems to be no justification
of inductive inference which could convince sceptical detractors that we ought to
draw even simple inductive inferences. This is the problem usually attributed to
David Hume, and the problem over which most ink has been spilt. It has proven
intractable: most philosophers would agree that there is indeed no such justification,
although Schurz (2019) is more optimistic, arguing interestingly that metainduction
offers a solution to Hume’s problem.

The second problem is perhaps the more pressing of the two. This is the
problem of inductive logic—the problem that there seems to be no viable logic of
inductive inference that can tell us which inductive inferences we ought to draw.
This is the more pressing problem because inductive inferences are central to sci-
ence and these inferences are often complex and contentious; a viable inductive
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logic could offer useful guidance. The problem of inductive justification, on the
other hand, is largely academic: there are in fact no detractors who abstain from
drawing all inductive inferences in practice.1 As Hume himself notes,

Whoever has taken the pains to refute the cavils of this total scepticism,
has really disputed without an antagonist, and endeavour’d by argu-
ments to establish a faculty, which nature has antecedently implanted
in the mind, and render’d unavoidable. (Hume, 1739, p. 183.)

Again, most philosophers would agree that, following the demise of Carnap’s pro-
gramme for inductive logic, a general inductive logic is unattainable. On the other
hand, many would maintain that probabilistic approaches to induction are helpful
in a range of cases. Schurz (2019, Chapter 4) argues against probabilistic accounts
of induction, however.

This paper focuses on the second, more pressing problem—the problem of in-
ductive logic—though it also contains some brief remarks about the problem of
inductive justification. The goal of the paper is to examine whether there is some
viable probabilistic account of induction, and, if so, what that account is. I argue
in §2 that direct inference, which requires that epistemic probabilities be directly
calibrated to non-epistemic probabilities where possible, offers the most promis-
ing route to a probabilistic account of induction. There are two forms of direct
inference. The Principle of the Narrowest Reference Class calibrates epistemic
probabilities to generic frequencies, while the Principal Principle calibrates them to
single-case chances. In §3 I consider a problem for the Principle of the Narrow-
est Reference Class which shows that in a standard probabilistic framework one
cannot appeal to this direct inference principle to provide an adequate account of
induction. In §4 I recount another problem, which shows that the standard prob-
abilistic framework fails to properly accommodate the Principal Principle. Thus
the standard probabilistic framework cannot employ direct inference to account
for induction after all. However, I argue that a non-standard version of objective
Bayesianism can successfully accommodate direct inference (§5). I counter Schurz’
criticisms of objective Bayesianism in §6 and conclude that it does indeed provide
a viable probabilistic account of the logic of induction (§7).2

1Williams (1947, Chapter 1) claims that the problem of inductive justification is not purely academic,
suggesting that,

Having, spiked the guns of reason, [the skeptic] has invited positive unreason to invade
the citadel. All conscious and moral existence is a little clearing in the festering jungle
of superstition, whose prowling terrors are fought off only by the courage and confidence
of those who know what it is to know. Even within our circle now every doubt which
unnerves the defenders of empirical reason is exploited by agents of the enemy, persons
who are hostile to reason on principle: the logic haters, mystery lovers, and spell-binders.
The obsequies of inductive logic are no sooner austerely announced by the skeptic than
they are exultantly celebrated by enthusiasts reveling in the opportunity to advance some
extra-scientific dispensation. . .. (Williams, 1947, p. 19.)

Williams overstates his case, however. Despite the long absence of any established justification of induc-
tion, inductive practice has grown hugely, ousting innumerable examples of superstition and quackery
along the way.

2The arguments of this paper do not hang on any particular definition of inductive inference, and
no precise definition will be given. It will suffice to say that inductive inferences include inferences about
a new case made partly on the basis of data or statistics about other cases. Examples will be provided
below.
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§2
The promise of direct inference

The standard probabilistic response to the inductive logic problem proceeds from
one of two general frameworks: that of Bayesianism or that of logical probability.

In the Bayesian framework, probabilities are epistemic—they are an agent’s
rational degrees of belief. If L is the agent’s language, in which she can express
propositions A and E, we denote by BE(A) her degree of belief in A, supposing
only E. The standard Bayesian approach maintains that all conditional beliefs are
conditional probabilities:

CBCP. There is a probability function P; such that BE(A)= P;(A|E) for all A and
E.

This motivates the principle of Bayesian Conditionalisation, which governs how
degrees of belief should track evidence:

Conditionalisation. On evidence E, believe A to degree BE(A)= P;(A|E).

Here the prior probability function P; is either a function that is appropriate in the
total absence of evidence (a blank-slate function) or a probability function that was
appropriate at some initial time, evidence prior to which is not made explicit (an
initial function).

According to logical probability, on the other hand, probability is fundamentally
a relation between propositions. If L is a language that is appropriate to the prob-
lem domain, in which A and E are expressible propositions, we denote by CE(A)
the degree to which E confirms A. The logical theory of probability maintains that
degrees of conditional confirmation are conditional probabilities:

CCCP. There is a probability function P; such that CE(A)= P;(A|E) for all A and
E.

Here the prior P; is a blank-slate function. Most proponents of logical probability,
such as Keynes (1921) and Carnap (1950), hold that logical probabilities underwrite
rational degrees of belief: BE(A) is rational just if BE(A)= CE(A) for some appro-
priate confirmation function CE .3

Although these two general frameworks differ as to the fundamental nature of
probability, they broadly agree about three things: firstly, the need for an appro-
priate prior probability function P;; second, that conditional probabilities play
an absolutely central role; and third, that these conditional probabilities P;(A|E)
underwrite rational degrees of belief.

There are three main implementations of these two general approaches.
Strictly subjective Bayesianism (de Finetti, 1937; Howson, 2000) maintains that

any probability function P; constitutes a rationally permissible prior: it is up to
the individual as to which such function her beliefs conform to via CBCP. Unfortu-
nately, this approach doesn’t seem to help much with the inductive logic problem.
Consider a simple example. Suppose we randomly sample 21-year-olds and infer

3Karl Popper might be an exception (see, e.g., Rowbottom, 2008). However, Popper was also an anti-
inductivist—he argued instead for a falsificationist methodology. Consequently, we need not consider
his view further here.

Williamson (2000, Chapter 10), Franklin (2001), Maher (2006), Mura (2008), Paris and Vencovská
(2015) and Bird (2017, §5) are recent proponents of versions of logical probability.
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that 17% of 21-year-olds develop a cough in the next 12 months (proposition E).
How confident should we be that Cheesewright, who is 21, will get a cough in the
next year (A)? According to strictly subjective Bayesianism, any degree of belief in
A is rationally permissible, since any prior is permissible. Even where we have the
full details of the sample—i.e., if we know which 21-year-olds were sampled and
which developed a cough—rather than just the inferred frequency of coughs, it is
still the case that any degree of belief would be rationally permissible. Since the
account claims that any degree of belief in A is rationally permissible, it does not
provide a logic of induction, because it admits both beliefs that can be considered
inductive (e.g., BE(A) ≈ 0.17) and beliefs that are non-inductive (e.g., the belief
BE(A) = P;(A) which is not influenced by the sample at all). At best then, strictly
subjective Bayesianism merely provides a conditional logic of induction: only if one
conforms to a prior that permits induction does it provide an account of learning
from experience (Howson, 2000). For similar reasons, strictly subjective Bayesian-
ism cannot be said to solve the problem of inductive justification, because it deems
both inductive and non-inductive priors to be rationally permissible and provides
no grounds for preferring the former over the latter. At best it merely provides a
conditional justification of induction: only if one adopts an inductive prior should
one learn inductively from experience.

The second specific approach is an implementation of logical probability: Car-
nap’s programme. Carnap (1952) sought to objectively constrain the choice of the
blank-slate function P;. Now, by far the most natural choice of P; is the equivoca-
tor function P=, which gives each state description the same probability (Williamson,
2017, Chapter 4).4 As Carnap realised, however, the equivocator function is non-
inductive: CCCP ensures that there is no learning from experience if P; = P=,
because CE(A) = P=(A|E) = P=(A) = 0.5 for an atomic sentence A and logically
independent evidence E. So Carnap instead opted for a continuum of permissi-
ble blank-slate functions, P; = cλ, parameterised by a constant λ ∈ [0,∞), each of
which does allow learning from experience.

Carnap’s programme offers more guidance than strictly subjective Bayesianism,
but still doesn’t help much with the problem of inductive logic. Although Carnap
dismissed the non-inductive equivocator function, his account is nevertheless very
permissive: the degree to which the sample of 21-year-olds confirms the proposi-
tion that Cheesewright will get a cough can be anywhere between 0.17 and 0.5.
Carnap provides no clear guidance as to which value to opt for. Nor does Car-
nap’s programme help to address the problem of inductive justification. This is
because the exchangeability condition—a key condition to which Carnap appeals
to help narrow down the blank-slate functions to a continuum—is not universally
appropriate. As Gillies (2000, pp. 77–83) explains, this condition is usually only
appropriate in the context of a sequence of outcomes that are believed to be objec-
tively probabilistically independent. Thus Carnap’s programme cannot provide a
general justification of induction.5

4More precisely, suppose L is a first-order predicate language with constant symbols t1, t2, . . .
and atomic sentences a1,a2, . . ., where the atomic sentences are ordered in such a way that sentences
a1, . . . ,arn involving only the first n constant symbols appear before those involving tn+1, for each n.
The n-states ωn ∈Ωn are the sentences of the form ±a1∧±a2∧·· ·∧±arn where ±ai is either ai or ¬ai
for each i = 1, . . . , rn . These are the state descriptions involving only the first n constants. For each n,
the equivocator function gives each n-state the same probability.

5Carnap acknowledged the limitations of his approach and later became more sympathetic to a
Bayesian approach (see Carnap, 1962, 1968).

4



The third specific approach, empirically-based Bayesianism, is a version of Bayes-
ianism that employs a direct inference principle in addition to the usual axioms of
probability. A direct inference principle requires that degrees of belief be directly
calibrated to non-epistemic probabilities insofar as one has evidence of them. There
are two variants of this approach. One variant takes non-epistemic probabilities to
be generic frequencies or propensities, and maintains that one should calibrate a
degree of belief to a generic probability in a suitable reference class of individuals.
The other variant takes non-epistemic probabilities to be single-case chances, and
maintains that one should calibrate a degree of belief to such a chance. Prima
facie, this approach offers a more promising way of tackling the problem of in-
ductive logic. According to this approach, one should believe that the 21-year-old
Cheesewright will get a cough to degree 0.17 or thereabouts, given a sample that
warrants the inference that approximately 17% of 21-year-olds get a cough (E). This,
at least, is concrete inductivist advice, although how concrete it is depends on what
can be said about exactly how close to 0.17 one’s degree of belief should be.

This third approach also takes a more promising line with regard to the problem
of inductive justification: some suitable justification of the direct inference principle
might convince any detractor who accepts the existence of non-epistemic proba-
bilities of the merits of inductive inference. Admittedly, someone sceptical about
whether a sample should guide our inferences about an unsampled individual might
also be sceptical about the claim that there are non-epistemic probabilities. Never-
theless, depending on how the details are fleshed out, this line of argument promises
to make some modest headway with the problem of inductive justification.

So, while there are gaps in the account that need to be filled, some version of
empirically-based Bayesianism that appeals to a direct inference principle seems to
offer the most promise with regard to the two problems of induction. But which
version of empirically-based Bayesianism? Not any standard version: as I argue in
§3, §4, both standard Bayesianism and logical probability struggle to accommodate
either of the two kinds of direct inference principle in a way that can secure induc-
tion. However, we shall see that there is one non-standard version of Bayesianism
that does not succumb to these problems and that can fill the gaps identified above,
offering an account of inductive logic and making some progress with the problem
of inductive justification (§5, §6).

§3
The Principle of the Narrowest Reference Class

The idea of direct inference dates back at least to Leibniz (Cussens, 2018). Leibniz
took probability to be an epistemic concept at root: probabilities are degrees of
certainty (Hacking, 1975, p. 89). And Leibniz says,

One may still estimate likelihoods a posteriori, by experience; to which
one must have recourse in default of a priori reasons. For example, it
is equally likely that a [particular] child should be born a boy or a girl,
because the number of boys and girls is very nearly equal all over the
world. (Leibniz, 1714, p. 570.)

We normally perform direct inference without thinking about it—indeed, re-
search conducted by Bastos and Taylor (2020b,a) suggests that even parrots can
perform a fairly sophisticated form of direct inference. However, the question arises
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as to whether there is some explicit direct inference principle that can guide induc-
tion in more complex situations. Reichenbach put forward one such principle: a
principle for using generic frequencies to guide single-case inferences:

We then proceed by considering the narrowest class for which reliable
statistics can be compiled. If we are confronted by two overlapping
classes, we shall choose their common class. Thus, if a man is 21 years
old and has tuberculosis, we shall regard the class of persons of 21 who
have tuberculosis. (Reichenbach, 1935, p. 374.)

This policy has become known as the Principle of the Narrowest Reference
Class. The principle is intuitively plausible and widely endorsed—Schurz (2019,
p. 58) is one recent advocate, for example. A simple version of the principle can be
expressed as follows:6

PNRC. BE(α(c)) = x if E determines that the frequency P∗
ρ̂

(α) = x and determines
that ρ̂ is the unique narrowest reference class containing c for which P∗

ρ̂
(α) is

available, and contains no information more pertinent to α(c).

Here α and ρ denote properties and c denotes an individual. A property such as
ρ determines a reference class ρ̂, namely the set of individuals that instantiate the
property ρ. P∗

ρ̂
(α) is the frequency of α in the reference class ρ̂. Clearly, something

further needs to be said about when other information is more pertinent to α(c)
than the frequency information, and we shall return to this point below.

Although PNRC is intuitively plausible, I will argue that it fails to yield an ade-
quate account of induction, when integrated into a standard probabilistic framework
such as the standard Bayesian framework or that of logical probability.

Let us consider some consequences of PNRC in the standard Bayesian frame-
work, which takes conditional degrees of belief to be conditional probabilities
(CBCP).7 Let proposition A abbreviate α(c); for example, A might be the proposi-
tion that Cheesewright gets a cough in the next year. Let R abbreviate ρ(c), e.g.,
Cheesewright is 21. Let S stand for σ(c), e.g., Cheesewright has tuberculosis. Let
X be P∗

ρ̂
(α) = x, e.g., the statement that the frequency of coughs in the reference

class of 21-year-olds is 0.17. Let Y be P∗
ρ̂σ

(α) = y, where y > x, e.g., the statement
that the frequency of coughs in the reference class of 21-year-olds with tuberculosis
is 0.97.

Then PNRC apparently leads to the following inferences about Cheesewright:

1. P;(A|X R)= 0.17

2. P;(A|Y RS)= 0.97

3. P;(A|XY R)= 0.17

4. P;(A|XY RS)= 0.97

6More complicated versions of the Principle of the Narrowest Reference Class say something about
what to do in the presence of statistics from multiple narrowest reference classes (see, e.g., Thorn, 2019).

7The following argument is cast in terms of the Bayesian framework because that is the usual setting
for direct inference. However, similar points can be made about the logical framework, on account of
its appeal to the analogous principle CCCP. Carnap (1950, §94) and Paris and Vencovská (2015, Chapter
15), for example, argue that their versions of the logical theory validate direct inference.
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5. P;(A|XY RS̄)= 0.17.

Note that, for these conditional probabilities to be well defined, the probabilities
of the propositions conditioned on must be non-zero. Thus these uses of PNRC
presuppose that that P;(XY RS)> 0 and P;(XY RS̄)> 0.

These implications of PNRC are all very natural. Indeed, it is hard to see
what specific values other than these an inductivist would advocate in these five
alternative scenarios. However, it turns out that these consequences of PNRC are
inconsistent.8

To see this, observe that by the theorem of total probability,

P;(A|XY R)= P;(A|XY RS)P;(S|XY R)+P;(A|XY RS̄)P;(S̄|XY R) (i)

i.e.,
0.17= 0.97s+0.17(1− s),

where s df= P;(S|XY R). But this can only hold if s = 0, which contradicts the
presupposition that P;(XY RS)> 0.

This poses a problem for the Bayesian: it seems that Bayesianism cannot ac-
commodate even a very simple version of the Principle of the Narrowest Reference
Class, namely PNRC. This is essentially because standard Bayesianism assumes
CBCP, which turns consequences of PNRC into constraints on a single probability
function, namely the prior P;, and these constraints soon become unsatisfiable.
Note that exactly the same problem would arise in the general framework of logical
probability, because it assumes the analogous principle CCCP. This poses a prob-
lem for standard probabilistic accounts of induction that appeal to PNRC or one of
its generalisations.

Let us examine the options for such accounts. Is there some way of avoiding the
problem?

As Equation i shows, the inconsistency is generated by consequences 3, 4 and 5
of PNRC:

3. P;(A|XY R)= 0.17

4. P;(A|XY RS)= 0.97

5. P;(A|XY RS̄)= 0.17.

The inconsistency would be avoided if one were able to deny that PNRC yields all
three of these three constraints on the prior. This would be possible if, in at least
one of these three cases, what is conditioned upon contains information that can
be deemed more pertinent to A than the frequency that is being used to inform the
degree of belief. If so, PNRC would not apply in that case and no contradiction
would be derivable: the probabilistic account would be able to accommodate PNRC,
after all.

However, we shall see that denying any of these three conditions would be
problematic because PNRC would then be very easily defeated. I will go on to

8This kind of inconsistency was identified by Wallmann and Hawthorne (2020, §5.2), though neither
author takes it to be of concern (personal communication). I will argue that the inconsistency leads to a
problem that is decisive in this context.

7



argue that this problem shows that one cannot, after all, appeal to PNRC to provide
an adequate probabilistic account of induction.

First consider consequence 3. One can reject this identity if one can deem
Y to be more pertinent to A than X R, i.e., if one can deem the frequency in a
narrower reference class to be more pertinent to A than that in a wider reference
class, even where there is evidence only that the individual is a member of the wider
reference class—not the narrower reference class. There are several difficulties with
this strategy. Firstly, it conflicts with the idea behind PNRC, which is to calibrate
a degree of belief to the frequency in the narrowest reference class that is known
to apply to the particular individual. Second, it severely limits the applicability of
PNRC, because we almost always do have superfluous frequency data that are of
questionable relevance to an individual of interest. If these data defeat PNRC, then
direct inference would appear to be rarely warranted.

Worse still, a mischief maker would be able to undermine any particular ap-
plication of PNRC by reliably informing the agent seeking to apply PNRC of some
statistic that is of dubious relevance. You might intend to use PNRC to calibrate
your degree of belief that Cheesewright gets a cough to the frequency of coughs
within some reference class that includes Cheesewright. The mischief maker then
tells you that 35% of 21-year-olds who have COVID-19 develop a cough, where it is
unknown to you whether Cheesewright has COVID-19. That would be enough to
undermine your use of PNRC, if the above strategy is pursued. Not only would the
proponent of probabilistic induction fail to convince a detractor of the merits of
induction, but a mischievous detractor would be able to undermine the proponent’s
own use of induction.

Let us turn next to consequence 4. To reject the identity P;(A|XY RS) =
0.97, one would have to maintain that statistics in wider reference classes are more
pertinent to an individual than those in narrower reference classes: X defeats Y RS.
This strategy would even more blatantly conflict with the aim of PNRC. As with
the previous strategy, this would also render PNRC impotent, because it would be
enough for the mischief maker to report the frequency of coughs in people of all
ages in order to undermine any use of PNRC on some narrower reference class.

Suppose, then, that we grant consequences 3 and 4. Now consider consequence
5. Rejecting the identity P;(A|XY RS̄) = 0.17 would require claiming that a nar-
rower reference class frequency defeats a wider reference class frequency in cases
where the individual is not a member of the narrower reference class. Now, while
consequence 5 is prima facie plausible, it turns out that one can indeed provide
some grounds for rejecting it, along the following lines. Suppose frequencies are
conditional probabilities, so that P∗

ρ̂
(α)= P∗(α|ρ) etc.9 Then,

P∗(α|ρ)= P∗(α|ρσ)P∗(σ|ρ)+P∗(α|ρσ̄)P∗(σ̄|ρ) (ii)

which we can write as:
x = yt+ z(1− t),

where x df= P∗(α|ρ), y df= P∗(α|ρσ), z df= P∗(α|ρσ̄) and t df= P∗(σ|ρ).
In the Cheesewright example, α is the attribute getting a cough in the next

year, ρ is the reference class of 21-year-olds, σ is the reference class of those with

9Here P∗ is the frequency function relative to the trivial reference class, which contains all individ-
uals as members. See for example Gillies (2000, Chapter 5) for an account that takes frequencies to be
conditional probabilities.
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tuberculosis, x = 0.17, y= 0.97, and we have

0.17= 0.97t+ z(1− t).

Assuming that t > 0, this equation can only hold if z < 0.17. It follows that
P;(A|XY RS̄) should be less than 0.17, contra consequence 5. One can see this
as follows. Let us refer to the claim that P∗(α|ρσ̄) < 0.17 as proposition Z. As we
have just seen, Z follows from XY . For each z ∈ [0,1], let Zz be the claim that
P∗(α|ρσ̄)= z. Then,

P;(A|XY RS̄) = P;(A|XY ZRS̄)

=
∫ 1

0
P;(A|XY ZRS̄Zz)P;(Zz|XY ZRS̄) dz

=
∫ 0.17

0
zP;(Zz|XY ZRS̄) dz

< 0.17

since P;(Z0.17|XY ZRS̄) = 0. Note that the third equality holds by an application
of PNRC: P;(A|XY ZRS̄Zz) = P∗(α|ρσ̄) = z for z ∈ [0,0.17), or 0 for z ∈ [0.17,1].
So, if we assume that frequencies are conditional probabilities and that P∗(σ|ρ)> 0,
we reach the conclusion that P;(A|XY RS̄) < 0.17. In which case, consequence 5
cannot hold: Y S̄ provides pertinent evidence that defeats the attempt to apply
PNRC. This provides some reason to think that Y S̄ is a defeater.

However, admitting Y S̄ as a defeater opens the door to our mischief maker to
undermine any application of PNRC, as we shall now see.

Suppose we have evidence X R and wish to apply PNRC to set P;(A|X R) = x,
where 0 < x < 1. Then our mischief maker reliably informs us that there are some
features σ that are positively relevant to α but which do not all apply to individual
c. (In real scenarios, there will always be some such features. We do not need to
know precisely what the features are, nor precisely how relevant they are.) That σ
makes a positive difference to α is captured by the following proposition Y :

(P∗
ρ̂σ(α)> x)∧ (P∗

ρ̂σ̄
(α)< x).

That σ does not apply to c is captured by the proposition σ̄(c), abbreviated by
S̄. Given the evidence Y S̄ provided by the mischief-maker, one needs to consider
P;(A|XY RS̄) instead of P;(A|X R). And it turns out that if we reject consequence
5 then Y S̄ is a defeater here: it prevents us from using PNRC to set P;(A|XY RS̄)=
x. This is because the theorem of total probability forces P;(A|XY RS̄) < x, even
where the difference σ makes is unknown. To see this, let Zz be the proposition
P∗
ρ̂σ̄

(α)= z. Then,

P;(A|XY RS̄) =
∫

z
P;(A|XY RS̄Zz)P;(Zz|XY RS̄) dz

=
∫ x

0
zP;(Zz|XY RS̄) dz

< x

since P;(Zx|XY RS̄)= 0.
Let us return to our specific example. Given X R, which says that 17% of 21-year-

olds get a cough in the next year and Cheesewright is a 21-year-old, we might want
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to use PNRC to directly infer a degree of belief 0.17 that Cheesewright gets a cough.
But then we are reliably informed that there is some set of factors that do not apply
to Cheesewright but make a positive difference to the proposition that he gets a
cough. Although this information is hardly surprising, if one rejects consequence 5
then this information alone is sufficient to defeat our use of PNRC, even if we can
neither specify the factors nor the difference they make.10 This makes PNRC all too
easy to undermine. The only way to render PNRC more robustly applicable is to
insist on consequence 5—a move that blocks these mischievous defeaters.

We thus have a dilemma. If we affirm consequence 5, which has the merit of
being intuitively plausible, we block the mischief maker. However, this comes at the
expense of inconsistency: consequences 3-5 cannot all hold together. On the other
hand, if we reject consequence 5, in line with the argument from Equation ii, then
we enable the mischief maker to undermine even the simplest use of PNRC. This
last point also goes for consequences 3 and 4: if we deny any of 3-5, we permit the
mischievous inductive detractor to undermine our own inductive inferences.

The Bayesian would normally be inclined to take the second horn of the dilemma
here, suggesting that it is no matter that PNRC is so easily undermined, as long
as we take all potential underminers into account by employing the theorem of
total probability. Such a response might proceed as follows. Suppose for sim-
plicity that there are only finitely many properties that define reference classes,
namely ρ,σ1, . . . ,σk. Let S1, . . . ,S2k be propositions predicating all the various
combinations of σ1, . . . ,σk applied to c, e.g., σ1(c)σ̄2(c) · · · σ̄k−1(c)σ̄k(c). For each
such Si , let Z i

z be the claim that the frequency of α is z in the reference class
picked out by ρ together with the combination of properties appearing in Si ,
e.g., P∗ áρσ1σ̄2···σ̄k−1σ̄k

(α) = z. Note that such reference classes are narrowest reference

classes. Then the Bayesian would require just that:

P;(A|X R) =
2k∑
i=1

∫
z
P;(A|X RZ i

zSi)P;(Z i
zSi|X R) dz

=
2k∑
i=1

∫
z

zP;(Z i
zSi|X R) dz

where the second identity follows by PNRC.
While this approach is perfectly in accord with the standard Bayesian frame-

work, it is not an adequate response in this context because it undermines the
appeal to PNRC to provide an adequate account of induction. The problem is that
this approach does not commit to any precise value for P;(A|X R). Indeed, any
value in the unit interval is deemed rationally permissible for P;(A|X R), as long
as the values P;(Z i

zSi|X R) are set accordingly. So, when it comes to providing an

10In order to make σ more concrete, one might try to construct a suitable reference class. For
instance, consider the reference class σ consisting of those individuals not called ‘Cheesewright’ who get
a cough in the next year. We know that this reference class makes a positive difference: P∗

ρ̂σ
(α)= 1 and

P∗
ρ̂σ̄

(α) ≈ 0, and that Cheesewright is not a member of σ, i.e., S̄. So we might consider P;(A|XY RS̄)

instead of P;(A|X R). Now, P;(A|XY RS̄)≈ 0, not 0.17. Thus Y S̄ apparently defeats our proposed use
of PNRC.

However, as Thorn (2012) discusses, there are independent reasons to avoid gerrymandered reference
classes when applying the Principle of the Narrowest Reference Class.
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account of induction, this approach suffers from exactly the same problems that be-
set strictly subjective Bayesianism: inductive inference and non-inductive inference
are placed on an equal footing. What we wanted from an appeal to PNRC was to
force a value of 0.17 or thereabouts for P;(A|X R), to show how induction can be
rationally required rather than merely rationally permissible—which it is anyway in
the absence of direct inference.

In sum, while an appeal to direct inference stands out as the most promis-
ing strategy for a probabilistic account of induction, neither the standard Bayesian
framework nor that of logical probability can accommodate PNRC in a way that
secures inductive inference. Thus the proponent of one of these standard proba-
bilistic approaches needs to turn to some other implementation of direct inference
in order to provide an account of induction. However, we shall see next that stan-
dard probabilistic approaches also struggle to successfully accommodate the main
alternative to the Principle of the Narrowest Reference Class, namely David Lewis’
Principal Principle.

§4
The Principal Principle

Lewis (1980) uses single-case chances rather than generic frequencies to constrain
prior probabilities:

Principal Principle. P;(A|X E)= x, where X says that the chance at time t of propo-
sition A is x and E is any proposition that is compatible with X and admis-
sible at time t.

Again, something needs to be said about when the additional evidence E is com-
patible with X and admissible, or instead defeats the application of the Principal
Principle. Lewis specified that matters of fact up to time t are admissible, but
remained non-committal about which other propositions are admissible.

The Principal Principle is immune to the problem for PNRC posed above, be-
cause reference classes have no bearing when the chances are single-case. How-
ever, the Principal Principle faces the following problem, due to Wallmann and
Williamson (2020).

Suppose E is a proposition about matters of fact no later than the present, A
says that it will rain tomorrow in Abergwyngregyn, and X says that the present
chance of A is 0.7. The Principal Principle implies:

6. P;(A|X E)= 0.7.

Now consider an unrelated proposition F, which says that Fred’s fibrosarcoma will
recur. Suppose the following assignment of probability is rationally permissible:

7. P;(F|X E)= 0.3.

In the standard Bayesian framework with the Principal Principle, such an assign-
ment of degree of belief would be permissible as long as E does not determine that
the chance of F is something other than 0.3. Such an assignment would also be
permissible in the framework of logical probability, if E were to provide some rela-
tively weak evidence against F . Suppose then that E provides at best weak evidence
relating to F . In particular, suppose that E provides less compelling evidence than
the present chance of F, in the sense that the present chance of F would trump
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E in determining strength of belief in F : P(F|XY E) = y, where Y says that the
present chance of F is y.

Now consider the case in which A and F turn out to have the same truth value,
i.e., A ↔ F . Conditional on A ↔ F, the propositions A and F must be given
the same probability.11 What probability should that be? Since there is excellent
evidence relating to A, namely the present chance of A, and at best weak evidence
relating to F, it should at least be permissible that the probability of A is more
strongly influenced by the present chance of A than by the weak evidence relating
to F :

8. P;(A|X E(A ↔ F))> 0.5.

The problem is that assignments 6-8 are inconsistent (Wallmann and Williamson,
2020, §3.1). Arguably, then, neither the standard Bayesian framework nor that of
logical probability can adequately accommodate the Principal Principle. Assign-
ment 6 is just a simple application of the Principal Principle. Assignment 7 con-
cerns an unrelated proposition. To violate assignment 8 would be to hold that an
uninformed or weakly informed credence in an unrelated proposition should be as
strong a determinant of your degree of belief in A as the present chance of A,
where a conflict arises. This works against the intended goal of the Principal Prin-
ciple, which is to ensure that credences are guided by chances. Moreover, to deny
assignment 8 would be to maintain that although the present chance of F should
trump E in determining strength of belief in F, P(F|XY E)= y, the present chance
of A together with the fact that A and F have the same truth value should bizarrely
have no special influence on strength of belief in F .12

It is worth observing that this problem for the Principal Principle also extends to
the Principle of the Narrowest Reference Class. Suppose assignment 6 is generated
by an application of PNRC with respect to a frequency in a very narrow reference
class, instead of by an application of the Principal Principle: e.g., the frequency
of rain in Abergwyngregyn after days on which the prevailing conditions are just
like today’s. Suppose assignment 7, on the other hand, is induced by a frequency
in a very wide reference class: e.g., the frequency of recurrence of fibrosarcoma in
vertebrates. Then assignment 8 remains permissible. After all, the core idea of
the Principle of the Narrowest Reference Class is that frequencies in narrower refer-
ence classes should prevail over those in wider reference classes when determining
rational degrees of belief. However, assignments 6-8 are inconsistent. Hence, the
standard Bayesian framework fails to accommodate simple rational belief assign-
ments that are in line with the Principle of the Narrowest Reference Class.

11This is a consequence of the axioms of probability: for any probability function P, P(A|A ↔ F)=
P(A ∧F|A ↔ F)+P(A ∧¬F|A ↔ F) = P(A ∧F|A ↔ F)+0 = P(A ∧F|A ↔ F)+P(¬A ∧F|A ↔ F) =
P(F|A ↔ F).

12One might suggest moving from Lewis’ Principal Principle to some other principle that calibrates
degrees of belief to chances. The main alternative is a version of the Principal Principle that appeals to
conditional chance (Hall, 1994, 2004):

Conditional Principal Principle. P;(A|X E) = x, where X says that the chance at t of A, conditional on
E, is x.

However, Wallmann and Williamson (2020, §3.2) show that the Conditional Principal Principle does not
avoid the problem for the Principal Principle outlined above.

See Wallmann and Williamson (2020) for more detail and for responses to further suggestions for
avoiding the above problem.
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So we see then that neither kind of direct inference principle sits easily in a stan-
dard Bayesian framework, because the direct inferences we might want (1-5 in the
case of PNRC and 6-8 in the case of both the Principal Principle and PNRC) over-
constrain the prior P;, thanks to CBCP. Recasting direct inference in the framework
of logical probability would not help, since logical probability presupposes CCCP,
which is analogous to CBCP. One might therefore think that the prospects of any
probabilistic approach to induction are dim.

However, this conclusion would be too hasty. There is a non-standard Bayesian
approach that avoids the above problems by avoiding CBCP, as we shall see next.

§5
Objective Bayesian inductive inference

We noted in §2 that while strictly subjective Bayesianism leaves rational degree
of belief largely unconstrained, empirically-based Bayesianism appeals to some di-
rect inference principle to constrain rational degrees of belief given appropriate
evidence. Objective Bayesianism holds that degrees of belief should be heavily
constrained even in the absence of evidence. This is often achieved by means of
the following principle. If Ω is a finite, indivisible set of mutually exclusive and
exhaustive alternatives, then:

Maximum Entropy Principle. PE is a probability function, from all those that satisfy
constraints imposed by E, that maximises the entropy function,

H(P) df=− ∑
ω∈Ω

P(ω) logP(ω).

In the absence of any evidence, the Maximum Entropy Principle selects the equivo-
cator function P=, which gives each alternative the same probability, P=(ω)= 1/|Ω|
for all ω ∈ Ω. If there is substantive evidence, the Maximum Entropy Principle
selects a probability function that is as equivocal as possible in the circumstances.

There are two versions of objective Bayesianism. The version most widely
adopted is situated within the standard Bayesian framework and presumes CBCP.
Some advocates of this version, particularly in the physical sciences, follow Jaynes
(1957) in adopting the Maximum Entropy Principle, while others, particularly in the
statistics community, follow Jeffreys (1939) in using other methods for determining
‘objective’ or ‘default’ priors. Either way, they can be considered advocates of what
we shall call standard objective Bayesianism.

The alternative version of objective Bayesianism is that of Williamson (2010) and
collaborators. This departs from the standard version in the following key ways.

Firstly, it rejects CBCP as a universal principle. While this move is a departure
from standard Bayesianism, it does not amount to a rejection of probabilism. This
is because the alternative version does take conditional beliefs to be probabilities:

CBP. For any E, there is a probability function PE such that BE(A)= PE(A) for all
A.

By rejecting CBCP, this version of objective Bayesianism also eschews Condi-
tionalisation as a norm that governs the updating of degrees of belief (Williamson,
2010). In place of Conditionalisation, the Maximum Entropy Principle is used to
constrain the choice of the belief function, on evidence E. This often gives results
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that agree with those produced by Conditionalisation, but not always. Use of the
Maximum Entropy Principle has the advantage that it becomes possible to revise
degrees of belief away from 0 and 1 in the light of unexpected evidence—something
that it is not possible to do with Conditionalisation. In addition, the Maximum
Entropy Principle can handle certain other cases that are problematic for Condi-
tionalisation (Williamson, 2010, §4.2).13

Second, while the standard Bayesian framework, which appeals to CBCP and
Conditionalisation, requires that evidence be expressible in the domain of the prob-
ability function, i.e., in the algebra of Ω, the alternative version of objective Bayes-
ianism does not require this. This is advantageous because a framework in which
the object language is not cluttered with all possible evidential propositions more
accurately represents actual practice. In practice one cannot express all possible
evidence, and even where one might be able to express one’s evidence it is often
undesirable to do so. After all, we take propositions as evidence at least in part so
they can be removed from the context of inquiry in order to focus on other proposi-
tions that are of immediate interest. Moreover, it is easier to represent and calculate
probabilities defined over a smaller domain. Thus this approach to evidence leads
to a more streamlined intellectual economy.

Third, this alternative version of objective Bayesianism incorporates direct in-
ference. ( Jaynes, in contrast, rejected the existence of non-epistemic probabilities.)
The following direct inference principle is used to calibrate degrees of belief to
single-case chances (Williamson, 2021b):

Chance Calibration. If, according to current evidence E, the current chance function
P∗ lies in the set P∗ of probability functions, then PE ∈ 〈P∗〉, the convex hull
of P∗.14

Here we take current evidence to be evidence about matters of fact up to the
present. The qualification that E is current evidence is intended to ensure that E
is admissible with respect to the present chance. Unlike the Principal Principle,
this direct inference principle does not presuppose CBCP. Note that it requires
a previous inference to a claim about the chance function. The agent needs to
have established that P∗ ∈ P∗ from some previous body of evidence, and, having
been established, the proposition P∗ ∈ P∗ is then included in the current body of
evidence E.

Alternatively, degrees of belief can be calibrated to generic frequencies by means
of some version of the Principle of the Narrowest Reference Class, such as the
following:

13Kyburg (1977) also rejects Conditionalisation, in response to an objection of Levi (1977) that Kyburg’s
implementation of the Principle of the Narrowest Reference Class conflicts with Conditionalisation—see
also Seidenfeld (2007, §3) on this point. While Kyburg’s theory is usually classed as non-Bayesian,
the approach presented here is more naturally classed as a Bayesian theory, albeit non-standard. This
is because it takes probabilities to be rational degrees of belief and because updating by maximising
entropy often produces results that agree with Conditionalisation. This approach can be viewed as
a development of Bayesianism that resolves certain difficulties with the standard approach. Kyburg’s
theory of evidential probability, on the other hand, is closer to logical probability, and does not appeal
to the Maximum Entropy Principle.

14Recall that a probability function P is in the convex hull of a set of probability functions iff it is a
mixture of probability functions in that set, i.e., if there are functions Q and R in the set and some real
number λ in the unit interval such that P(ω)=λQ(ω)+ (1−λ)R(ω) for each ω ∈Ω.
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Frequency Calibration. If, according to E, the frequency P∗
ρ̂

(α) ∈ X , and ρ̂ is the
unique narrowest reference class containing c with respect to which E de-
termines non-trivial bounds on the frequency of α, and E includes no more
pertinent information, then PE(α(c)) ∈ 〈X 〉, the convex hull of X .

Again, this presumes some previous inference from data to the frequency proposi-
tion P∗

ρ̂
(α) ∈ X .

The approach leaves open the question of whether the required inferences to
chances or frequencies are performed using classical or Bayesian statistical infer-
ence. If the former, this version of objective Bayesianism can be thought of as mar-
rying classical statistical inference (inference to generic frequencies or single-case
chances) with Bayesian inference (inference from these non-epistemic probabilities
to rational belief and action).

The fourth departure from Jaynes’ objective Bayesianism, as well as from the
logical approach to probability, is that this version of objective Bayesianism does
not require that rational degrees of belief be uniquely determined by the evidence.
For example, the agent’s probabilities may be relative to the set Ω of indivisible
alternatives as well as to the explicit evidence E. Here Ω can be thought of as
determined by the agent’s language: if this language can be explicated by a finite
propositional language L then Ω is the set of state descriptions of L , and a similar
account can be provided if L is a first-order predicate language (Williamson, 2017).
In addition, inferences from evidence to non-epistemic probabilities can depend on
the agent’s utilities, as we note below. Finally, there may be multiple functions with
maximum entropy, or indeed no maximum entropy function, in which case any
function with sufficiently great entropy is rationally permitted, with what counts
as ‘sufficient’ dependent on the agent’s interests. Thus, this version of objective
Bayesianism relativizes probabilities to an agent’s language, utilities and interests,
as well as evidence, and leaves some role for subjectivity.15 It should be thought of
as a very highly constrained version of Bayesianism, but not uniquely constrained.

On the other hand, this version of objective Bayesianism is not over-constrained,
as is standard Bayesianism with CBCP and the direct inference principles discussed
in §3 and §4. This is because, without CBCP, direct inference constrains a different
probability function PE for each body of evidence E. In contrast, standard Bayes-
ianism with CBCP and either PNRC or the Principal Principle constrain a single
prior probability function P;. To get a sense of the extra degrees of freedom that
this version of objective Bayesianism offers, observe that in this framework the five
consequences of PNRC discussed in §3 would amount to:

1′. PX R(A)= 0.17

2′. PY RS(A)= 0.97

15Indeed, this version of objective Bayesianism arguably handles subjectivity in a better way than does
the standard Bayesian framework. Suppose at least two degrees of belief in A are rationally permissible,
x and y, and then some evidence irrelevant to A is obtained. In the standard Bayesian framework, one
needs to select one of these degrees of belief—x say—and conditionalise on the new evidence, after
which degree of belief x must be retained. This flies in the face of common sense: if y was rationally
permissible before learning the irrelevant evidence, it should still be rationally permissible. Common
sense is salvaged by updating via the Maximum Entropy Principle rather than Conditionalisation. If both
x and y satisfy constraints imposed with the evidence before the arrival of the new information, and have
sufficiently great entropy, then they will also be compatible with the evidence and have sufficiently great
entropy after adding the irrelevant information. Thus both remain rationally permissible, as required.
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3′. PXY R(A)= 0.17

4′. PXY RS(A)= 0.97

5′. PXY RS̄(A)= 0.17.

Here, each of these consequences constrains a different probability function, so
they cannot be mutually inconsistent. Similarly, the three conditions introduced in
§4 translate as:

6′. PX E(A)= 0.7.

7′. PX E(F)= 0.3.

8′. PX E(A↔F)(A)> 0.5.

While 6′ and 7′ constrain the same probability function, PX E , they are consistent
constraints on this function. Moreover, 8′ constrains a different probability function,
PX E(A↔F), and so cannot be incompatible with 6′ and 7′.

We see, then, that the inconsistencies of §3 and §4 simply do not arise in this
alternative Bayesian framework.16

Having seen how this approach avoids the problems of §3 and §4, we next turn
to the question of how it captures inductive inference.

If A is the atomic proposition α(c), the Maximum Entropy Principle mandates
a middling degree of belief in A, P;(A) = 0.5, in the absence of any evidence.
Suppose the agent learns that a sample from reference class ρ̂ yields proportion x
for α (proposition X ), and that individual c satisfies ρ (proposition R). Suppose
next that, from X R, the agent is prepared to use interval I as her best estimate
of the chance P∗(α(c)), i.e., she establishes that P∗(α(c)) ∈ I (proposition Y ) and
is not prepared to commit to the chance lying in any narrower interval. Chance
Calibration requires that her degree of belief in A should match this constraint on
the chance, PXY R(α(c)) ∈ I. The Maximum Entropy Principle then requires that
she should choose a maximally equivocal value from within that interval—i.e., the
value closest to 0.5:

0 10.5

P;(A)

x

I PXY R(A)

16Does that mean that 1′−8′ should all hold in this setting? Recall that 5, although intuitively plau-
sible, is questionable, for the reasons discussed in §3: as Equation ii shows under certain assumptions,
the frequency of getting a cough in the reference class of those without tuberculosis must be less than
0.17. This argument against 5 also brings 5′ into question: given that the frequency is not 0.17, is it
reasonable to believe that Cheesewright gets a cough to degree 0.17?

While we do not need to settle this question here, we should note that denying 5′ would open the
door to the mischief-maker argument of §3. Thus some further account would need to be given of
how to avoid the mischief maker. The key point here is that there is no inconsistency in this alternative
framework that compels one to deny any of 1′−5′. The Bayesian can endorse all these applications of the
Principle of the Narrowest Reference Class, by moving from standard Bayesianism to the non-standard
objective Bayesian framework.
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Williamson (2017, §7.3) breaks this inference down further into a series of small
steps, by appealing to Frequency Calibration rather than Chance Calibration. These
steps can be summarised as follows. Suppose ρ̂ is the (unique narrowest) reference
class of our sample s (e.g., 21-year-olds) and let σ̂ be a reference class of similar
samples (e.g., similar samples of a hundred 21-year-olds). Take X̄ to be the function
that maps a sample in σ̂ to the mean of that sample; X̄ (s) is thus the mean of our
sample (e.g., 0.17, the proportion of members of the sample who get a cough). Then:

(i) Let τ be the threshold such that the agent would infer that P∗
ρ̂

(α) ∈ I should
her credence in this proposition meet threshold τ. τ can be determined from
the agent’s utilities by means of Bayesian decision theory.17

(ii) Let Iτ be the function that maps a sample to the confidence interval deter-
mined by the sample mean and confidence level τ.

(iii) One can infer that in approximately 100τ% of samples, the corresponding
confidence interval would capture the frequency P∗

ρ̂
(α), i.e., P∗

σ̂
(P∗

ρ̂
(α) ∈ Iτ)≈

τ.

(iv) Now consider our specific sample s, which is known to be in the reference
class σ̂ of similar samples. If there is no more pertinent evidence in E (includ-
ing evidence gained from the sample itself), Frequency Calibration requires
that PE(P∗

ρ̂
(α) ∈ Iτ(s))≈ τ.

(v) By (i), the agent establishes that P∗
ρ̂

(α) ∈ Iτ(s). This is added to E to give a
new body of evidence E′.

(vi) If E′ also determines that individual c is a member of reference class ρ̂, and
E′ contains no evidence more pertinent to c, then a second application of
Frequency Calibration requires that PE′ (α(c)) ∈ Iτ(s).

(vii) The Maximum Entropy Principle then further narrows down PE′ (α(c)) to the
most equivocal value in Iτ(s).

This sequence of steps highlights the interplay between classical and Bayesian meth-
ods: step (i) appeals to Bayesian decision theory, (ii)-(iii) to classical statistics (fre-
quentist confidence interval estimation methods), and (iv)-(vii) to the non-standard
variant of objective Bayesianism.

In this alternative version of objective Bayesianism, then, direct inference en-
sures that rational degrees of belief are swayed by past experience and the Maxi-
mum Entropy Principle moderates the extent to which they are swayed. The exact
extent to which past experience is moderated depends on the size of the confidence
interval, which in turn depends on the confidence level, which is a function of the
agent’s utilities. We will assess whether this account survives Schurz’ criticisms in
the next section. But if successful, it provides a probabilistic account of the logic of
induction that appeals to direct inference and is immune to the problems of §3 and
§4.

17More precisely, τ = S2−E2
S1+S2−E1−E2

, where S1 is the utility of establishing the interval estimate

P∗
ρ̂

(α) ∈ I if the estimate is correct, S2 is the utility of not establishing it if it is incorrect, E1 is the

utility of not establishing it if correct and E2 is the utility of establishing it if incorrect. See Williamson
(2021a) for further discussion of this point.
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§6
Schurz’ criticisms

Schurz (2019, §§4.5, 4.6) objects that this sort of account of induction requires a uni-
form prior probability distribution over the possible values of a frequency P∗

ρ̂
(α). He

argues that this is a problem because equiprobability is language dependent—i.e.,
different languages lead to different distributions—and because uniform distribu-
tions prohibit induction. We will consider these three concerns—equiprobability,
language dependence and induction being prohibited—in turn. I will argue that
the non-standard objective Bayesian account of §5 is immune to these objections.

First note that this account does not require that evidence be included in the
domain of the probability function, because it does not require CBCP. (This was the
second difference between the two versions of objective Bayesianism noted in §5.)
The upshot is that the agent’s language need not express frequency statements of the
form P∗

ρ̂
(α) = x, and objective Bayesianism does not require any prior probability

distribution over the possible values of a frequency P∗
ρ̂

(α).
One might reply that, although this objective Bayesian approach does not ac-

tually require a uniform prior distribution over the frequencies, it is tantamount
to one that requires such a distribution (see Maher, 1996, §3). What this means
is just that, if one were to try to emulate the non-standard objective Bayesian ap-
proach within the framework of standard Bayesianism, one would need such a prior
distribution. This would in turn raise concerns about language dependence: the
worry that a uniform distribution on one language may yield different inferences to
a uniform distribution on another language.

However, to take this to be a problem is to assume that standard Bayesianism
should have priority over this non-standard rival approach. For only then would
it make sense to use the former approach to emulate the non-standard objective
Bayesian approach. This begs the question. As I have argued above, we need to
part from standard Bayesianism precisely in order to accommodate direct inference
and induction.

Schurz provides the following example:

As an example, take a series of 100 coin tosses. It can be computed
that with p = 95 percent the frequency of heads in 100 throws does not
deviate by more than 8 percent from the true statistical probability of
heads. Now assume we observe a number of 30 heads in 100 throws of
the coin. According to Williamson’s argument we should now believe
that the coin has a biased heads-probability of 30 ± 8 percent. That
is only reasonable if our prior expectation concerning the coin’s true
probability is uniform, which means that our prior expectation that the
coin is approximately fair is very low. If we are confident that the coin
is fair (i.e., our prior peaks about p = 1

2 ), it seems more reasonable to
believe that the given series was an unrepresentative accident. (Schurz,
2019, p. 74.)

It is certainly the case that, where there is evidence that the coin is fair, that
evidence should influence an inference to frequency or chance. Even knowing that a
coin is being tossed (as opposed to, say, merely knowing that an experiment is being
conducted with at most two possible outcomes) provides some evidence against the
probability of heads being close to 0 or 1. This evidence may be enough to resist
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the inference that the frequency or chance is in the 95% confidence interval. What
exactly one should infer here about the frequency or chance is an open question.
This scenario is clearly more complicated than the simple case in which there is no
evidence that overrides the confidence interval estimate of the frequency or chance.
But that does not undermine induction in the simple case, nor does it preclude
induction in these more complex cases.

Thus Schurz’ conclusion is not warranted:

In conclusion, a justification of inductive posterior probabilities condi-
tional on finite evidence solely by [direct inference], without assuming
a particular prior distribution, is impossible. (Schurz, 2019, p. 75.)

Without CBCP, there is no need for any prior distribution of the probability of
heads. Even if there is some prior distribution, it is the total evidence that guides
degrees of belief, by means of direct inference and the Maximum Entropy Principle,
not the prior distribution.

Let us turn to the question of language dependence. It is true that, in the ab-
sence of evidence, the Maximum Entropy Principle selects the equivocator function,
which is a uniform distribution, and that objective Bayesianism ties probability to
an agent’s language. But this is not a pernicious kind of language dependence
because two different languages will agree on inferences that can be expressed in
both languages (Williamson, 2017, Theorem 5.9). Moreover, Bayesians should not
be troubled by a link between probability and features of an agent such as her
language. The whole idea of Bayesianism is to interpret probabilities as an agent’s
rational degrees of belief and so relativity to features of an agent is inevitable. It
is only the logical interpretation of probability that seeks to construe probability as
an objective relation between propositions, determined solely by the propositions
it relates. Admittedly, Jaynes gave great weight to probability distributions that
are uniquely determined by the evidence and the problem formulation, in order
to secure the objectivity of scientific inferences. But uniqueness is not essential to
objective Bayesianism.

More serious is Schurz’ charge that uniform distributions prohibit induction.
This is the worry, noted above, that the equivocator function fails to allow for
learning from experience. It is a valid concern, but only under the presupposition
of CBCP: if the prior probability function is the equivocator function, then condi-
tionalising on a sample of a hundred ravens, all observed to be black, will not raise
the probability of the next observed raven being black. This is not a valid concern
for the version of objective Bayesianism advocated here, which rejects CBCP. From
the sample of ravens one will infer that the frequency of ravens being black, or the
chance of the next raven being black, is very close to 1, and direct inference ensures
that one ought to believe that the next raven is black to some degree close to 1.
Induction is by no means prohibited.

In sum, once we release ourselves from two dogmas of objective Bayesianism,
namely CBCP and uniqueness, both of which are features of Jaynes’ account, Schurz’
criticisms lose their bite. The alternative version of objective Bayesianism can em-
brace both equiprobability and learning from experience, and is immune to Schurz’
criticisms.
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§7
Conclusion

We saw in §2 that direct inference offers the most promising avenue for a probabilis-
tic account of induction. However, neither the Principle of the Narrowest Reference
Class nor the Principal Principle can realise this promise when situated within ei-
ther of the two dominant probabilistic approaches, namely standard Bayesianism
and logical probability. A non-standard variant of objective Bayesianism—that of
Williamson (2010, 2017) offers a way out, though: it provides a probabilistic ac-
count of inductive inference that does not suffer from these problems that beset the
standard approaches. A direct inference principle—Frequency Calibration and/or
Chance Calibration—enables the account to accommodate learning from experi-
ence, while the Maximum Entropy Principle obviates the need for CBCP.

To be sure, there remain gaps in the account that need to be filled. Most notably,
Chance Calibration leaves open the question of how to infer chances from evidence.
Similarly, Frequency Calibration leaves open the analogous question, as well as that
of how to determine whether E contains evidence that is more pertinent than the
frequency and what to do when it does. We have seen how statistical techniques such
as confidence interval methods can help to address these questions and how they
slot into the logic of induction provided by this version of objective Bayesianism.

While a case can be made that this version of objective Bayesianism provides an
inroad into the problem of inductive logic that is immune to Schurz’ criticisms, this
is not to say that it offers the only satisfactory probabilistic account of induction.
There are other non-standard probabilistic accounts, including the evidential prob-
ability account espoused by Kyburg Jr and Teng (2001). Such accounts need not
be rivals. In particular, evidential probability can be thought of as complementary
to objective Bayesianism, because it can be construed as a way of implementing
the Principle of the Narrowest Reference Class in objective Bayesianism—i.e, a
way of filling the gaps in Frequency Calibration that we noted above (Wheeler and
Williamson, 2011).

The question remains as to whether the approach presented here offers any
progress with regard to the problem of inductive justification. While this is not
the place for a detailed consideration of this question, a few brief remarks may be
helpful. As Schurz observes, its use of direct inference places this approach as a
development of that of Williams (1947) and Stove (1986). However, this approach
is distinctive in its appeal to Bayesianism: Williams and Stove advocated versions
of logical probability (Peden, 2021). In the approach presented here, inductive
inference emerges as a consequence of the norms of objective Bayesianism, and
it is justified to the extent that these norms are justified. Williamson (2010, 2017)
argues along the following lines that these norms must be followed in order to
avoid various kinds of loss. A standard Dutch book argument can be used to
show that degrees of belief need to be probabilities in order to avoid sure loss
(Williamson, 2017, §9.2). Moreover, direct inference is required in order to avoid
long-run loss, or expected loss (Williamson, 2010, §3.3). Finally, degrees of belief
need to conform to the Maximum Entropy Principle in order to avoid worst-case
expected loss (Williamson, 2017, §9.3). Thus, if a detractor from induction accepts
that frequencies or chances govern the gains and losses that arise from one’s beliefs
and decisions, and that one should avoid avoidable loss in one’s dealings with the
world—including avoidable sure loss, long-run loss or expected loss, and worst-
case expected loss—then this justification of objective Bayesianism may have some
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persuasive force.
This is perhaps a modest advance, as the detractor might resist an inference

from a sample to a frequency or a chance in the absence of some justification that
the sampling method is random. McGrew (2001) and Campbell and Franklin (2004)
counter such scepticism, however, on the grounds that most large samples are rep-
resentative of the population from which they are sampled, and (by direct inference)
this fact warrants a default belief that the sample in question is representative, in
the absence of evidence otherwise. If successful, this move shifts the burden of
proof to the detractor.18
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